Partial differential equations I, 2011/2012

VIII: Weak derivatives and the Sobolev spaces

Reminder

Let $u, v \in L^1_{loc}(\Omega)$ and $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a multi-index. We say that v is the α -weak derivative of u (and we write " $D^{\alpha}u = v$ ") if

$$\forall \varphi \in C^\infty_c(\Omega) \quad \int_\Omega u D^\alpha \varphi \ dx = (-1)^{|\alpha|} \int_\Omega v \varphi \ dx \,.$$

A function $u \in L^1_{loc}(\Omega)$ belongs to the **Sobolev space** $W^{k,p}(\Omega)$ if for all multi-indices α such that $|\alpha| \leq k$ there exists $D^{\alpha}u$ in the weak sense and $D^{\alpha}u \in L^p(\Omega)$.

Problems

- 1. Let $u: [a, b] \to \mathbb{R}$ be piecewise C^1 . Show that the weak derivative u' exists and that it equals the classical derivative at all the points where u' exists in the classical sense.
- 2. Let $p \ge 1$. Give example of a function $u \in C^{\infty}(\mathbb{B}^n) \setminus W^{1,p}(\mathbb{B}^n)$.
- 3. Let $u : [0,1] \rightarrow [0,1]$ be the Cantor function (so called "Devil's staircase"). Does the weak derivative u' exists? What if u is the Cantor function on a thick Cantor set (i.e. a Cantor set of positive measure)?
- 4. Let α, β be some multi-indices and let $u \in L^1_{loc}(\mathbb{R}^n)$ be such that two of $D^{\alpha}D^{\beta}u$, $D^{\beta}D^{\alpha}u$, $D^{\alpha+\beta}u$ exist in the weak sense. Show that the third one also exists and all of them are equal.
- 5. Let $u \in W^{k,p}(\Omega)$ and $\varphi \in C_c^{\infty}(\Omega)$ for some $k \in \mathbb{N}$ and $p \in [1, \infty)$. Show that $\varphi u \in W^{k,p}(\Omega)$ and that the Leibniz rule holds

$$D^{\alpha}(\varphi u) = \sum_{\beta \leqslant \alpha} \binom{\alpha}{\beta} D^{\beta} \varphi D^{\alpha-\beta} u \,,$$

where $\binom{\alpha}{\beta} = \alpha! / (\beta! (\alpha - \beta)!)$ and $\alpha! = \alpha_1! \cdots \alpha_n!$.

- 6. Let $n > 1, s \in (0, n)$ $u : \mathbb{B}^n \to \mathbb{R}$ be given by $u(x) = |x|^{-s}$. For which $p \ge 1$ does u belong to: $W^{1,p}(\mathbb{B}^n)$? $W^{2,p}(\mathbb{B}^n)$?
- 7. Let $u(x) = \log \log(1 + |x|^{-1})$. For which $p \ge 1$ does u belong to $W^{1,p}(\mathbb{B}^n)$?
- 8. Let $u \in W^{1,p}([0,1]) \cap C^{\infty}([0,1])$. Show that

$$|u(x) - u(y)| \leq |x - y|^{1 - 1/p} ||u||_{W^{1,p}}.$$

- 9. Let $\Omega \subseteq \mathbb{R}^n$ be connected and let $u \in W^{1,p}(\Omega)$ be such that the weak derivative $u_{x_i} = 0$ a.e. for each $i = 1, \ldots, n$. Show that u is constant a.e.
- 10. Let $u: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$u(x) = \begin{cases} 1 - |x|^2 & \text{for } |x| \leq 1\\ 0 & \text{for } |x| > 1 \,. \end{cases}$$

Does u belong to: $W^{1,2}(\mathbb{B}^2(0,2))$? $W^{2,2}(\mathbb{B}^2(0,2))$? $W^{1,2}_0(\mathbb{B}^2(0,2))$?

11. For which s > 0 there exists a weak derivative of the function $u(x) = |x|^{-s} \log |x|$?