Partial differential equations I, 2011/2012

VI: Harmonic functions

All the functions in this problem set are assumed to be at least C^{2} smooth.

1. Show that the following functions are harmonic
a) $f(x)=\langle v, x\rangle: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad$ (here $v \in \mathbb{R}^{n}$ is fixed)
b) $f(x, y)=x^{2}-y^{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$
c) $f(x, y)=\exp (x) \cos (y): \mathbb{R}^{2} \rightarrow \mathbb{R}$
d) $\operatorname{Re}(f), \operatorname{Im}(f) \quad$ where $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic.
2. Let $p=(1,1) \in \mathbb{R}^{2}$. Calculate

$$
\frac{1}{\pi} \int_{\mathbb{B}(p, 1)} x^{3}-3 x y^{2} d \lambda_{2}(x, y)
$$

3. ["Invariance" under inverses] Let u be harmonic. Show that

$$
v(x)=\frac{1}{|x|^{n-2}} u\left(\frac{x}{|x|^{2}}\right)
$$

is also harmonic.
4. [Invariance under inverses for n-harmonic functions] Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be n-harmonic, i.e.

$$
\operatorname{div}\left(|\nabla u|^{n-2} \nabla u\right)=0
$$

Show that the function

$$
v(x)=u\left(\frac{x}{|x|^{2}}\right)
$$

is also n-harmonic.
5. Let u, v be harmonic in $\Omega \subseteq \mathbb{R}^{n}$ (a bounded domain) and such that $u \geqslant v$ on $\partial \Omega$. Show that $u \geqslant v$ on all of Ω.

6 . Let $n \geqslant 3$ and let u be a solution to

$$
-\Delta u=f \quad \text { in } \mathbb{B}(0, r), \quad u=g \quad \text { on } \partial \mathbb{B}(0, r) .
$$

Show that

$$
u(0)=f_{\partial \mathbb{B}(0, r)} g(x) d S(x)+\frac{1}{n(n-2) \alpha(n)} \int_{\mathbb{B}(0, r)}\left(\frac{1}{|x|^{n-2}}-\frac{1}{r^{n-2}}\right) f(x) d x
$$

Hint: One formula worth remembering

$$
f_{\partial \mathbb{B}(x, r)} u(x) d S(x)=f_{\partial \mathbb{B}(0,1)} u(x+r z) d S(z) .
$$

7. [Invariance under orthogonal transformations of the domain] The function u satisfies $\Delta u=0$ in $\Omega \subseteq \mathbb{R}^{n}$. Let A be an orthogonal matrix, i.e. $A A^{T}=I=A^{T} A$. Show that $v(x)=u(A x)$ satisfies $\Delta v=0$ in $A^{-1} \Omega$.
8. Let u be harmonic in R^{n} and let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be convex. Show that the following functions are subharmonic
a) $w=|\nabla u|^{2}$
b) $v=\varphi(u)$.
9. Let $x=r \cos \varphi$ and $y=r \sin \varphi$ be polar coordinates in \mathbb{R}^{2}. Show that

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}} .
$$

10. For which $a \in \mathbb{R}$ the following functions are subharmonic
a) $u(x)=\exp \left(a|x|^{2}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}$
b) $v(x)=(\ln |x|)^{a}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
11. Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be harmonic. Knowing that $u(x)=v(|x|)$ for some $v: \mathbb{R} \rightarrow \mathbb{R}$, find the ODE satisfied by v and solve it.
12. Let $u \in C^{2}(\mathbb{B}) \cap C(\overline{\mathbb{B}})$, where $\mathbb{B} \subseteq \mathbb{R}^{3}$ is a unit ball. Assume that $\Delta u=u-1$ and that $u=1$ on the set $S_{+}^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \partial \mathbb{B}: x_{3}>0\right\}$ and that $\frac{\partial u}{\partial \vec{n}}=0$ on the set $S_{-}^{2}=\partial \mathbb{B} \backslash S_{+}^{2}$. Show that $u=1$ in \mathbb{B}.
13. Let $u: \mathbb{B} \rightarrow \mathbb{R}$, where $\mathbb{B} \subseteq \mathbb{R}^{n}$ is a unit ball. Assume that $\Delta u=u^{3}$ in \mathbb{B} and $u=0$ on $S_{+}=\left\{x \in \partial \mathbb{B}: x_{1}>0\right\}$ and $\frac{\partial u}{\partial \vec{n}}=0$ on the set $S_{-}=\partial \mathbb{B} \backslash S_{+}$. Show that $u=0$ in \mathbb{B}.
14. Let $u, h: \mathbb{B} \rightarrow \mathbb{R}$, where $\mathbb{B} \subseteq \mathbb{R}^{n}$ is a unit ball. Assume that h is harmonic in \mathbb{B} and u satisfies

$$
\Delta u=u-h \text { in } \mathbb{B}, \quad u=h \text { on } \partial \mathbb{B} .
$$

Is $u=h$ the only possibility?
15. Let u be harmonic in \mathbb{R}^{n}. Assume that there exists a constant $C>0$ such that $|u(x)| \leqslant$ $C(1+|x|)^{\varepsilon}$ for some $\varepsilon \in(0,1)$. Show that u is constant.

16 . Let u be harmonic in \mathbb{R}^{n} which does not change the sign. Show that u is constant.
17. Let $u \in K:=\left\{w \in C^{2}(\Omega): w=g\right.$ on $\left.\partial \Omega\right\}$. Show that the following conditions are equivalent
a) $\Delta u=0$ in Ω,
b) $\int_{\Omega} \nabla u \nabla \varphi d x=0$ for each $\varphi \in C_{0}^{\infty}(\Omega)$,
c) $\int_{\Omega}|\nabla u|^{2} d x \leqslant \int_{\Omega}|\nabla w|^{2} d x \quad$ for each $w \in K$.

Remark. The functional $I: K \rightarrow \mathbb{R}$ defined by $I[u]=\int_{\Omega}|\nabla u|^{2}$ is called the Dirichlet energy and harmonic functions are minimizers of this energy.
18. Using the above characterization of harmonic maps, solve problems 3 and 7.

