Partial differential equations I, 2011/2012

V: Uniqueness of solutions

1. Let $U \subseteq \mathbb{R}^{n}$ be an open, bounded set with smooth boundary. For any $T>0$ we set $U_{T}=$ $U \times(0, T]$ and $\Gamma_{T}=U \times\{t=0\} \cup \partial U \times[0, T)$. Show that the problem

$$
u_{t t}-\Delta_{x} u=f \text { in } U_{T}, \quad u=g \text { on } \Gamma_{T} \quad \text { and } \quad u_{t}=h \text { in } U \times\{t=0\}
$$

has at most one solution.
2. Let $\Omega \subseteq \mathbb{R}^{n}$ be an open, bounded set with smooth boundary. Show that the problem

$$
\begin{aligned}
u_{t t}-c^{2} \Delta_{x} u & =-u \text { in } \Omega \times \mathbb{R}_{+}, \\
\frac{\partial u}{\partial n} & =0 \text { on } \partial \Omega \times\{t=0\} \\
\text { and } \quad u(x, 0)=u_{t}(x, 0) & =0 \text { for } x \in \Omega
\end{aligned}
$$

has at most one solution.
3. Let $u \in C([0, \infty) \times \mathbb{R}) \cap C^{2}((0, \infty) \times \mathbb{R})$ be the solution to the problem

$$
u_{t t}-u_{x x}=0 \text { for } x \in \mathbb{R}, t>0 \quad u(x, 0)=g(x) \quad \text { and } \quad u_{t}(x, 0)=h(h) \text { for } x \in \mathbb{R} .
$$

Assume that g and h have compact supports. We define

$$
\begin{aligned}
k(t) & =\frac{1}{2} \int_{R} u_{x}^{2}(x, t) d x \\
\text { and } \quad p(t) & =\frac{1}{2} \int_{R} u_{t}^{2}(x, t) d x
\end{aligned}
$$

Show that
(a) k and p are well defined,
(b) $k(t)=p(t)$ for large t,
(c) $E(t)=k(t)+p(t)$ is constant.
4. Let $\Omega \subseteq \mathbb{R}^{n}$ be an open, bounded set with smooth boundary. Let $A \in \mathbb{R}^{n \times n}$ be a real, symmetric and positive definite matrix. Let u be a smooth solution to the problem

$$
\begin{aligned}
u_{t t}-\operatorname{div}(A \nabla u) & =0 \text { in } \Omega \times \mathbb{R}_{+}, \quad u=0 \text { on } \partial \Omega \times(0, \infty) \\
\text { and } \quad u(x, 0) & =g(x), \quad u_{t}(x, 0)=h(x) \text { for } x \in \Omega .
\end{aligned}
$$

Show that for each $t>0$

$$
\int_{\Omega} u_{t}^{2}(x, t)+\langle A \nabla u(x, t), \nabla u(x, t)\rangle d x=\int_{\Omega} h^{2}(x)+\langle A \nabla g(x), \nabla g(x)\rangle d x .
$$

Then prove that the solution is unique.
5. Show that the problem

$$
\begin{aligned}
u_{t}-u_{x x} & =0 \quad \text { in }(0, \pi) \times \mathbb{R}_{+} \\
u(\pi, t)=u(0, t) & =0 \quad \text { for } t>0 \\
\text { and } \quad u(x, 0) & =g(x) \quad \text { for } x \in(0, \pi)
\end{aligned}
$$

has at most one solution.
6. Show that the problem

$$
\begin{aligned}
u_{t t}-u_{x x} & =0 \quad \text { in }(0, \pi) \times \mathbb{R}_{+}, \\
u_{x}(\pi, t)=u_{x}(0, t) & =0 \quad \text { for } t>0 \\
\text { and } \quad u(x, 0) & =g(x), \quad u_{t}(x, 0)=h(x) \quad \text { for } x \in(0, \pi)
\end{aligned}
$$

has at most one solution.
7. Let u be a solution to

$$
\begin{aligned}
u_{t}-\Delta_{x} u & =|\nabla u|^{2} \quad \text { for } x \in \mathbb{R}^{n}, t>0, \\
\text { and } \quad u(x, 0) & =g(x) \quad \text { for } x \in \mathbb{R}^{n},
\end{aligned}
$$

where g is a continuous and bounded function on \mathbb{R}^{n}.
(a) Find a function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ so that $w=\phi \circ u$ is a solution to the heat equation. Find an explicit formula for u.
(b) Assume that $f>0$. Is it true that $u \geqslant 0$? Is the solution unique in this case?

Quick cheat sheet

1. (d'Alemebert formula) The solution to

$$
\begin{gathered}
u_{t t}-u_{x x}=0, \quad u(x, 0)=g(x) \quad \text { and } \quad u_{t}(x, 0)=h(x) \quad \text { for }(x, t) \in \mathbb{R} \times \mathbb{R}_{+} \\
\text {is } \quad u(x, t)=\frac{1}{2}(g(x+t)+g(x-t))+\frac{1}{2} \int_{x-t}^{x+t} h(y) d y
\end{gathered}
$$

2. The solution to

$$
\begin{gathered}
u_{t t}-u_{x x}=f, \quad u(x, 0)=0 \quad \text { and } \quad u_{t}(x, 0)=0 \quad \text { for }(x, t) \in \mathbb{R} \times \mathbb{R}_{+} \\
\text {is } \quad u(x, t)=\frac{1}{2} \int_{0}^{t} \int_{x-s}^{x+s} f(y, t-s) d y d s
\end{gathered}
$$

3. (Kirchhoff formula) The solution to

$$
\begin{gathered}
u_{t t}-\Delta_{x} u=0, \quad u(x, 0)=g(x) \quad \text { and } \quad u_{t}(x, 0)=h(x) \quad \text { for }(x, t) \in \mathbb{R}^{3} \times \mathbb{R}_{+} \\
\text {is } \quad u(x, t)=f_{\partial \mathbb{B}(x, t)} t h(y)+g(y)+\langle D g(y), y-x\rangle d S(y) .
\end{gathered}
$$

4. (Poisson formula) The solution to

$$
\begin{gathered}
u_{t t}-\Delta_{x} u=0, \quad u(x, 0)=g(x) \quad \text { and } \quad u_{t}(x, 0)=h(x) \quad \text { for }(x, t) \in \mathbb{R}^{2} \times \mathbb{R}_{+} \\
\text {is } \quad u(x, t)=f_{\mathbb{B}(x, t)} \frac{t g(y)+t^{2} h(y)+t\langle D g(y), y-x\rangle}{\sqrt{t^{2}-|y-x|^{2}}} d y .
\end{gathered}
$$

5. The solution to

$$
\begin{gathered}
u_{t}-\Delta_{x} u=0, \quad u(x, 0)=g(x) \quad \text { for }(x, t) \in \mathbb{R}^{n} \times \mathbb{R}_{+} \\
\text {is } \quad u(x, t)=\left(\Phi_{t} * g\right)(x)=\frac{1}{\sqrt{(4 \pi t)^{n}}} \int_{\mathbb{R}^{n}} \exp \left(-\frac{|x-y|^{2}}{4 t}\right) g(y) d y .
\end{gathered}
$$

6. The solution to

$$
\begin{aligned}
u_{t} & -\Delta_{x} u=f, \quad u(x, 0)=0 \quad \text { for }(x, t) \in \mathbb{R}^{n} \times \mathbb{R}_{+} \\
\text {is } \quad u(x, t) & =\int_{0}^{t}\left(\Phi_{t-s} * f\right)(x) d s \\
& =\int_{0}^{t} \frac{1}{\sqrt{(4 \pi(t-s))^{n}}} \int_{\mathbb{R}^{n}} \exp \left(-\frac{|x-y|^{2}}{4(t-s)}\right) f(y, s) d y d s .
\end{aligned}
$$

