Partial differential equations I, 2011/2012

Homework 2

Deadline: May 9, 2012

1. [2p.] Let $c \in \mathbb{R}$ be some constant. Find a formula for the solution to the following problem

$$
\begin{aligned}
u_{t}-a^{2} u_{x x} & =c u & & \text { for }(x, t) \in \mathbb{R}_{+} \times \mathbb{R}_{+}, \\
u(0, t) & =0 & & \text { for } t \in \mathbb{R}_{+} \\
u(x, 0) & =\varphi(x) & & \text { for } x \in \mathbb{R}_{+} .
\end{aligned}
$$

2. [3p.] Solve the following problem

$$
\begin{aligned}
u_{t}-u_{x x} & =e^{-4 t} \sin (3 \pi x) \quad \text { for }(x, t) \in(0,1) \times \mathbb{R}_{+} \\
u(0, t) & =u(1, t)=0 \\
u(x, 0) & =7 \sin (\pi x)+3 \sin (5 \pi x)
\end{aligned}
$$

3. [5p.] Let $u \in C^{2}\left(\mathbb{R}^{n}, \mathbb{R}_{+}\right)$be such that $\Delta u=0$ in \mathbb{R}^{n}. Show that u has to be constant. Hint: $\S 2.2 .3$ c. from the Evans' book might be useful.
4. [3p.] Let $u: \mathbb{B}(0,1) \rightarrow \mathbb{R}$ satisfy

$$
\begin{aligned}
-\Delta u=f & \text { in } \mathbb{B}(0,1) \\
u=g & \text { on } \partial \mathbb{B}(0,1) .
\end{aligned}
$$

Show that there exists a constant C depending only on n such that

$$
\sup _{\mathbb{B}(0,1)}|u| \leqslant C\left(\sup _{\partial \mathbb{B}(0,1)}|g|+\sup _{\mathbb{B}(0,1)}|f|\right) .
$$

