## Partial differential equations I, 2011/2012

## Homework 1

Deadline: March 21, 2012

1. [2p.] Solve the equation

$$
x u u_{x}-y u u_{y}=y^{2}-x^{2}
$$

knowing that the graph of the solution contains the curve ${ }^{1}$ parameterized by

$$
\phi(t)=\left(t, \frac{t}{2}, 0\right) .
$$

2. [2p.] Solve the boundary value problem

$$
\begin{aligned}
u_{t t}-u_{x x} & =\cos x & & \text { for }(x, t) \in \mathbb{R} \times \mathbb{R}_{+} \\
u(x, 0) & =\frac{1}{2} x^{2} & & \text { for } x \in \mathbb{R} \\
u_{t}(x, 0) & =\sin x & & \text { for } x \in \mathbb{R} .
\end{aligned}
$$

3. [3p.] Solve the boundary value problem

$$
\begin{aligned}
u_{t t}-u_{x x} & =\cos (3 x) & & \text { for }(x, t) \in(0, \pi) \times \mathbb{R}_{+} \\
u_{x}(0, t)=u_{x}(\pi, t) & =0 & & \text { for } t>0 \\
u(x, 0) & =2 \cos ^{2} x & & \text { for } x \in(0, \pi) \\
u_{t}(x, 0) & =5 \cos (2 x) & & \text { for } x \in(0, \pi) .
\end{aligned}
$$

4. [4p.] Find canonical forms ${ }^{2}$ of

$$
\begin{aligned}
u_{x x}+u_{x y}-2 u_{y y}-3 u_{x}-15 u_{y}+27 x & =0 \\
x y^{2} u_{x x}-2 x^{2} y u_{x y}+x^{3} u_{y y}-y^{2} u_{x} & =0
\end{aligned}
$$

Hint: Try not to calculate too much. Maybe you can guess the right change of variables.
5. [5p.] Let $u$ be a solution to the following boundary value problem

$$
\begin{aligned}
u_{t t}-\Delta_{x} u & =0 & & \text { for }(x, t) \in \mathbb{R}^{3} \times \mathbb{R}_{+} \\
u(x, 0) & =g(x) & & \text { for } x \in \mathbb{R}^{3} \\
u_{t}(x, 0) & =h(x) & & \text { for } x \in \mathbb{R}^{3},
\end{aligned}
$$

where $g$ and $h$ are functions $\mathbb{R}^{3} \rightarrow \mathbb{R}$ with compact support. Prove that there exists a constant $C>0$ such that

$$
|u(x, t)| \leqslant \frac{C}{t} \quad \text { for }(x, t) \in \mathbb{R}^{3} \times \mathbb{R}_{+} .
$$

[^0]
[^0]:    ${ }^{1}$ Erratum: Such solution does not exist. If $u(t, t / 2)=0$ then $L H S=0$ and $R H S=-\frac{3}{4}$. A better boundary condition would be e.g. $u(t, t)=t$.
    ${ }^{2}$ A canonical form for an elliptic equation is $u_{x x}+u_{y y}+$ l.o.t. $=0$, for hyperbolic equation $u_{x x}-u_{y y}+$ l.o.t. $=0$ and for parabolic equation $u_{x}-u_{y y}+$ l.o.t. $=0$, where "l.o.t." stands for "lower order terms".

