On The Borel Inseparability of Game Tree Languages

Szczepan Hummel Henryk Michalewski Damian Niwiński

Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

STACS 2009
In contexts where we study hierarchies (Descriptive Set Theory, Automata Theory, Logic, Complexity Theory) we ask about:

\[
\begin{array}{c}
\Sigma_n \\
\uparrow \\
\Delta_n \\
\downarrow \\
\Pi_n \\
\uparrow \\
\Sigma_2 \\
\uparrow \\
\Delta_2 \\
\downarrow \\
\Sigma_1 \\
\uparrow \\
\Delta_1 \\
\end{array}
\]
In contexts where we study hierarchies (Descriptive Set Theory, Automata Theory, Logic, Complexity Theory) we ask about:

- strictness of the hierarchy,
In contexts where we study hierarchies (Descriptive Set Theory, Automata Theory, Logic, Complexity Theory) we ask about:

- strictness of the hierarchy,
- structural properties of the hierarchy e.g. separation property
In contexts where we study hierarchies (Descriptive Set Theory, Automata Theory, Logic, Complexity Theory) we ask about:

- **strictness** of the hierarchy,
- **structural properties** of the hierarchy
 e.g. **separation property**
Hierarchies

In contexts where we study hierarchies (Descriptive Set Theory, Automata Theory, Logic, Complexity Theory) we ask about:

- strictness of the hierarchy,
- structural properties of the hierarchy e.g. separation property
Separation vs. Simplification

Given two classes of subsets of some universe \mathcal{U}:
- \mathcal{L} — ”large”
- S — ”small”

we define two notions:

Definition (Separation)
Any two disjoint sets $L, M \in \mathcal{L}$ are separated by some set K in S (i.e., $L \subseteq K \subseteq \mathcal{U} - M$).

Definition (Simplification)
Whenever L and its complement \overline{L} are both in L, they are also in S.

Separation implies simplification, but in general not vice versa.

We consider only S classes closed under complement.
Given two classes of subsets of some universe \mathcal{U}:
- \mathcal{L} — ”large”
- S — ”small”
we define two notions:

Definition (Separation)

Any two disjoint sets $L, M \in \mathcal{L}$ are separated by some set K in S (i.e., $L \subseteq K \subseteq U - M$).
Separation vs. Simplification

Given two classes of subsets of some universe \mathcal{U}:
- $\mathcal{L} — ”large”$
- $S — ”small”$

we define two notions:

Definition (Separation)

Any two disjoint sets $L, M \in \mathcal{L}$ are separated by some set K in S (i.e., $L \subseteq K \subseteq U - M$).

Definition (Simplification)

Whenever L and its complement \bar{L} are both in \mathcal{L}, they are also in S.

Separation vs. Simplification

Given two classes of subsets of some universe \mathcal{U}:

- \mathcal{L} — ”large”
- S — ”small”

we define two notions:

Definition (Separation)

Any two disjoint sets $L, M \in \mathcal{L}$ are separated by some set K in S (i.e., $L \subseteq K \subseteq U - M$).

Definition (Simplification)

Whenever L and its complement \bar{L} are both in \mathcal{L}, they are also in S.

- Separation implies simplification, but in general not *vice versa*
Separation vs. Simplification

Given two classes of subsets of some universe \mathcal{U}:

- \mathcal{L} — ”large”
- S — ”small”

we define two notions:

Definition (Separation)

Any two disjoint sets $L, M \in \mathcal{L}$ are separated by some set K in S (i.e., $L \subseteq K \subseteq U - M$).

Definition (Simplification)

Whenever L and its complement \bar{L} are both in \mathcal{L}, they are also in S.

- Separation implies simplification, but in general not *vice versa*
Given two classes of subsets of some universe \mathcal{U}:
- \mathcal{L} — “large”
- \mathcal{S} — “small”

we define two notions:

Definition (Separation)

Any two disjoint sets $L, M \in \mathcal{L}$ are separated by some set K in \mathcal{S} (i.e., $L \subseteq K \subseteq U - M$).

Definition (Simplification)

Whenever L and its complement \bar{L} are both in \mathcal{L}, they are also in \mathcal{S}.

- Separation implies simplification, but in general not *vice versa*
- We consider only \mathcal{S} classes closed under complement
Nondeterministic tree automaton (parity condition)

\[A = (A, Q, q_I, \delta, rank) \]
- **Nondeterministic tree automaton** *(parity condition)*

\[\mathcal{A} = (A, Q, q_1, \delta, \text{rank}) \]

- Transitions in \(\delta \) have the form:

![Diagram of a tree automaton node with transitions](image)
Nondeterministic tree automaton (parity condition)

\[\mathcal{A} = (A, Q, q_I, \delta, rank) \]

- Transitions in \(\delta \) have the form:

\[q \xrightarrow{a} q_1 \quad \text{and} \quad q \xrightarrow{a} q_2 \]

- \(rank : Q \rightarrow \mathbb{N} \) (priorities)
Nondeterministic tree automaton (parity condition)

\[A = (A, Q, q_1, \delta, \text{rank}) \]

- Transitions in \(\delta \) have the form:

- \(\text{rank} : Q \to \mathbb{N} \) (priorities)
- **Acceptance:** on every path
 maximal priority occurring infinitely often is **even**
Nondeterministic tree automaton (parity condition)

\[A = (A, Q, q_I, \delta, \text{rank}) \]

- Transitions in \(\delta \) have the form:

- \(\text{rank} : Q \to \mathbb{N} \) (priorities)
- **Acceptance:** on every path maximal priority occurring infinitely often is even

Index hierarchy (Rabin-Mostowski)
Level \(n \) — automata use \(n \) priorities (alternations):
- \(\Sigma_n \) – greatest priority is odd,
- \(\Pi_n \) – greatest priority even,
- \(\text{Comp}_n \supseteq \Sigma_n \cup \Pi_n \) (compositional class)
ALTERNATING INDEX HIERARCHY

\[
\begin{array}{c}
\cdots \\
\Sigma_{n+1} \\
\Sigma_{n+1} \cap \Pi_{n+1} \\
\downarrow \\
Comp_n \\
\cdots \\
\Sigma_3 \\
\Sigma_3 \cap \Pi_3 \\
\downarrow \\
Comp_2 \\
\cdots \\
\Sigma_2 \\
\Sigma_2 \cap \Pi_2 \\
\downarrow \\
Comp_1 \\
\cdots \\
\Sigma_1 \\
\downarrow \\
\Pi_1
\end{array}
\]
Index Hierarchy — Separation

Alternating Index Hierarchy

\[
\vdots \\
\Sigma_{n+1} \quad \Pi_{n+1} \\
\Sigma_{n+1} \cap \Pi_{n+1} \\
\vdots \\
\Sigma_{3} \quad \Pi_{3} \\
\Sigma_{3} \cap \Pi_{3} \\
\vdots \\
\Sigma_{2} \quad \Pi_{2} \\
\Sigma_{2} \cap \Pi_{2} \\
[\text{Rabin'70}] \\
\vdots \\
\Sigma_{1} \quad \Pi_{1}
\]

Separation and even simplification fail \[\text{[S&A 2005]}\]
Simplification holds \[\text{[Rabin'70]}\]
Separation holds \[\text{[this paper]}\]
Adjustment of Rabin’s proof of simplification
Index Hierarchy — Separation

Alternating Index Hierarchy

\[
\begin{align*}
\Sigma_{n+1} & \quad \Pi_{n+1} \\
\Sigma_{n+1} \cap \Pi_{n+1} & \quad ? = II \\
| & \\
Comp_n &
\end{align*}
\]

\[
\begin{align*}
\Sigma_3 & \quad \Pi_3 \\
\Sigma_3 \cap \Pi_3 & \quad ? = II \\
| & \\
Comp_2 &
\end{align*}
\]

\[
\begin{align*}
\Sigma_2 & \quad \Pi_2 \\
\Sigma_2 \cap \Pi_2 & \quad II \\
| & \\
Comp_1 &
\end{align*}
\]

\[
\begin{align*}
\Sigma_1 & \quad \Pi_1
\end{align*}
\]
Index Hierarchy — Separation

Alternating Index Hierarchy

\[
\begin{array}{c}
\vdots \\
\Sigma_{n+1} \quad \Pi_{n+1} \\
\Sigma_{n+1} \cap \Pi_{n+1} \\
\text{[S&A'05]} \\
Comp_n \\
\vdots \\
\Sigma_3 \quad \Pi_3 \\
\Sigma_3 \cap \Pi_3 \\
\text{[S&A'05]} \\
Comp_2 \\
\Sigma_2 \quad \Pi_2 \\
\Sigma_2 \cap \Pi_2 \\
Comp_1 \\
\Sigma_1 \quad \Pi_1
\end{array}
\]
Alternating Index Hierarchy

\[\Sigma_n \cap \Pi_n \] is closed under \(\neg \)

\(\downarrow \) separation

and even simplification fail

[S&A 2005]
NONDETERMINISTIC INDEX HIERARCHY

\[
\begin{array}{ccc}
\Sigma_{n+1} & \cap & \Pi_{n+1} \\
\Sigma_{n+1} \cap \Pi_{n+1} & \downarrow & \text{Comp}_n \\
\Sigma_3 & \cap & \Pi_3 \\
\Sigma_3 \cap \Pi_3 & \downarrow & \text{Comp}_2 \\
\Sigma_2 & \cap & \Pi_2 \\
\Sigma_2 \cap \Pi_2 & \downarrow & \text{Comp}_1 \\
\Sigma_1 & \cap & \Pi_1 \\
\end{array}
\]
Index Hierarchy — Separation

Non-deterministic Index Hierarchy

\[
\begin{align*}
\Sigma_{n+1} & \quad \Pi_{n+1} \\
\Sigma_{n+1} \cap \Pi_{n+1} & \\
\Sigma_3 & \quad \Pi_3 \\
\Sigma_3 \cap \Pi_3 & \\
\Sigma_2 & \quad \Pi_2 \\
\Sigma_2 \cap \Pi_2 & \\
\Sigma_1 & \quad \Pi_1
\end{align*}
\]

Separation and even simplification fail [S&A 2005]
Index Hierarchy — Separation

NonDeterministic Index Hierarchy

Separation and even simplification fail [S&A 2005]
COMMENTARY ON NONDETERMINISTIC INDEX HIERARCHY

separation and even simplification fail

[S&A 2005]

 separation (and simplification) hold

[S&A 2005]
Index Hierarchy — Separation

NonDeterministic Index Hierarchy

\[
\begin{align*}
\Sigma_{n+1} \searrow & \quad \Pi_{n+1} \\
\Sigma_{n+1} \searrow \cap & \quad \Pi_{n+1} \\
\Sigma_3 \searrow & \quad \Pi_3 \\
\Sigma_3 \searrow \cap & \quad \Pi_3 \\
\Sigma_2 \searrow & \quad \Pi_2 \\
\Sigma_2 \searrow \cap & \quad \Pi_2 \\
\Sigma_1 \searrow & \quad \Pi_1
\end{align*}
\]

Separation and even simplification fail [S&A 2005]

Separation (and simplification) hold [S&A 2005]
Index Hierarchy — Separation

Nondeterministic Index Hierarchy

\[\begin{array}{c}
\vdots \\
\Sigma_{n+1} \quad \Pi_{n+1} \\
\Sigma_{n+1} \cap \Pi_{n+1} \\
\vdots \\
\Sigma_3 \quad \Pi_3 \\
\Sigma_3 \cap \Pi_3 \\
\vdots \\
\Sigma_2 \quad \Pi_2 \\
\Sigma_2 \cap \Pi_2 \\
\Sigma_1 \quad \Pi_1 \\
\end{array} \]

- Separation and even simplification fail [S&A 2005]
- Separation (and simplification) hold [S&A 2005]
- Separation holds [Rabin’70]

Adjustment of Rabin’s proof of simplification
INDEX HIERARCHY — SEPARATION

NONDETERMINISTIC INDEX HIERARCHY

\[
\begin{align*}
\vdots & \quad \vdots & \quad \vdots \\
\Sigma_{n+1} & \quad \Pi_{n+1} \\
\Sigma_{n+1} \cap \Pi_{n+1} & \quad \text{Comp}_n \\
\vdots & \quad \vdots & \quad \vdots \\
\Sigma_3 & \quad \Pi_3 \\
\Sigma_3 \cap \Pi_3 & \quad \text{Comp}_2 \\
\vdots & \quad \vdots & \quad \vdots \\
\Sigma_2 & \quad \Pi_2 \\
\Sigma_2 \cap \Pi_2 & \quad \text{Comp}_1 \\
\Sigma_1 & \quad \Pi_1
\end{align*}
\]

separation and even simplification fail [S&A 2005]

separation (and simplification) hold [S&A 2005]

simplification holds [Rabin’70]

adjustment of Rabin’s proof of simplification

separation holds [Rabin’70]
Index Hierarchy — Separation

Nondeterministic Index Hierarchy

\[
\begin{align*}
\ldots & \quad \ldots & \quad \ldots \\
\Sigma_{n+1} & \quad \Pi_{n+1} \\
\Sigma_{n+1} \cap \Pi_{n+1} & \quad Comp_n \\
\ldots & \quad \ldots & \quad \ldots \\
\Sigma_3 & \quad \Pi_3 \\
\Sigma_3 \cap \Pi_3 & \quad Comp_2 \\
\ldots & \quad \ldots & \quad \ldots \\
\Sigma_2 & \quad \Pi_2 \\
\Sigma_2 \cap \Pi_2 & \quad Comp_1 \\
\ldots & \quad \ldots & \quad \ldots \\
\Sigma_1 & \quad \Pi_1
\end{align*}
\]

Separation and even simplification fail [S&A 2005]

Separation (and simplification) hold [S&A 2005]

Simplification holds [Rabin’70]

Separation fails [this paper]

Adjustment of Rabin’s proof of simplification
Inseparable Pair

- $\Sigma = \{\exists, \forall\} \times \{0, 1\}$
- T_Σ — class of $(0, 1)$-game trees
\[\Sigma = \{\exists, \forall\} \times \{0, 1\} \]

\[T_\Sigma \] — class of \((0, 1)\)-game trees
Inseparable Pair

- $\Sigma = \{\exists, \forall\} \times \{0, 1\}$
- T_Σ — class of $(0, 1)$-game trees
- The inseparable pair:
Inseparable Pair

- $\Sigma = \{\exists, \forall\} \times \{0, 1\}$
- T_Σ — class of $(0, 1)$-game trees
- The inseparable pair:
 - $W_{0,1}$ — Set of trees where \exists has a strategy to force only 0’s from some moment on
Inseparable Pair

- $\Sigma = \{ \exists, \forall \} \times \{0, 1\}$
- T_Σ — class of $(0, 1)$-game trees
- The inseparable pair:
 - $W_{0,1}$ — Set of trees where \exists has a strategy to force only 0’s from some moment on (one of the game tree languages that witness strictness of alternating index hierarchy)
\[\Sigma = \{\exists, \forall\} \times \{0, 1\} \]

- \(T_\Sigma \) — class of (0, 1)-game trees

- The inseparable pair:
 - \(W_{0,1} \) — Set of trees where \(\exists \) has a strategy to force only 0’s from some moment on (one of the game tree languages that witness strictness of alternating index hierarchy)
 - \(W'_{0,1} \) — obtained from \(W_{0,1} \) by interchanging \(\forall \leftrightarrow \exists \) and \(0 \leftrightarrow 1 \)
Inseparable Pair

- $\Sigma = \{\exists, \forall\} \times \{0, 1\}$
- T_Σ — class of (0, 1)-game trees
- The inseparable pair:
 - $W_{0,1}$ — Set of trees where \exists has a strategy to force only 0’s from some moment on (one of the game tree languages that witness strictness of alternating index hierarchy)
 - $W'_{0,1}$ — obtained from $W_{0,1}$ by interchanging $\forall \leftrightarrow \exists$ and $0 \leftrightarrow 1$
- We consider standard topology on T_Σ (first difference metric)
Inseparable Pair

- $\Sigma = \{\exists, \forall\} \times \{0, 1\}$
- T_Σ — class of (0, 1)-game trees
- The inseparable pair:
 - $W_{0,1}$ — Set of trees where \exists has a strategy to force only 0’s from some moment on (one of the game tree languages that witness strictness of alternating index hierarchy)
 - $W'_{0,1}$ — obtained from $W_{0,1}$ by interchanging $\forall \leftrightarrow \exists$ and $0 \leftrightarrow 1$
- We consider standard topology on T_Σ (first difference metric)
- We use these to prove something stronger than needed:
Main Result

Definition

The Borel sets constitute the least family containing *open sets* and closed under *complement* and *countable union*.
Main Result

Definition

The Borel sets constitute the least family containing open sets and closed under complement and countable union.

Theorem

There is no Borel set separating $W_{0,1}$ and $W_{0,1}'$.

$W_{0,1}$ and $W_{0,1}'$ are recognized by nondeterministic automata with co-Büchi condition.
Main Result

Definition

The Borel sets constitute the least family containing open sets and closed under complement and countable union.

Theorem

There is no Borel set separating $W_{0,1}$ and $W_{0,1}'$.

- $W_{0,1}$ and $W_{0,1}'$ are recognized by nondeterministic automata with co-Büchi condition.
- $\text{Comp}_1 \subseteq \text{Borel}$

Corollary

There exists a pair of disjoint sets recognized by nondeterministic Σ_2 automata, that is not separated by any Comp_1-recognized set.
We show that our pair has a capacity to describe every Borel set.
Core of the Proof

- We show that our pair has a capacity to describe every Borel set

Lemma

Let $B \subseteq T_\Sigma$ be an arbitrary Borel set. There exists a continuous function $F_B : T_\Sigma \rightarrow T_\Sigma$ such that:

\[
\begin{align*}
t \in B & \implies F_B(t) \in W_{0,1} \\
t \notin B & \implies F_B(t) \in W'_{0,1}
\end{align*}
\]
Core of the Proof

- We show that our pair has a capacity to describe every Borel set

Lemma

Let $B \subseteq T_{\Sigma}$ be an arbitrary Borel set. There exists a continuous function $F_B : T_{\Sigma} \to T_{\Sigma}$ such that:

\[
\begin{align*}
 t \in B & \implies F_B(t) \in W_{0,1} \\
 t \notin B & \implies F_B(t) \in W'_{0,1}
\end{align*}
\]
Proof of the Lemma

Consider class C of sets B for which there is such function F_B
Proof of the Lemma

Consider class C of sets B for which there is such function F_B

It suffices to show that C

- includes all clopen sets
- is closed under complementation
- is closed under countable unions
Proof of the Lemma

- Consider class C of sets B for which there is such function F_B
- It suffices to show that C
 - includes all clopen sets — characteristic function
 - is closed under complementation
 - is closed under countable unions

![Diagram showing the meta-game construction](image-url)
Consider class C of sets B for which there is such function F_B

It suffices to show that C

- includes all clopen sets — characteristic function
- is closed under complementation — by symmetry of $W_{0,1}$ and $W'_{0,1}$
- is closed under countable unions
Proof of the Lemma

- Consider class C of sets B for which there is such function F_B
- It suffices to show that C
 - includes all clopen sets — characteristic function
 - is closed under complementation — by symmetry of $W_{0,1}$ and $W'_{0,1}$
 - is closed under countable unions — meta-game construction

$$B = \bigcup_{i \in \mathbb{N}} B_i$$
Definition

Class \mathcal{L} has **First Separation Property** if separation property holds for \mathcal{L} and $S = \{X : X, \overline{X} \in \mathcal{L}\}$.

- For such \mathcal{L} and S simplification holds trivially.

Diagram

```
  Alternating hierarchy
    : : : :
  \Sigma_{n+1} \quad \Pi_{n+1}
    \Sigma_{n+1} \cap \Pi_{n+1}
    Comp_n
    : : : :
  \Sigma_3 \quad \Pi_3
    \Sigma_3 \cap \Pi_3
    Comp_2
    : : : :
  \Sigma_2 \quad \Pi_2
    \Sigma_2 \cap \Pi_2
    Comp_1
    : : : :
  \Sigma_1 \quad \Pi_1
```

Theorem

First Separation Property holds Büchi class.

Corollary

First Separation Property fails for co-Büchi class.

Weaker version of our theorem (our languages even nondet. co-Büchi).
Definition

Class \mathcal{L} has First Separation Property if separation property holds for \mathcal{L} and $S = \{X : X, \overline{X} \in \mathcal{L}\}$.

- For such \mathcal{L} and S, simplification holds trivially.

Corollary

First Separation Property **fails for co-Büchi class**.

- Weaker version of our theorem (our languages even nondet. co-Büchi).
Definition

Class \mathcal{L} has **First Separation Property** if separation property holds for \mathcal{L} and $S = \{X : X, \overline{X} \in \mathcal{L}\}$.

- For such \mathcal{L} and S, simplification holds trivially.

Corollary

First Separation Property fails for co-Büchi class.

- Weaker version of our theorem (our languages even nondet. co-Büchi).

Theorem

First Separation Property holds Büchi class.

- alternating Büchi class = nondeterministic Büchi class.
Definition

Class \mathcal{L} has **First Separation Property** if separation property holds for \mathcal{L} and $S = \{X : X, \overline{X} \in \mathcal{L}\}$.

- For such \mathcal{L} and S simplification holds trivially.

Corollary

First Separation Property *fails* for co-Büchi class.

- Weaker version of our theorem (our languages even nondet. co-Büchi).

Theorem

First Separation Property *holds* Büchi class.

- alternating Büchi class = nondeterministic Büchi class.
- First Separation Property for higher levels — open
- Borel sets constitute a hierarchy

\[
\begin{array}{c}
\Sigma_0^0 \quad \Sigma_1^0 \quad \Delta_0^0 \\
\Sigma_2^0 \quad \Delta_2^0 \quad \Pi_2^0 \\
\Sigma_1^1 \quad \Delta_1^0 \\
\Sigma_1^2 \quad \Pi_1^0 \\
\vdots \\
\omega_1
\end{array}
\]
Borel sets constitute a hierarchy

Above this hierarchy:

- Analytic sets (Σ^1_1) — projections of Borel sets
- Coanalytic sets (Π^1_1) — complements of analytic sets

\[
\begin{align*}
\Sigma^1_1 & \to \Pi^1_1 \\
\Sigma^0_n & \to \Pi^0_n \\
\Delta^0_n \\
\Sigma^0_2 & \to \Pi^0_2 \\
\Delta^0_2 \\
\Sigma^0_1 & \to \Pi^0_1 \\
\Delta^0_1 \\
\omega_1 &
\end{align*}
\]
- Borel sets constitute a hierarchy
- Above this hierarchy:
 - **Analytic** sets (Σ_1^1) — projections of Borel sets
 - **Coanalytic** sets (Π_1^1) — complements of analytic sets
- $\Sigma_1^1 \cap \Pi_1^1 = \text{Borel}$
Borel sets constitute a hierarchy

Above this hierarchy:
- Analytic sets (Σ^1_1) — projections of Borel sets
- Coanalytic sets (Π^1_1) — complements of analytic sets

$\Sigma^1_1 \cap \Pi^1_1 = \text{Borel}$

For Σ^1_1 First Separation Property holds.
Borel sets constitute a hierarchy

Above this hierarchy:
- **Analytic sets** (Σ^1_1) — projections of Borel sets
- **Coanalytic sets** (Π^1_1) — complements of analytic sets

$\Sigma^1_1 \cap \Pi^1_1 = \text{Borel}$

- For Σ^1_1 First Separation Property **holds**.
- For Π^1_1 First Separation Property **fails**.
Borel sets constitute a hierarchy

Above this hierarchy:
- **Analytic sets** (Σ^1_1) — projections of Borel sets
- **Coanalytic sets** (Π^1_1) — complements of analytic sets

$\Sigma^1_1 \cap \Pi^1_1 = \text{Borel}$

- For Σ^1_1 First Separation Property **holds**.
- For Π^1_1 First Separation Property **fails**.

It gives some analogy between
- Σ^1_1 and Büchi class
- Π^1_1 and co-Büchi class
Broken Analogy

Other potential candidate pair:
Other potential candidate pair:

- $W_{0,1}$ and $W'_{0,1}$ are Π^1_1-complete (coanalytic complete) sets
- Classical Borel inseparable Π^1_1 pair (translated to our context):

 \[WF = \{ t \in T_{\{0,1\}} : \text{every path has only finitely many 1’s} \}\]
 \[UB = \{ t \in T_{\{0,1\}} : \text{exactly one path has infinite number of 1’s} \}\]

 But UB is not even recognized by alternating co-Büchi automaton
Broken Analogy

Other potential candidate pair:

- $W_{0,1}$ and $W'_{0,1}$ are Π^1_1-complete (coanalytic complete) sets
- Classical Borel inseparable Π^1_1 pair (translated to our context):

$$\begin{align*}
WF &= \{ t \in T_{\{0,1\}} : \text{every path has only finitely many 1’s} \} \\
UB &= \{ t \in T_{\{0,1\}} : \text{exactly one path has infinite number of 1’s} \}
\end{align*}$$

But UB is not even recognized by alternating co-Büchi automaton

Broken analogy:
Broken Analogy

Other potential candidate pair:

- $W_{0,1}$ and $W'_{0,1}$ are Π^1_1-complete (coanalytic complete) sets.
- Classical Borel inseparable Π^1_1 pair (translated to our context):

\[
WF = \{ t \in T_{\{0,1\}} : \text{every path has only finitely many 1's} \}
UB = \{ t \in T_{\{0,1\}} : \text{exactly one path has infinite number of 1's} \}
\]

But UB is not even recognized by alternating co-Büchi automaton.

Broken analogy:

- Büchi sets are all in Σ^1_1.
- But not every regular Σ^1_1 set is in Büchi class (consider UB).
Other potential candidate pair:

- $W_{0,1}$ and $W'_{0,1}$ are Π_1^1-complete (coanalytic complete) sets
- Classical Borel inseparable Π_1^1 pair (translated to our context):

 $$WF = \{ t \in T_{\{0,1\}} : \text{every path has only finitely many 1's} \}$$
 $$UB = \{ t \in T_{\{0,1\}} : \text{exactly one path has infinite number of 1's} \}$$

 But UB is not even recognized by alternating co-Büchi automaton

Broken analogy:

- Büchi sets are all in Σ_1^1
- But not every regular Σ_1^1 set is in Büchi class (consider UB)
- Above breaks the analogy between analytic and Büchi classes that one could deduce from previous slide