
On alien call & connecting virtual machines

concurrent and distributed programming have one model

Andrzej Salwicki

Chair of Informatics UKSW, formerly at Institute of Informatics UW

October 1, 2010

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 1 / 42

Our plan

1 Introduction

2 Terminology

3 Assumptions

4 Scenario of an active object

5 Alien call protocol

6 Properties

7 Examples

8 Speci�cation
Open problem
Question
Remarks

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 2 / 42

Introduction

We present an original protocol of cooperation among active objects. It
di�ers from the other approaches: monitors, rendez-vous, message passing.
However, all known mechanisms of synchronisation and/or communication
among processes can be easily de�ned by the proposed protocol.
The second part of our message says: concurrent and distributed
programming can be done in a uniform way. Remark, that in most cases the
tools used for concurrent programming di�er from the tools of distributed
programming. Our approach makes the process of programming easier.
The ideas we present are of general and universal character. They may be
adapted in various environments. The methodology of programming active
objects was validated by an implementation in Loglan�82 programming
language. Consequently the examples will be given in this language.

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 3 / 42

Terminology

Before going into details we need to �x the notions.

thread � a seqence of instructions to be executed, it is a property of

active object � any object equipped with a nonempty sequence of
instructions, in Java they are contained in the method run.

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 4 / 42

Assumptions I

We assume that programs and systems of programs are written in one
object-oriented programming language L. Next, we assume that the
language L admits one prede�ned class process (The name is of no
importance, one may prefer the name ActiveObject). The objects of this
class and of classes derived from it will be called active objects. Each
active object o has the following properties:

object o has a thread i.e. a list of instructions to be executed,

object o is either in passive state or in active state,

the object may enter an active state (In the state the instructions of
the thread are executed concurrently with the instructions of other
threads. The main program is also a thread.)

the active object may enter a passive state (e.g. when the command
suspend() is executed),

each method of the object is either enabled or disabled. Initially all
the methods of any active object are disabled.

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 5 / 42

Assumptions II

instruction enable 〈list of methods〉 causes that all the methods from
the list become enabled. (One may believe the enabled methods are
public.)

instruction disable 〈list of methods〉 causes that all the methods from
thelist become disabled. (Analogously, one may believe the disabled
methods are private). The status of a method may change from
disabled to enabled to disabled .etc. ...

instruction accept is a point of rendez-vous with an instruction calling
a method of this process...

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 6 / 42

Assumptions III

a calling instructuction - has the form
call o.method(...)

and is executed in cooperation with a corresponding instruction accept
in the thread of process o (synchronous alien call) or
interrupts the execution of the called process o (asynchronous alien
call). The asynchronous alien call occurs when the method m is
enabled in process o.
Alien call di�ers from calling a method in a monitor object. In Java a
call of the method which belongs to an object (monitor) o is executed
by the thread of caller. Here we postulate that it is a callee which is to
execute the method. It implies that the two processes: the caller and
the callee have to cooperate.

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 7 / 42

Scenario of active object I

Creation of an active object:
Elaboration of the object expression new MyProcess(parameters) returns
an object o of type Myprocess. Hence, the execution of the assignment
instruction

z := new MyProcess(parameters)

leads to a new con�guration where, the set of existing objects is augmented
by the object o, object o is the value of the variable z. One may say also,
the object o is pointed out (is referenced to) by the variable z. Remark,
the object may be allocated on one computer and the variable z may be on
another computer. An active object o after it has been created, remains in
the state Passive. Another active object, owner of variable z, such that the
value of z is the object o may activate the . Object o of name z becomes
Active when another object executes the command resume(z). An active
object may execute command suspend() and enter the state passive.

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 8 / 42

Scenario of active object II

Termination: an active object may reach the end of its thread, for example
it may reach end Myprocess. In this case the active object is killed and
deallocated. For the object cannot be activated again and its resources
being private will never be accessible from outside.
Awaiting � an active object may enter the state Awaiting if it awaits for a
partner object to jointly execute a procedure instruction. It happens if
either the current object begins execution of alien call of a procedure or if
the object begins execution of the instruction accept (see below).

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 9 / 42

Scenario of active object III

new MojProc(65, ...)

x:=

Initialization
return {MASK=∅}

Passive

resume(x)

Active

enable p:: MASK := MASK ∪{p}
disable p:: MASK:= MASK – {p}
return disable ...enable … ::

call y.p(...)
accept q

between consecutive instructions; ::
 check if some object calls

Rysunek: The scenario of active object

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 10 / 42

Alien call protocol I

We shall illustrate the protocol by a series of pictures.

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 11 / 42

Alien call protocol II

new
MojProc(65, ...)

new
MojProc(125, ...)

x:= y:
=

Initialization Initialization
return {MASK=∅} return {MASK=∅}

Passive Passive

resume(x) resume(y)

Active Active

 accept metoda

call y.metoda()

Rysunek: Protocol of alien call part1

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 12 / 42

Alien call protocol III

new
MojProc(65, ...)

new
MojProc(125, ...)

x:= y:
=

Initialization Initialization
return {MASK=∅} return {MASK=∅}

Passive Passive

resume(x) resume(y)

Active Active

 call y.metoda(...)

 {metoda ∉ MASK}

A
W
A
I
T
I
N
G

Rysunek: Protocol of alien call part 2

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 13 / 42

Alien call protocol IV

new
MojProc(65, ...)

new
MojProc(125, ...)

x:= y:
=

Initialization Initialization
return {MASK=∅} return {MASK=∅}

Passive Passive

resume(x) resume(y)

Active Active

 accept metoda

During execution of instruction accept: MASK (of thread y) := MASK∪ {metoda}.
While no active object execute instruction „call y.metoda;”, active object y is awaiting.

A
W
A
I
T
I
N
g

Rysunek: Protocol of alien call part 3

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 14 / 42

Alien call protocol V

new MojProc(65, ...) new MojProc(125, ...)

x:= y:=

Initialization Initialization
return {MASK=∅} return {MASK=∅}

Passive Passive

resume(x) resume(y)

Active Active

 call y.metoda(...)

 {metoda ∈ MASK}

 an instruction;

 next instruction;

Asynchronous case: when active object x calls metoda in y and metoda ∈ MASK, the thread of active
object y is interrupted, object y executes method metoda and returns to its own thread.

Rysunek: Protocol of alien call part 4

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 15 / 42

Properties I

In this section we attempt to describe the properties of active objects from
the point of view of a user.

P1 An active object is created and memorized when an assignment
instruction z:=new Myprocess() is executed. Note, creation of an
active object without assignment has no sense, for the newly created
object will become a garbage immediately.

P2 The newly created object will be allocated on a computer indicated by
the value of the �rst parameter. The value 0 tells that new active
object will be allocated and run on the same computer (concurrency).

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 16 / 42

Properties II

P3 Mutual exclusion. If several active objects simultaneously execute
alien procedure calls of one active object o (a callee), then only one at
the time may execute it.
The following algorithmic formula expresses the mutual exclusion of n
parallel alien calls. The formula abstracts from the possible other
threads.
� ‖n

i=1 [o.mij
;Ri]α⇔∨

n

k=1� o.mkj
; [‖n

i=1,i 6=k
[o.mij

;Ri] ‖ Rk]α The expression

o.mkj
denotes the body of the method m in object o, modi�ed by the

actual parameters.

P4 Dynamic public/private methods. Each method of an active object
may be public in one moment and private in another one. A method
m is public when its name is in the mask of the object, when its name
does not belong to the mask, the method is private.

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 17 / 42

Properties III

P5 When one active object calls a method m of another active object and
the method m is in the mask then we have an e�ect of interruption.
The callee interrupts its own work and executes a service for the caller
object.

P6 When one active object calls a method m of another active object and
the method m is not in the mask and the callee executes the
instruction accept with the name m on the list, then we have an e�ect
of meeting. The caller object and the callee object meet and execute
the called method jointly.

P7 Each active object may be once a client calling a procedure in a
remote active object and in another moment it can be a server, ready
to serve one of its procedures to other active objects.

P8 Distributed concurrency is true fair concurrency.
The programs like [p:=false ‖ while p do x := x+1] always terminate.

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 18 / 42

Example 1

We begin with an example showing a couple of threads printing in the screen.

program �rst;
unit writer: process(node: integer, c: char);

var i: integer;
begin

return;

for i := 1 to 32 do
write(c);

od
end writer;

var w1, w2, w3: writer;
begin

w1 := new writer(0, 'a'); w2 := new writer(0, 'b');
w3 := new writer(0, 'c');
resume(w1); resume(w2); resume(w3);

end

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 19 / 42

Remarks I

Perhaps you guessed the image on the screen shows a mixture of letters 'a',
'b' amd 'c'. This is so because the threads w1, w2 and w3 compete for the
screen � their common resource. From this example we learn that:

1 processes, aka active objects, are created dynamically, by means of
new expression,

2 instructions of a process (after begin) divide to constructor and
thread. Instructions of constructor terminate with return instruction,
instructions appearing after return form a thread.

3 the �rst parameter of new, equal 0 indicate that active object will be
allocated on the same virtual machine.

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 20 / 42

Example 2 - binary semaphore I

Our next example shows how to de�ne a semaphore, the tool for
synchronization of processes. A semaphore s is an active object with three
methods: pass, free and �n. The methods have empty bodies. The thread
of the semaphore s repeats instructions accept pass,fin; accept

free, fin; until one of clients execute the command call s.fin. If all
clients follow the same scheme call s.pass; critical section; call

s.free, then no interleaving of commands of critical sections is posible.
allowframebreaks

program Second;
unit binarySemaphore: process(node:integer);
unit pass: procedure;
end pass;
unit free: procedure;
end free;
unit �n: procedure;
begin

bol := false;

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 21 / 42

Example 2 - binary semaphore II

end �n;
var bol: boolean;

begin
bol := true;

return;
enable �n;
while bol do

accept pass;
accept free

od;
end binarySemaphore;
unit writer: process (node:integer, nr:integer, c: char, sem: aSemaphore);

var i: integer;
unit �n: procedure;
begin
end �n;

begin
return;

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 22 / 42

Example 2 - binary semaphore III

call sem.pass;
for i := 1 to 12 do

write(a(i));
od;
writeln;
call sem.free;
accept �n;

end writer;
var s: aSemaphore, w1, w2, w3: writer, i: integer;
begin

s := new aSemaphore(0);
resume(s);
w1:= new writer(0,1,'a',s);
w2:= new writer(0,2,'b',s);
w3:= new writer(0,2,'c',s);
writeln("press Enter");
readln;
resume(w1);

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 23 / 42

Example 2 - binary semaphore IV

resume(w2);
resume(w3);
call w1.�n; call w2.�n; call w3.�n;
call s.�n;

end Second

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 24 / 42

Spooler example I

The following example is more interesting. We shall analyse it more closely.

unit queue:class(type element; size:integer);
(* The auxiliary class implementing
queues with a limited capacity.
The class is parameterized by the element
type and the maximum queue size *)

unit insert:procedure(e:element); ...
(* insert element into the queue *)

unit delete:function:element; ...
(* remove the �rst element *)

unit isempty:function:boolean; ...
(* check if the queue is empty *)

unit isfull:function:boolean; ...
(* check if the queue is full *)

end queue;
...

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 25 / 42

Spooler example II

unit spooler:process;
var Q:queue, (* queue of �les *) f:�lename;
unit print:procedure(f:�lename);
begin

call Q.insert(f);
if Q.isfull
then

return disable print
�;

end print;
begin

Q := new queue(�lename, 50);
return;
do

disable print;
if Q.isempty
then accept print

�;
f := Q.delete;

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 26 / 42

Spooler example III

enable print;
(* send the �le f to the printer *)
...

od
end spooler;

Two questions arise:

1 Suppose several active objects simultaneously require printing by
executing

call s.print(f) ‖ call s.print(f')
commands in two objects p and q. Can we assure that no request will
be lost or improperly queued?

2 Suppose that the spooler takes a �le from the queue to be sent to a
printer and simultaneously one or more processes require printing of
their �les. Can we assure that �les will be printed without interleaving
their contents and in proper order?

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 27 / 42

Spooler example IV

These questions �nd the following answers.
Lemma

No request will be lost and the requests will be handled as �rst-in

�rst-out policy requires.

The positive answer to the �rst question is founded on the alien call
protocol. For it will be impossible that two activation records of procedure
print coexist. As concerns the second question: it is sure that the operation
Q.delete will not interfere with any operation Q.insert. It is so because we
disabled the operation print before attempting to execute operstions delete
and isempty.

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 28 / 42

Specify the alien call protocol

The alien call protocol was invented by Bolek Ciesielski in 1988. It was
never published in a scienti�c journal.

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 29 / 42

How it works

Diagrams

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 30 / 42

Properties

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 31 / 42

Progress

1 Introduction

2 Terminology

3 Assumptions

4 Scenario of an active object

5 Alien call protocol

6 Properties

7 Examples

8 Speci�cation
Open problem
Question
Remarks

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 32 / 42

Do it in Java

Is it possible to implement the alien call protocol in Java?
At the beginning we thought it is easy. Now we are not so sure.

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 33 / 42

Progress

1 Introduction

2 Terminology

3 Assumptions

4 Scenario of an active object

5 Alien call protocol

6 Properties

7 Examples

8 Speci�cation
Open problem
Question
Remarks

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 34 / 42

Speci�cation of ActiveObject class I

Problem: write a class ActiveObject in Java which implements the methods
enable, disable, accept as described earlier.
Speci�cation - Java style follows

interface ActiveObjects extends Runnable {
/* initially, a new ActiveObject is passive, the set of Enabled

methods is empty. */
/* methods changing status */
void resume(Speci�AO o)
void stop()
/* the instruction stop hangs the execution of the thread,

the instruction resume(o) resumes execution of the thread o. */
/* methods changing Mask */
void enable(String m)
void disable(String m)
/* methods of collaboration */

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 35 / 42

Speci�cation of ActiveObject class II

void accept(String m)
void alienCall()
/* Let ActiveObjects be a class implementing this speci�cation.

Let P be a class extending the class ActiveObjects.
Let o be an active object of the class P.
Consider the instructions of the thread o.

A) the e�ect of enable: the methods m of the thread become enabled.
Enabled := Enabled ∪ {m}

B) the e�ect of disable
Enabled := Enabled \ {m}

C) the e�ect of accept
The instruction accept will be executed in cooperation of an instruction of
alienCall, see the point E.
It means that another active object of
a class derived from ActiveObject must

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 36 / 42

Speci�cation of ActiveObject class III

begin to execute
alienCall(o, m, params)

D) the e�ect of an alien call
D1) the object o must be in state Active,
the method m must be Enabled.

E) When a rendez-vous of two Active Objects
is reached then
e1) the parameters of alien call of the
method m are transferred to the object o,
e2) the called object o executes the method m with with the actual
parametersobtained from the caller object.

F) Asynchronous alien call
When one caller process encounter an alien
call instruction and the callee process is
active and the method is enabled then the
callee interrupts the execution of its

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 37 / 42

Speci�cation of ActiveObject class IV

thread and executes alien call instruction
- see E)

*/
} // end of interface

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 38 / 42

Progress

1 Introduction

2 Terminology

3 Assumptions

4 Scenario of an active object

5 Alien call protocol

6 Properties

7 Examples

8 Speci�cation
Open problem
Question
Remarks

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 39 / 42

Remarks

Let us describe which solutions should be rejected.
Any solution that requires a modi�cation of JVM - Java Virtual Machine.
For it means a modi�cation of the language. More important it will be
rejected by the users. Any solution which requires that program is to be
edited after compilation. We can imagine two attempts to implement the
protocol:

1 The �rst attempt would consist in replacing semicolons by calls of an
instruction checking whether an alien call occurred.

2 Another concept would consist in editing the �le .class after
compilation. One may insert the calls of a method which checks
whether an alien call occurred.

Someone suggested to use a listener object. Is it a solution?

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 40 / 42

Prize

An author of a solution or of a proof that no solution exist will obtain a
prize. Today, October 1, 2010, the prize is 100 Euro.

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 41 / 42

Literature

Andrzej Salwicki (UKSW) On alien call & connecting virtual machines 1 X 2010 42 / 42

	Introduction
	Terminology
	Assumptions
	Scenario of an active object
	Alien call protocol
	Properties
	Examples
	Specification
	Open problem
	Question
	Remarks
	

