A note on a simple computation of the maximal suffix of a string

Zbigniew Adamczyk, Wojciech Rytter

1. Introduction

Usually in algorithmics we are interested in the reduction of time/space complexity (in sequential computations), but in this note the main issue is structural complexity – simplicity of the algorithm description. Only algorithms working in $O(n)$ time and $O(1)$ space are considered here.

Maximal suffixes of strings play an important role, for example in constant-space string-matching, see [3,6,4,1], and Lyndon factorization.

Maximal suffix computation is from [3] with a complete proof. It is adapted from the Lyndon factorization in [4], which computes minimal suffixes, but slightly simpler.

Here we design an alternative algorithm using ideas related to the constant-space algorithm for equivalence of cyclic shifts, see [8,7].

Assume w is an input string of size n, where the positions are numbered from 0 to $n-1$.

Denote by $\text{MaxSuf}(w)$ the lexicographically maximal suffix of w, and by $\text{MaxSufPos}(w)$ its starting position.

Example 1.1. If $w = abaaabaaababab$ then $\text{MaxSuf}(w) = 9$.

We will use some combinatorial properties of strings.

Denote by $\text{period}(x)$ the shortest (string) period of x, and let $\text{per}(x)$ denote the length of the shortest period. A string x is border-free iff $\text{per}(x) = |x|$ and it is said to be self-maximal iff $\text{MaxSuf}(x) = x$.

Example 1.2. The string $x = babaabab$ is self-maximal.

Observe that $\text{period}(x) = babaa$ is border-free.
2. The algorithm

Our main result is the descriptional simplicity of the following algorithm which computes the starting position of the maximal suffix of a string.

Algorithm Compute-MaxSufPos(w)

```
ALGORITHM Compute-MaxSufPos(w)
  i := 0; j := 1;
  while j < n do
    k := 0;
    while j + k < n − 1 and w[i + k] = w[j + k] do k := k + 1;
    if w[i + k] < w[j + k] then i := i + k + 1 else j := j + k + 1;
    if i = j then j := j + 1;
  return i;
```

The algorithm obviously works in (additional) constant space and linear time (each comparison causes one of i or j to increase).

Performance of the algorithm is illustrated for an example string in Fig. 1.

3. Correctness of the algorithm

Correctness of the algorithm is nontrivial. The following well-known fact is needed.

Lemma 3.1. (See [2,4].) The shortest string period of the maximal suffix is border-free.

Theorem 3.2. The algorithm correctly returns \(i = \text{MaxSufPos}(w) \).

Proof. Let \((p, q) \rightarrow (p', q')\) mean that from the configuration \((p, q)\) in one iteration we go to \((p', q')\), and let \(\rightarrow^*\) be the transitive closure of the relation \(\rightarrow\).

Claim 3.3. We have the following invariant after each main iteration, where we denote \(u = w[i..j − 1] \):

\((\ast)\) \((i < j < n) \Rightarrow u \text{ is self-maximal and } \text{per}(u) = |u|,\)

\((\ast\ast)\) The maximal suffix of \(w \) does not start before \(i \).

Proof of the claim. Initially \(i = 0, j = 1 \) and the invariant holds.

Let us consider the iteration when \(i \) is moved for the first time. It is easy to see that before this iteration the invariant holds and the word \(u = w[i..j − 1] \) is self-maximal. The value of \(i \) has moved for the first time from \(i = 0 \) to \(i' = i + k + 1 \), see Fig. 2.

Then \(w[0..j + k] = u' \cdot v \), where \(|v| < |u|, u < vb\), see Fig. 2.

Denote \(m = |u'| \), then the (partial) history of the algorithm is as follows:
The word u is the shortest period of a self-maximal word u^jv, and therefore Lemma 3.1 implies that u is border-free.

Consequently, whenever we start at any position i in the range $[i', m - 1]$, the next position for i cannot be greater than m. Otherwise we would start with i inside an occurrence of u and go to the end of u, matching a prefix z of u, so u would have a border z, a contradiction of Lemma 3.1.

Hence the value of i will be moving from i' until it reaches m, at which point j starts to increase until reaching $m + 1$.

When (i, j) becomes $(m, m + 1)$ we can cut off the prefix u^k of the text, and the whole computation starts again from the beginning (m can be treated as zero). Now the claim for w follows from the claim for a shorter string. Finally, j goes beyond the scope of the text. This completes the proof of the claim. □

Proof of the thesis. Consider the last value of i and the second to last value of j.

According to the invariant ($*$) we have: $u = w[i..n - 1]$ is self-maximal. Also u is a period of $w[i..n - 1]$ (the suffix of the whole text).

Observe now that (generally) if a string w' has a prefix u which is both self-maximal and a period of w', then w' is also self-maximal.

Consequently, the word $w[i..n - 1]$ is self-maximal, and it is the maximal suffix of w. This completes the proof of the theorem.

Our algorithm, similarly to Duval’s algorithm, see [5], can also output the shortest period of the maximal suffix. The following fact follows directly from the proof of Theorem 3.2, where $u = w[i..n - 1]$ is the shortest period of the maximal suffix. □

Observation 3.4. Assume j' is the second to last value of j in the algorithm.

If $i = \text{MaxSufPos}(w) < n - 1$ then $j' - i = \text{per} (\text{MaxSuf}(w))$.

4. Final remarks

We can try to speed up our algorithm (at the cost of descriptional complexity). When i moves to the right we can move (i, j) in one step to $(m, m + 1)$ reducing potentially many iterations to one, see Fig. 2. Observe that

$$m = i + \left(\left\lfloor \frac{k}{j - i} \right\rfloor + 1\right) \cdot (j - i).$$

Hence a faster algorithm can be obtained using Eq. (1). The statement $i := i + k + 1$ is to be replaced by

$$i := i + \left(\left\lfloor \frac{k}{j - i} \right\rfloor + 1\right) \cdot (j - i); \quad j := i + 1.$$

The faster algorithm is shown below (for completeness).

```
    i := 0; j := 1;
    while j < n do
        k := 0;
        while j + k < n - 1 and w[i + k] = w[j + k] do k := k + 1;
        if w[i + k] < w[j + k] then
            i := i + \left(\left\lfloor \frac{k}{j - i} \right\rfloor + 1\right) \cdot (j - i); j := i + 1
        else j := j + k + 1;
    return i;
```
Such an algorithm becomes a disguised version of Duval's algorithm. Conversely, we could say that algorithm Compute-
MaxSufPos is a disguised and slightly slowed-down (but still working in linear time) version of Duval's algorithm, yet having
simpler description.

The faster version of algorithm Compute-MaxSufPos loses its simplicity because of integer division and multiplication, due
to Eq. (1). These operations could be eliminated by using only addition and subtraction but this would decrease simplicity
even more.

However, simplicity of the description was our main issue, and from this point of view algorithm Compute-MaxSufPos is
much better.

References