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Introduction

The knight is the only piece in chess that does not move in a straight line. Instead, it
moves in an “L”—two squares in either a vertical or horizontal direction and then one
square in a perpendicular direction. It is the strangeness of this move that has made
the Knight’s Tour Problem one of the most intriguing in all of recreational mathemat-
ics: Can a knight visit each square of a chessboard by a sequence of knight’s moves,
and finish on the same square as it began? Since a chessboard can be represented as a
graph in which each vertex corresponds to a square, and edges correspond to those
pairs of squares connected by a knight's move (Ficure 1 illustrates this for a 4 X 4
board), finding a knight's tour amounts to finding a Hamiltonian cycle in the
corresponding graph, a notoriously difficult general problem in graph theory (see [5]).
However, we can easily see that there is no knight’s tour for a 4 X 4 board since any
Hamiltonian cycle would have to include the four edges incident to the two corner
vertices indicated in Ficure 1; this is impossible since these four edges already form a
cycle that includes only four vertices.

FIGURE 1
Representing a chessboard as a graph

We can also notice that the vertices in a knight’s graph can be colored black and
white so that every edge joins a black vertex and a white vertex. Such a graph is called
bipartite. Since any cycle in a bipartite graph must have an even number of edges, we
conclude that an m X n board with m and n odd cannot have a knight’s tour, because
the corresponding Hamiltonian cycle would have an odd number of edges.

There are several excellent sources for the history of this problem. We particularly
recommend the discussion by W. W. Rouse Ball ([1D, which includes contributions by
Euler as well as an ingenious method by the German mathematician H. C. Warnsdorff,
dating from 1823, in which the knight is always moved to one of the squares from
which it will have the fewest open moves. Combining this rule with Euler’s techniques
provides a remarkably efficient way to find knight’s tours on various boards. Martin
Gardner ([3] presents several other problems involving knights, as well as giving
S. W. Golomb’s elegant proof that no 4 Xn board has a knight's tour. In 1991,
Schwenk ([4]) answered the obvious question: Which rectangular chessboards have a
knight’s tour?
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THEOREM. An m X n chessboard with m <n has a knight’s tour unless one or more
of these conditions holds:

(1) m and n are both odd;
Q) m=1, 2, or 4; or
3) m=3andn=4,86, or 8.

But what if we allow the knight to move off the side of the board and then return to
the board on the opposite side, as in some video games? (Such moves were used in [2]
to find Hamiltonian tours for checkers.) For example, with this change it is now
possible to find a knight’s tour of a 5 X 5 board—in fact, Warnsdorff’s method can be
used here—since in Ficure 2 a knight at square 25 can return to square 1 in a legal
move by going off the bottom edge.

1114/ 9 (20| 3
24/19| 2 |15{10
13| 8 |23| 4 |21
18(25| 6 {1116
7112]17122| 5

FIGURE 2
Knight’s tour of a 5 X 5 board on a torus
This is equivalent to changing the flat chessboard into a torus (i.e., a doughnut) by
gluing the top edge to the bottom edge (which creates a cylinder) and then gluing the
left and right edges (which brings the two ends of the cylinder together). So we now
pose the question: Which rectangular chessboards have a knight’s tour on a torus?

Knight's Tours on a Torus

In this section we will prove that, on a torus, every rectangular board has a tour. First,
we establish some useful notation.

A knight has eight possible moves as shown in Ficure 3. Each move has an
arithmetic description (x, y) where x indicates how many squares the knight moves
to the right and y indicates how many squares down. Notice the symmetry between
moves a, b, ¢, d and a, B, 7y, 8, respectively; this will become important later.

a b ¢ d @ B y )
@D (=12 (-2-1) @-2 &-D @2 (-2 (-1,-2)
FIGURE 3
The eight knight moves
Our strategy will be to provide explicit tours for boards with a small number of rows

(but any number of columns) and then to show how to ‘stack’ these boards together to
form tours for arbitrary boards.

1Xn and 2 X n boards You can easily tour any 1 Xn board by starting at any
square and making move B =(1,2) n consecutive times. This is illustrated in Ficure 4
for a 1 X 6 board. Similarly, you can tour any 2 X n board by making move (1, 2) until

112{3|4|5(6|7
m2’3’4l5|6J 9|8(14(13|12|11{10

FIGURE 4
Tours for 1 X 6 and 2 X 7 boards
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you get stuck half way through, at which point you make move (2,1) once, and then
continue with move (—1,2) until every square has been visited and you can take move
(=2, = 1) back to the starting point. This is illustrated in Ficure 4 for a 2 X 7 board.

3 X n boards You can tour any 3 X n board, as long as n is not a multiple of 5, by
repeating the three moves (2,1), (2,1), and (1, —2) over and over again. If n is a
multiple of 5 you can repeat the moves (2,1), (2,1), and (=1, —2) over and over
instead. These two cases are illustrated in Ficure 5 for a 3 X 8 and a 3 X 10 board.
Notice that in neither case do you ever go off the top or bottom edge.

11(16|7 (22|13} 4 {19|10| | 1|22(13| 4 |25|16| 7 |28|18|10
20{11| 2 (17| 8(23(14| 5| |20(11| 2 |23|14| 5|26{17| 8 |29
15]621({12| 3|18| 9|24| | 930(21|12] 3 |24|15| 6 |27(18

FIGURE 5
Tours for 3 X 8 and 3 X 10 boards

4 X n boards There are two cases. If n is odd you can alternate moves (1,2) and
(1, —2) until you get stuck half way through (and the squares in the first and third
rows have all been visited), at which point you make move (2, —1), from 18 to 19 in
Ficure 6, and then continue alternating with moves (—1,2) and (—1, —2) until every
square has been visited (at 36) and you can take move (—2,1) back to the starting
point. If n is even you again alternate moves (1,2) and (1, —2), but this time you get
stuck a quarter of the way through, at 10 in Ficure 6, at which point you make move
(2,1); then alternate (=1, —2) and (—1,2) until you get stuck (at 20) and make
move (—2,1); next, alternate (1, —2) and (1,2) until you get stuck (at 30) and make
move (2, 1); finally, alternate (—1,2) and (-1, —2) until every square has been visited
(at 40) and you can take move (—2,1) back to the starting point. These two cases are
illustrated in Ficure 6 for a 4 X 9 and a 4 X 10 board. Notice in each case that only
the last move goes off the top or bottom edge.

1111{ 313} 5{15| 7 [17| 9 1122| 3|24/ 5 26| 7 (28| 9|30

29|19|27)35|25|33|23|31|21 12]31/20|39{18|37|16|35(14|33

10{2|12| 4 |14/ 6 |16]| 8 |18 21| 2 (23| 4|25/ 6 (27| 8 |29/10

20|28(36|26|34|24|32|22|30 32|11(40/19|38{17|36(15|34/13
FIGURE 6

Tours for 4 X 9 and 4 X 10 boards
Notice that at this point we have already taken care of exceptions (2) and (3) of
Schwenk’s theorem. Strictly speaking, all that remains to do is the case of an odd by
odd board on a torus. However, in part for the sake of completeness and in part
because we like the constructions involved, we will instead consider all remaining

boards.

Even X odd boards In order to show that any board with an even number of rows
and an odd number of columns can be toured, we will simply stack together an
appropriate number of boards each having two rows. However, a difficulty arises since
the tour of a 2 Xn board shown in Ficure 4 uses the top and bottom edge of the
board many times. Fortunately, if a 2 X n board has an odd number of columns, there
is a tour that does not use the top and bottom edge: you simply alternate moves (2, 1)
and (2, —1). This is illustrated in Ficure 7 for a 2 X 7 board.

1(5(9(13| 3|7 |11
8121 2|6|10/14| 4

FIGURE 7
Alternate tour for a 2 X 7 board
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It is easy to stack any number of these boards on top of one another. We illustrate
this by creating a tour for a 4 X 7 board from the tours of two 2 X 7 boards. It is
perhaps best to think in terms of the corresponding graphs. The idea—used by Euler
—is to remove two edges, one from each Hamiltonian cycle, and then add two edges
that join the two pieces into a single cycle. The only trick is to make sure the edges
you add correspond to legal knight moves.

In Ficure 8 we remove edge 2-3 from the top board and edge 12—13 from the
bottom board, and then add edge 2—12 and edge 3-13, both of which correspond to
legal knight moves. Still thinking in terms of the graph, it is now routine to do a
knight’s tour by beginning at square 1 on the top board, going to square 2, then to the
bottom board at square 12, at which point we travel backwards on the bottom board
until we reach square 13 from which we return to the top board at square 3 and finish
the tour on the top board by taking the squares in order. The result, with the
appropriate renumbering, is shown in Ficure 8.

FIGURE 8
Stacking two 2 X 7 boards

It is clear that this process can be continued indefinitely; for example, we can stack
another 2 X 7 board on top of the 4 X 7 board by again removing edge 2-3 from the
top board and removing edge 26—27 from the bottom board. In this way we can
construct a knight’s tour for any board with an even number of rows and an odd
number of columns (and, by symmetry, any board with an odd number of rows and an
even number of columns).

Odd X odd boards We can now take care of exception (1) in Schwenk’s theorem. In
order to do a board with an odd number of rows (and an odd number of columns) we
simply stack a board with 3 rows on top of a board with an even number of rows as
done above. We illustrate this for a 7 X 7 board in Ficure 9 using edge 5-6 from the
top board and edge 19-20 from the bottom board.

35(44] 4 |41
39(48/36[45
46134143| 3 |4049

5
Iy
i

9|18 15| 3 (12|21

FIGURE 9
A7 X 7 board
Even X even boards We consider two cases. First, if the number of rows is divisible
by 4, then we can stack multiple copies of 4 X n boards. We illustrate this in Ficure 10
for an 8 X 6 board.
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14316/ 5 18 %}4316518
8 |19]12)23/10) 21 8 |19]12|23/10[21
13/2/15/ 417/ 6 13[2[15| 4 [17] 6
20| 7 [2]11|22] 9 20| 7 [ 11]22] 9
%14 3[16]5 |18 38(27(40(20]42
8 [19]12|23]10] 21 32(43[36|47(3445
13(2 154 [17] 6 37|26]39]28] 4130
20| 7 @& 11\22] 9 46|33

FIGURE 10
An 8 X 6 board

We remove edge 1-24 from each board—remember this was the only move that
used the top and bottom edge of the board—and join the 24 at the top to the 1 at the
bottom and the 24 at the bottom to the 1 at the top. By noticing the position of the 1
and the 48 in the 8 X 6 board, we see that we can repeat this procedure as many times
as we like, simply adding four rows at a time.

The second case—where the number of rows is even but not divisible by 4—is a
good bit harder. This will be done by showing how to stack a board with 6 rows on a
board with 4k rows. First we show how to join two 3 X n boards to get the 6 X n
board which we need. From the top 3 X n board remove the edge that joins the next
to last square in the second row to the first square in the last row—for example, edge
14~15 in Ficure 11. From the bottom 3 X n board remove the edge that joins the next
to last square in the first row to the second from last square in the last row—that is,
edge 19-18 in Ficure 11. We can now add two edges in the obvious way to create a
Hamiltonian cycle—namely, edges 15-19 and 14-18 in Ficure 11. Notice that in the
resulting tour of the board with 6 rows, the next to the last square in the second row is
connected to the second from last square in the last row—that is, 14-15 in Ficure 11.
It is this edge that we will remove in the next step.

1140} 7 |46(13| 4 |43|10
44/11| 2 |41| 8 471481 5
6(45(12| 3 |42| 9 |48
32|17(26(35|20(29138123
37|22|31|16|25|34|19|28
18(27(36(21|30¢15124(33

FIGURE 11
A 6 X 8 board

Next, we get a tour for the board with 4k rows exactly as we did previously except
that we begin the tour in the top row five squares from the right-hand edge of the
board rather than in the upper left-hand corner as we usually do—notice the
placement of the 1 in the 4 X 8 board in Ficure 12. This is so that we will end up in
the bottom row three squares from the right-hand edge of the board (at 32 in Ficure
12), and we can then join the two boards with two legal knight moves—namely,
14-32 and 1-15 in Ficure 12.
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1 (40| 7 [46]13| 4 |43|10 1172| 7|78|13| 4 |75]10
44[11] 2 |41] 8 |47/44 5 761127337%
39| 645[12| 3 42| 9 |48 71| 6|77(12[ 3|74 9 [0
32|17|26|35|20/29/38|23 64|49|58|67|52|61/70|55
37|22|31|16|25/34/19|28 69|54|63|48|57|66(51|60
18]27[36[21|30}4§] 24[33 50|59 |68 |53 |62 #7156 |65
22] 7 24A18] 3 |20] 5 25(40(23 481294427 |42
2912]27[10[25[16]31]14 18]35|20/37|22|31/1633
6123l 8 17| 2 19| 4 |21 41(24/39|30|45|28|43|26
13[28[11]26] 9 15 30 34}19|36} 21 38%32 17
FIGURE 12

A 10 X 8 board
This completes the proof of the following theorem.
THEOREM. On a torus, every rectangular chessboard has a knight’s tour.

Tours on Square Boards

In particular, all square boards have knight’s tours on a torus. In this section we shall
see that tours on square boards can have patterns that are far nicer than those offered
by the foregoing inductive procedure. Moreover, we shall see that the attractiveness of
these patterns is due to an underlying algebraic structure. Interestingly, a Fulani
astronomer and mathematician, Muhammad Ibn Muhammad, used similar knight’s
patterns in his native northern Nigeria to produce magic squares at just about the
same time that Euler was working on knight’s tours in Europe (see [7], 137-151). We
will deal with n X n boards in three cases.

Case 1: n# 5k Simply repeat the move (2,1) n — 1 times—we call this a stroll.
Then use the move (1, —2)—a shift—once, and resume the stroll, shifting every n
moves, until you return to the starting point. Ficure 13 shows the resulting tour for a
7 X 7 board. (Notice that the result is a magic square; in fact, this procedure produces
a magic square for all n not a multiple of 2, 3, or 5; see [6].)

1(24|47|21|37|11|34
12|35| 2 |25|48|15|38 1112]23| 9120
16|39(13|29| 3 |26/49 10({16| 2 |13 |24
27(43(17|40(14|30| 4 14125/ 6 (17| 3
31| 5|28(44(18|41| 8 1814 (15(21| 7
421 9|32|6(22|45|19 221 8|19 5|11
46(20|36(10({33| 7 |23
FIGURE 13

Tours for 7 X 7 and 5 X 5 boards

Case 2: n+# 3k The reason the previous pattern does not work when n is a multiple
of 5 is that eventually the shift can’t be made. Obviously, the thing to do is to make a
different shift. So we use the shift (—1, —2) instead. This works for all n not a
multiple of 3. We illustrate this in Ficure 13 for a 5 X 5 board. (Notice that the result
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is a semi-magic square; in fact, this procedure produces a semi-magic square for all n
not a multiple of 2 or 3; moreover, it is only the main diagonal whose sum fails to be
correct in each case; see [6].)

Case 3: n= 15k Unfortunately, this still leaves us having to deal with square boards
where n is a multiple of 15. Our approach in this case will be very similar to the
previous two cases, but the actual details turn out to be considerably more involved.
Therefore, we delay our discussion of this case until the Appendix, and turn now to an
alternate approach.

An Algebraic Approach

Anyone familiar with the concept of a group will have sensed that there is an
underlying algebraic structure for these tours. For example, it is clear that if
ged(m, n) = 1 where, without loss, we take n to be odd, then there is a tour of the
m X n board using only the move (2, 1). This, of course, is because the element (2,1)
generates the group Z, X Z,,.

Similarly, we see that in the tour of the 7 X 7 board in Ficure 13, the first stroll,
which uses (2,1) six times, yields the subgroup of Z, X Z, generated by the element
(2, 1)—namely, {(0,0),(2,1),(4,2),(6,3),(1,4),(3, 5), (5,6)}. The shift (1, —2) then
moves us to a different coset of this subgroup, where the stroll now takes us through
this new coset. In this way, we tour the entire group, one coset at a time.

In order to see how this works in general for a square board, we label the n X n
board by the elements of Z, X Z, viewed as vectors (a, b), a,b € Z,,. In particular,
the upper left-hand corner is labeled (0,0). We can then make a change of coordi-

tes, such »
rates, Sueh as (a,b) =c(2,1) +d(1, —2).

So, for example, a knight at position (@, b) = (2,1) in the original coordinates would
be at (¢, d) = (1,0) under the change of coordinates, or a knight at (4,2) would now
be at (2,0). In this way, the 7 X 7 knight’s tour in Ficure 13, under the change of
coordinates, becomes the 1-step rook’s tour in Ficure 14. (Such tours are discussed
in [2].)

112(3[4(5|6|7
9110{11|12|13 (14| 8
17118119|20|21|{15|16
2526272822123 |24
33|34|35|29|30|31|32
41142136]37|38|39|40
49143 |44145|46|47 |48

FIGURE 14
A 1-step rook’s tour

Thus, we can turn the knight’s tour problem into an obviously simpler rook’s tour

problem, a process that worked in this case because (2, 1) and (1, —2) form a basis for
1
-2

) is a unit in the ring Z,. This
particular change of coordinates, therefore, will work as long as 5 does not divide n.

Z; X Z. This happened, in turn, because det(f

On the other hand, since det(? '?)=4, the change of coordinates given by
(a,b)=c(2,1) +d(—2,1) will work as long as n is odd. It is worth noting, however,
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that the two tour problems are not equivalent. For example, the knight’s tour for the
5 X 5 board in Ficure 13 does not become a rook’s tour under this particular change
of variables. This is not at all surprising since a knight has more moves than a 1-step
rook. Similarly, the change of variables given by (a, b) = ¢(2,1) + d(1,2) works as long
as 3 does not divide n. There are three additional changes of variables that are
possible, but they are equivalent to the three already mentioned. This method,
therefore, handles any n X n board where n is not divisible by 30.

Open Questions

There are several directions for further study. Since our proof for the torus only rarely
makes use of both the top to bottom and the left to right identifications, the most
obvious question is to ask which rectangular boards have tours on a cylinder. In
addition, there are always projective planes and Klein bottles on which to put
chessboards. Finally, the algebraic approach could be applied to rectangular boards.
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Appendix

We now return to our discussion of Case 3 for square boards where n is a multiple of
15. In order to better understand our solution for the general 15k X 15k board, it is
worth looking at the 15 X 15 board in some detail. Let us begin with the move (2,1)
as a stroll. After 14 moves we make a shift using (1, —2). All goes well in this fashion
until exactly 1/5 of the squares have been visited and we are unable to use our shift at
square 45, as we see in Ficure 15.

What we notice, however, is that the 45 squares that have already been visited form
a perfectly arranged lattice on the board. Furthermore, from any of these squares, any
of the knight moves a, b, ¢, d—see Ficure 3—takes you to another of these squares;
whereas, any of the knight moves «, 8,7y, 8 takes you to a previously unvisited
square. Now, it is clear what to do: use move « as a stroll and use move d as a shift
(every 15 moves) until you reach 45, then use, say vy, once before resuming the
strolling and shifting with a and d, using y at 45, 90, 135, 180, and 225.

Since it is far less confusing if one uses colored pens when doing this by hand—red
for squares 1-45, green for 46—90, and so on—we call a move such as y a color
change. In this way, vy acts as a translation of a lattice of one color to an identical
lattice of another color. The five disjoint, but identical, lattices comprise the board.

This strategy certainly allows a knight to visit every square on a 15k X 15k board,
but does not always produce a closed tour. In fact, using a, d, and vy in this same way
on a 30 X 30 board leaves an exhausted knight stranded after 900 moves in the 16th
row and 16th column. In order to find a closed tour we use a little algebra.
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FIGURE 15
Start of a 15 X 15 tour

Let us examine the case n = 15 more closely. We consider three variables, s, ¢, and
o, representing the stroll, the shift, and the color change, respectively. In a tour of a
15 X 15 board, we stroll for 14 moves and then shift, and repeat for a total of 3 strolls
and 2 shifts for each of 5 colors—that is, we repeat the sequence 3(14s) + 2t + o five
times, once for each color, and end up back where we started. Substituting @, d, and
y for s, t, and w, and multiplying by 5, we get 15(145s) + 10t + 50 = 210-(2,1) + 10
(1, =2) +5-(=2,1) = (420, 195) = (0, 0) (mod 15) which explains precisely why this
pattern returns us to the starting point. (A similar computation for the case n =30
also shows why the knight ends up stuck in the 16th row and 16th column.)

Let us now turn to the general case n = 15k. It is necessary to allow the stroll and
shift to vary from color to color, and to use different color changes as well. We thus
have fifteen variables s, t;, and w,, for i =1,...,5. Since we stroll for 15k — 1 moves
and then shift, and repeat for a total of 3k strolls and 3k — 1 shifts for each of 5
colors, the result of all the moves is given by

5 5
Y 3k(15k — 1)s,+ (3k — 1)t,+ @, = Y (3k — 1)¢,— 3ks; + ®, (mod 15k).

i=1 i=1
Thus, we are looking to solve the following congruence
(#*) (Bk—=1)(t,+ = +t5) —=3k(sy+ -+ +s5) + (w0, + - +w5) =0 (mod 15k),

where s;,t,€{a,b,c,d} and o, €{a, B,vy, 6} for each i. Moreover, we obviously
require that s; # +t,; for any i.

One further restriction applies to the color changes, since not every sequence of 5
colors changes will cycle you through all 5 colors. It is easy to find appropriate
sequences by constructing a directed graph with 5 vertices, one for each color, and
joining each ordered pair of vertices with an arc labeled with the color change «, B,
v, or 8 which takes you between the corresponding colors. We can thus see that there
are 24 allowable sequences. Since we are only concerned with the arithmetic at

present, these can be grouped into the following 8 classes where, in each case, we give
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FIGURE 16
Knight’s tour of a 15 X 15 board

the total effect of the five moves:
@®B%=(5,0) a’yd2=(0,-5) PBy%:=(-50) aB2=/(0,5)
a®=(10,-5) p°=(5,10) y® =(-10,5) 8°= (-5, —10)

We are now ready to present a solution of the Knight's Tour Problem for a
15k X 15k chessboard! In fact, the following moves provide a solution that works for
all 15k X 15k boards.

s;=a=(2,1) ty=b=(-12) w,=a=(2,-1)
so=c=(—-2,-1) t,=d=(1,-2) w,=B=(1,2)
ss=d=(1,-2) ty=a=(2.1) wy=p=(1,2)
sa=c=(—2,-1) t,=d=(1,-2) o,=a=(2,-1)
ss=d=(1,-2) ts=a=(2,1) w;=08=(—1,-2)

In order to see that this does yield a knight’s tour, note that

§y+tsg+ s34+, +s5=1(0,—-5)
b+ttt +t,+t5=1(5,0)
w, + 0, + w0y + o, + ws=(5,0)
so that congruence (#*) becomes
(3k—=1)-(5,0) = 3k-(0, —5) + (5,0) = (15k, 15k) =(0,0) (mod 15k)

which shows that our wandering knight does indeed return to the original square. You
might notice that the key was to make the sum of the five shifts and the sum of the
five color changes equal; thus, other solutions are possible. Ficure 15 shows the tour
produced by this particular solution for a 15 X 15 board. We encourage you to grab
five colored pens, a 30 X 30 grid, and have at it!
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