Wprowadzenie do kombinatoryki algorytmicznej

Wojciech Rytter *

Skrypt ten zawiera szereg krotkich esejow opisujacych proste, ale ciekawe algorytmy wielomianowe dla proble-
moéw zwiazanych z generacja, zliczaniem lub obliczaniem elementarnych obiektéw kombinatorycznych, ktorych
ilo§¢ jest z reguly wyktadnicza. Inaczej moéwiac przedstawimy szereg malych zwycieskich potyczek z eksplozja
kombinatoryczna.

1 Grafy zwigzane z wiezami Hanoi

Mamy n krazkéow (kazdy o innym rozmiarze) na trzech wiezach. Poczatkowo wszystkie leza na jednej wiezy,
w kolejnosci od najwiekszego u dotu do najwiekszego u gory. Trzeba je przetozyé na jaka$ inna wieze, ale
nie mozna stawia¢ wiekszego krazka na mniejszym.

Ustalmy przyktadowo, ze n = 3. Konfiguracja to trojka (a1, ag, ag), oznaczajaca potozenie tych trzech
krazkow (a; € {1,2,3} dla i = 1...n). Niech poczatkowa konfiguracja bedzie (1, 1, 1) (lub krocej 17)
a koncowa (3, 3, 3) (lub 3T).

Budujemy graf Hy = (V, E), gdzie V — zbior konfiguracji, krawedzie nieskierowane to dozwolone ruchy.
Widaé¢, ze graf ma 3" wierzchotkdéw dla dowolnego n. Problem: znalezé najkrotsza Sciezke z konfiguracji
poczatkowej do koricowej. Grafy H, maja podobng strukture jak trojkaty Sierpiriskiego, powstajace przez
usuniecie z trojkata Pascala elementéw podzielnych przez 2.
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Poczatkowe iteracje tworzenia trojkata Sierpinskiego.
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Graf H3 ma 3% = 27 wezlow.

Graf H,, mozna definiowaé rekurencyjnie. Niech H,(g) (dla dowolnego m > 2) bedzie grafem H,, w ktorym
kazdy wezet (i1, . ..19y) zamienimy na ((i1,%2...%y, j). Wtedy H, mozna zapisac rekurencyjnie jako:

*Przy znacznej pomocy technicznej Bartosza Szredera
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1.1 Najkroétsze Sciezki i cykle Hamiltona w grafach Hanoi

Typy ruchow:
e « — przekladamy najmniejszy krazek na nastepny drazek (zgodnie z ruchem wskazowek zegara)
e 3 — przekladamy najmniejszy krazek na poprzedni drazek (przeciwnie do ruchu wskazowek zegara)

e ~ — inny ruch (jest wyznaczony jednoznacznie)

Najkrotsza Sciezka
e 1 parzyste: ayoyoy. ..
e 1 nieparzyste: SyBvySGy. ..

Jak zapiszemy ciag przetozen kolejnych krazkow, to wyjda pozycje najmniej znaczacego zapalonego bitu
w reprezentacjach binarnych kolejnych liczb od 1 do 2" — 1.

Sciezka Hamiltona: 32va?y(%ya?y ...

Cykl Hamiltona: ciag ruchow: (67)3, gdzie § = (82ya2y)¥, gdzie k tak dobrane, zeby dtugosé tej sciezki
byta 3"~! (liczac odwiedzane wierzchotki). Budowanie cyklu Hamiltona nalezy zacza¢ od odpowiedniego
wierzchotka — nie od naroznika, tylko od jednego z dwoch weztéw lezgcych na krawedzi taczacej dwa podgrafy
H,_,.

Uwaga! Wartosé k w powyzszym wykladniku nie musi by¢ catkowita, np. dla przyktadowego Hs mamy
z grubsza k = %, co przektada sie na 6§ = B2ya?vyp2.

Dhuga Sciezka Dla kazdego 2" — 1 < M < 3" — 1 istnieje prosta $ciezka z konfiguracji 17 do 3% majaca
doktadnie M konfiguracji (taka, ze zadna konfiguracja si¢ nie powtarza).

Najkrotsza Sciezka z dowolnej konfiguracji Dlugosé najkrotszej Sciezki z konfiguracji (a1, ag, ..., a,)
do 3™ wynosi
S 2
a;#3
1.2 Algorytm wyznaczania nastepnego ruchu
Dla n-tego ruchu mozemy znalezé wieze poczatkows i docelowa, odpowiednio z nastepujacych wzoréw:

poczatkowa: (n&(n —1)) mod 3
docelowa: ((n|(n—1))+1) mod 3

Gdzie & i | to bitowe operatory AND i OR i przy zalozeniu, ze wszystkie krazki zaczynaja na wiezy o numerze 0
i docelowo trafiaja na wieze o numerze 1 albo 2 w zaleznosci od tego, czy liczba krazkéw jest parzysta czy nie.
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1.3 Algorytm wyznaczania konfiguracji

Jesli chcemy sie dowiedzie¢ jaki jest uktad m krazkéw po n-tym ruchu, mozemy zastosowaé nastepujacy

algorytm. Zapisujemy wiersze o dlugosciach kolejno 1, 2, ...m w taki sposéb, ze wiersz o dlugosci £ ma
konstrukcje 21...1, wiersz o dtugosci k — 1: 12...2 itd., czyli kolejne wiersze na zmiane:
—— ——
k—1 k—2

e zaczynaja sie dwojka i sa dopelniane jedynkami,
e zaczynaja sie jedynka i sg dopelniane dwoéjkami.

Ponadto najdhuzszy wiersz zaczyna sie od dwojki i wiersze sa wyré6wnane do prawej strony. Nastepnie zapi-
sujemy liczbe n w postaci binarnej i usuwamy te wiersze, ktére odpowiadajg bitowi zgaszonemu. Na koncu
sumujemy wartosci (mod 3) pozostalych wierszy w kolejnych kolumnach 1...m i otrzymujemy uktad krazkow
na wiezach ponumerowanych kolejno 0, 1, 2.

Przyklad n =23 =10111,

2 1

1 2 1

2 1 1 1

r 2 2 2 0

2 1 1 1 1 1
2 1 3 3 6 mod 3
2 1 0 0 0| uklad

Drugi algorytm wyznaczania konfiguracji

Zaltozenie: przenosimy wszystkie krazki z wiezy 0 na wieze 2 w sposéb optymalny. Nastepujacy algorytm
oblicza konfiguracje po m ruchach:

wejscie: bit[l..n] — binarna reprezentacja m (najbardziej znaczacy bit: bit[n])
wyjscie: a[l..n] — konfiguracja n wiez, V; ali] € {0, 1, 2}

1 a[n] := 2bit[n];

2 x:=aln] —1;

3 for i :=n —1 downto 1 do

4 if bit[i + 1] = bit[i] then

5 x =

6 ali] := ali + 1];

7 else

8 ‘ ali] :== (a[i + 1] — z) mod 3;
9 end
10 end

Zwiazki teorioliczbowe 3 wiez Hanoi z tréjkatem Pascala

W sekcji tej przedstawimy kilka ciekawych faktow i obliczeni teorioliczbowych zwigzanych z trojkatem Pascala.
Zajmiemy sie liczeniem (Z) modulo liczba pierwsza p. Jesli p = 2 to mamy bezposredni zwigzek z grafem Hy,

z poprzedniej sekcji.

Jesli (Z) =1 (mod 2), to wierzcholek z trojkata Pascala zostaje, w p.p. usuwamy go.
Niech Hj, bedzie grafem ktory otrzymamy z trojkata Pascala po usunigciu weztow takich, ze

(;) (mod 2) = 0V i>n.

Wezel (;) jest potaczony nieskierowanymi krawedziami z istniejacymi weztami (,il,) takimi, ze [i —i'|+|k— k| =
1, podobnie jak w grafie H,.
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Fakt. Grafy H,, H,, sa izomorficzne.
Mamy proste kryterium stwierdzajace, ktore pary (i, k), i,k < n odpowiadaja weztom grafu HJ,.

Fakt.
Niech W(m) bedzie zbiorem pozycji zawierajacych jedynke w zapisie binarnym liczby m. Zachodzi

<Z> (mod 2) = 1 < W(k) C W(n)

Przyktad. Dla n =6 = [110], k = 4 = [010] mamy W (n) = {1,2}, W(k) = {2}, zatem W (k) C W(n) and
() (mod 2) = 1.

Powyzszy fakt wynika prosto z nastepujacego trudniejszego twierdzenia odkrytego przez Lucasa.
Twierdzenie 1. Niech p — liczba pierwsza, oraz niech:
r= (Tk;a Tk—1y---> 1”0), C = (Ck7 Ck—15--+) CO)

bedg reprezentacjami liczb ¢ < r w systemie liczbowym o podstawie p. Zachodzi

()-B() o

Uzasadnienie twierdzenia.
Skorzystamy z nastepujacej rownosci:

(14+2)P" = 14+2?"  (mod p). (1)
Uzasadninie pozostawiamy czytelnikowi.

Wykorzystamy tez troche manipulacji na wielomianach, przyréwnujac wspotczynnik przy c-tej potedze zmien-
nej x w pewnym wielomianie W (z), obliczenia sa modulo p:

Wspolczynnik przy z¢ w ostanim iloczynie wynosi
T r
ITC() modn)
. Ci
=0

Jednoczes$nie ten wsotczynnik jest rowny (I) Stad wynika praawdziwosé tezy.

2  Wiecej niz 3 wieze

Mamy n krazkéw i m > 4 wieze. Problem staje sie teraz duzo bardziej skomplikowany, nie jest znany zaden
efektywny algorytm na optymalny cig ruchéw.
Opiszemy pewna klase algorytméw. Algorytm Frame-Stewart’a:

1. Rekurencyjnie przenies stos n — (,, najmniejszych krazkéw z poczatkowej wiezy do tymczasowej wiezy
T, uzywajac wszystkich m wiez.
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Rysunek 1: Tréjkat Pascala z wycietymi elementami podzielnymi przez 3.

2. Przenies$ pozostaty stos (,, najwiekszych krazkéw z poczatkowej wiezy na docelowg wieze, uzywajac m—1
wiez (wszystkich poza wieza T').

3. Rekurencyjnie przenie$ stos n — (, najmniejszych krazkow z wiezy T na wieze docelowa, uzywajac
wszystkich m wiez.

Algorytm nie jest catkowicie wyspecyfikowany poniewaz nie podaje explicite wartosci (, rekurencyjnego
podziatu. Trzeba tak te warto$ci wybrac, zeby bylo optymalne w tej klasie. Dla 4 wiez podamy doktadnie jak
wyliczyé szybko (.

Niech wartos¢ F'S(n, m) oznacza minimalna liczbe ruchow potrzebna do przeniesienia wszystkich n krazkow
z wiezy poczatkowej do wiezy koricowej, majac do dyspozycji m wiez. Korzystajac z powyzszego algorytmu
otrzymujemy wzor:

on _ 1 dlam=3
FS(n, m) = 11<ni£1 {2FS(n —p, m)+ FS(p, m—1)} dlam >4
Ip<n

Problem z tym algorytmem jest taki, ze nie ma zadnego dowodu, ze dziala (ale wyglada, jakby dzialac
mial). Eksperymentalnie sprawdzono jego poprawnosé¢ dla m =4 i n < 30.

W algorytmie Frame-Stewart obliczane jest najlepsze p, dla ktérego oplaca sie wykonaé operacje przenie-
sienia najmniejszych n — p krazkéw na tymczasowy stos. Obliczanie jest wykonywane niejako naiwnie, poprzez
szukanie minimum po kolejnych p = 1...n — 1. W przypadku 4 wiez Hanoi odpowiednie p mozna znalezé
bezposrednio.

Obserwacja 1. Dla n = 3...5 (czyli dla trzech kolejnych) mamy p = 2, dlan = 6...9 (czyli dla czte-
rech kolejnych) mamy p = 3 itd. Wartosci n dla pierwszych ,wystgpienn” danej wartosci p to odpowiednio

3,6,10, 15... czyli Ay, = (k;l) = k(kT—H) dla kolejnych wartosci k.

Twierdzenie 2. Dlan = Ay = (kgl) zachodzi FS(n, 4) = (k —1)2F + 1.

Dowdd. Dowod indukeyjny. Latwo sprawdzié, ze zachodzi FIS(Aq, 4) = 11 F'S(Ag, 4) = 5, zatem na poczatku
jest dobrze. Wezmy teraz jakies F'S(A;, 4) dla i > 2. Z wczesniejszej obserwacji wynika, ze dla liczby krazkow
n=2»2A;, A;j+1,..., Aj+i=A;41 — 1 zachodzi p = i. Zatem
FS(A;,4)=2-FS(A; —1i,4)+ FS(i, 3)
=2.FS(A;1,4)+2" -1
=2-((i-2)27"+1)+2' -1
=(—2)2+2'+1
=(i—-1)20+1
O

Whniosek 1. Dla problemu 4 wiez Hanot z liczbg krgzkow n, gorne ograniczenie na liczbe ruchow wynosi 2evn,
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Przyklad. Dla kazdego n istnieje konfiguracja 3 wiez, w ktorej wystarczy 272 + 1 ruchéw do uaktywnienia
wszystkich krazkéw. Konfiguracja ta to n — 2 najmniejsze krazki na pierwszej wiezy, pozostate dwa na drugiej
wiezy. Przektadamy krazek n — 1 na trzecia wieze, potem n — 2 najmniejszych na trzecia wieze, a nastepnie
krazek n na pierwsza wieze.

2.1 Dolne ograniczenie na liczbe ruchéw (z pracy Mario Szegedy)

Mario Szegedy udowodnit, ze dla 4 wiez minimalna liczba ruchéw x,, spetnia:
20V L gy <29V

dla pewnych stalych ¢, c.

Dowdd opiera sie na zaltozeniu, ze pomiedzy konfiguracja poczatkowa a koncowa kazdy krazek przemiesz-
cza sie przynajmniej raz. Pierwsze przemieszczenie nazywamy aktywacjg krazka. Dzieki takiemu podejsciu
mozna przeprowadzi¢ dowodd indukeyjny po liczbie wiez. Wszedzie dalej zaktadamy, ze liczba krazkow n > 2.

Dla trzech wiez Wezmy dowolng poczatkowa konfiguracje n krazkow i sekwencje ruchéw S, po ktoérych
kazdy krazek jest aktywny (co nie znaczy, ze kazdy krazek ruszyt sie tylko jeden raz). Powiedzmy, ze najwickszy
krazek jest aktywowany w ruchu i-tym. W takim razie zaréwno w ruchu (i —1)-szym oraz (i41)-szym wszystkie
pozostale krazki znajduja sie na jednej wiezy. Podzielmy sekwencje ruchéw S na trzy czesci & = 518552, gdzie
S; oznacza ruch i-ty, Sy oznacza prefiks S, sktadajacy sie z wszystkich ruchéw wykonanych przed ruchem i-tym
oraz Sz oznacza sufiks S, sktadajacy sie z wszystkich ruchéw wykonanych po ruchu i-tym.

W zaleznosci od konfiguracji poczatkowej, przedostatni co do wielkosci krazek nie musi zosta¢ aktywowany
przed ruchem i-tym — jego pierwszy ruch moze wystepowaé¢ zaréwno w S; jak i So. Bez straty ogolnosci
przyjmijmy, ze przedostatni co do wielkosci krazek aktywowany jest gdzie§ w So. Oznacza to, ze sekwencja
ruchow Ss zawiera rozwiazanie dla problemu 3 wiez Hanoi dla n — 2 najmniejszych krazkéw, czyli |Sy| > 22
(272 — 1 ruchéw to standardowe rozwigzanie problemu wiez Hanoi dla n — 2 krazkéw, a +1 poniewaz jeszcze
ruszyliSmy przedostatni co do wielkosci krazek).

7 tego wynika, ze |S| > 2”72 4 1 poniewaz S zawiera przynajmniej jeden ruch wiecej, niz Sy — jest to ruch
i-ty. 81 moze byé puste.

Przyklad. Dla kazdego n istnieje konfiguracja trzecj wiez, w ktorej wystarczy 2”2 + 1 ruchéw do uaktyw-
nienia wszystkich krazkéow. Konfiguracja ta to n — 2 najmniejsze krazki na pierwszej wiezy, pozostate dwa
na drugiej wiezy. Przekladamy krazek n — 1 na trzecig wieze, potem n — 2 najmniejszych na trzecia wieze,
a nastepnie krazek n na pierwsza wieze.

Dla czterech wiez Niech Hj(n) bedzie minimalng liczbg ruchoéw potrzebnych do aktywacji n krazkow na k
wiezach, minimum bierzemy po wszystkich konfiguracjach. Wiemy ze dla 3 wiez zachodzi:

Hi(n)=2""2+1
Fakt zachodzenia (Vyea,yep © < y) zapisujemy jako A < B.

Stwierdzenie 1. Jesli mamy na 4 wiezach zbior My sktadajgcy sie z m1 krgzkow i zbior Mo sktadajgocy sie z
ma krgzkow, wszystkie krgzki z Mo na tej samej wiezy oraz My < Mas, to aktywacja wszystkich z Ma wymaga
min{ H}(m1), 2™272} ruchdw.

Dowadd. Jesli w czasie aktywacji My wszystkie krazki z M; staja sie aktywne to musimy wykonaé co naj-
mniej Hj(m) ruchoéw, w przeciwnym przypadku jeden z krazkow z M; blokuje ciagle te sama wieze dla My
i do aktywacji My musimy wykona¢ co najmniej Hi(M — 2) < 2272 ruchéw. O

Zacznijmy od oczywistego faktu rachunkowego.
Stwierdzenie 2. Jesli funkcja f spetnia
Vier f(K) > min{2 - f(k — 1), A}, f(1) = >0

to zachodzi
f(k) > min{2* . ¢, A}
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Twierdzenie 3. H)(n) > 2°V" dla pewnej statej ¢ > 0

Dowdd. Ustalmy n i niech o = 8 - \/n. Niech
f(k) = Hiy(k- ), A=2V""2
Udowodnimy, ze f, A spelniaja zalozenia stwierdzenia 2.

Na jednej z wiez znajduje si¢ zbiér Y co najmniej § = 2 - y/n sposréd « najwickszych krazkéw. Poza tym
mamy zbior M, sktadajacy si¢ z (k — 1) najmniejszych krazkow. Niech

MyUMY =Y

gdzie M| < M} bedzie rozbiciem Y na dwie czesci. Musimy uaktywni¢ Mj, a nastepnie M{. Za kazdym
razem zgodnie ze stwierdzeniem 1 wykonujemy co najmniej min{f(k — 1), 2272} ruchéw. W sumie dwa razy
tyle. Teraz teza wynika ze stwierdzenia 2. O

Oznaczmy w skrocie F'S(n, 4) = F'S4(n). Mamy z definicji

FSy(n) =min2- FSy(n —j) +27 — 1.

j>1

Przyjmijmy FS4(0) = 0 oraz
przyrost(n) = FSy(n) — FS4(n —1).

W ponizszej tabelce kolejne liczby trojkatne sa pogrubione:

n:|1 2 3 4 5 6 7 8§ 9 10 11 12 13 14 15
FSyn):||1 3 5 9 13 17 25 33 41 49 65 81 97 113 145
przyrosttn): || 1 2 2 4 4 4 8 8 8 8 16 16 16 16 16 32

Ciag przyrost(n) jest bardzo regularny — mamy jedna jedynke, dwie dwojki, trzy czworki, cztery 6semki, pie¢
szsnastek itd. Inaczej mowiac, kolejny blok poteg dwojki to k + 1 poteg 2%, dla k=0, 1, 2, 3,. ...

Fakt. Zalozmy, ze 0 < r < k, wtedy:
(a) FSy(Ar+7)=(r+k—-1)2"+1
(b) FSy(Ap+7)=2-FSy(Ap+r—k)+2F -1

(b) Optymalna waartoscia ¢, jest liczba k.

Dygresja. Dla 5 wiez ciag przyrostow liczb F'S5(n) wyglada poczatkowo nastepujaco.

10 11 12 13 14 15

n: | 8 9
44 4 8 8 8 8 8

1 2
przyrost(n) : H 1 2

3 4 5 6
2 2 4 4
Mamy A; razy 20, Ay razy 2%, Az razy 22, A4 razy 23 itd. Inaczej méwiac, kolejny blok poteg dwojki to Ajq
poteg 28 dlak=0,1, 2, 3,....

Tak wiec dla dowolnej ustaloneh liczby wiez wyliczenie optymalnego parametru ¢, dla podziatu rekurencyjnego
w algorytmie klasy F'S jest kwestia dosy¢ zmudnych rachunkow, ale jest komputerowo szybko obliczalne.

Hipoteza Frame’a-Stewarta. Algorytm typu FS z optymalnym doborem parametru (, daje minimalng
liczbe ruchéw w problemie m wiez Hanoi dla ustalonego m > 4.
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2.2 Cykle Hamiltona w grafie 4 wiez

Grafy dla 4 wiez sg skomplikowane i maja duza liczbe cykli Hamiltona.

Graf dla 2 krazkow i 4 wiez, graf ten ma 6 - 3* = 486 cykli Hamiltona.

W kazdym malym K, (klika 4-wierzchotkowa jako podgraf indukowany) do cyklu Hamiltona mozemy
wybraé¢ 3 lub 2 krawedzie. Zacznijmy od przypadku, gdy w kazdym K, bierzemy po 2 krawedzie (przyktad
na rysunku 2). Jest a = 6 takich cykli (przyktadowy graf mozemy odbi¢ symetrycznie lewo-prawo, dodatkowo
na 3 sposoby mozemy wybraé, ktore krawedzie wybierzemy z gornej Ky). Teraz popatrzmy na dwie krawedzie
wychodzace z wierzcholka matego K4 (np. (42) — (41) — (43)). Mozemy je Sciagna¢ do krawedzi (42) — (43),
natomiast opuszczony wierzchotek mozemy odwiedzi¢ wybierajac 3 krawedzie w srodkowym Ky (mozemy to
zrobi¢ na b = 2 sposoby). W grafie mozemy $ciagna¢ ¢ = 0. . .4 krawedzi, mozemy je wybrac¢ na (;1) Sposobow.
Zatem liczba cykli to

4 4 ‘
D a (Z> b=a-(1+b)*=6-3"=486
i=0

Pozostaje pokaza¢, ze cykli nie ma wiecej. Wezmy dowolny cykl (np. ten z rysunku 3) i rozwazmy Ky,
w ktorym wybrano 3 krawedzie (np. srodkowe). Rozwazmy wierzchotek (21), ktory nie taczy Ky z reszta grafu
(zatem krawedzie (21) — (24) i (21) — (23) nie sa wybrane). Teraz pokazemy, ze krawedz (24) — (23) musi by¢
wybrana do cyklu; z tego wynika, ze mozemy dokonaé¢ na niej operacji odwrotnej do Sciggniecia, zatem kazdy
cykl powstaje za pomoca operacji Sciagniecia krawedzi.

Dla malego K4 jeden z jego niesrodkowych wierzchotkéw nazwiemy typu A, jesli prowadzi do niego krawedz
cyklu, ktora taczy K, z reszta grafu. Jesli (24) — (23) nie byla wybrana, to wierzchotki (24) i (23) musza mie¢
po 2 wybrane krawedzie w swoich Ky, zatem wierzchotki (34), (14), (43) i (13) sa typu A. Poniewaz (41) jest
typu A, to albo (41) — (43) musi by¢ wybrana, albo (41) — (42) — (43) musza by¢ wybrane. W obu przypadkach
(42) nie moze by¢ wierzchotkiem typu A. Analogicznie (32) nie moze by¢ typu A. Zatem lewy K4 ma co
najwyzej jeden wierzchotek typu A, a to jest niemozliwe.

3 Generowanie obiektéw kombinatorycznych

W rozdziale tym pokazemy jak generowaé ciagi prostych obiektéw kombinatorycznych w taki sposéb, aby ko-
lejne dwa obiekty roznily sie niewiele. Inaczej mowiac szukamy teracyjnej metody generowania $ciezki/cyklu
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Rysunek 2: Przyktad cyklu Hamiltona pierwszego typu.

@&

Rysunek 3: Cykl Hamiltona drugiego typu, ktory wchodzac do kazdego K4 przechodzi go w catosci.
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Rysunek 4: Przyktad innego cyklu Hamiltona.

Rysunek 5: Jeszcze inny cykl Hamiltona.
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Hamiltona w grafie, ktorego krawedzie odpowiadaja bliskosci obiektow, a obiektami sa kombinacje, permutacje
itp. Charakterystyczne jest to, ze nasze grafy sa z reguly wyktadniczej wielkosci, a funkcja generacji kolejnego
obiektu ma ztozonos¢ relatywnie mala (stala lub liniowa)

W szczegolnosci niech K(n, k) oznacza rodzine podzbiorow k-elementowych zbioru n-elementowego. Jesli
chcemy je generowaé¢ np. leksykograficznie, tzn. jesli zapiszemy wygenerowana kombinacje jako cigg binarny,
gdzie b; = 0 oznacza nienalezenie elementu i-tego do kombinacji, a b; = 1 jego nalezenie, to generujemy kolejno
wszystkie ciagi binarne n-elementowe o doktadnie k zapalonych jedynkach.

Najmniejsza odlegtos¢ Hamminga pomiedzy tak wygenerowanymi kombinacjami wynosi 2. Jesli stworzymy
graf taki, ze kazdy wezel jest tozsamy z jedng kombinacja, a krawedzie przebiegajg miedzy wierzchotkami,
miedzy ktorymi dla ich ciggéw odlegto$é Hamminga wynosi 2, to w takim grafie Sciezka Hamiltona wygeneruje
wszystkie kombinacje.

3.1 Ciagi Graya — $ciezki Hamiltona w kostce n-wymiarowej

Ciag Graya rzedu n oznaczamy przez G(n) — lista wszystkich ciagéw binarnych dtugosci n, kazdy ciag wystepuje
dokladnie raz, odleglto§¢ Hamminga miedzy kolejnymi obiektami wynosi 1 (minimalna).

1110

0011

1100

0001

Rysunek 6: Cykl Hamiltona w hiperkostce 4-wymiarowej. Dla czytelno$ci pominieto krawedzie taczace dwa
szesciany (poza krawedziami nalezacymi do cyklu).

Algorytm rekurencyjny:
G(0)=0; G(n)=0Gn—1); 1G(n—1)F

Ten algorytm rekurencyjnie znajduje $ciezki Hamiltona w hiperkostkach coraz mniejszych wymiarow.
Algorytm iteracyjny:
e co drugi krok (poczynajac od pierwszego) zamieniamy ostatni bit,

e w pozostalych krokach zmieniamy bit przed ostatnia (na prawo) jedynka.
Algorytm za pomoca wzoru na k-ty element ciagu G(n) (konwertujac liczby na zapisy binarne):

sy =k |

3.2 Generacja kombinacji poprzez wymiany dwéch bitow

Kolejne ciagi w kodzie Graya z k jedynkami daja generacje k-podzbioré6w z minimalnymi zmianami.

G(n, k)=0G(n—1,k); 1G(n—1, k—1)F
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Jak z tego zrobi¢ algorytm, w ktéorym jedna iteracja jest w pamieci O(n) i czasie O(1)? Opiszemy zupelnie
inny algorytm. Niech 7 bedzie ciagiem zerojedynkowym reprezentujacym k-kombinacje n elementow.

Wprowadzamy wektor aktywnosci A[l..n]: Ali] = 1 gdy pozycja i aktywna. Oznaczmy przez last(A)
ostatnig (najbardziej na prawo) pozycje aktywna. Jesli takiej pozycji nie ma, to last(A) = (). Niech operacja
UaktywnijPo(k) oznacza uaktywnienie wszystkich pozycji wiekszych od k.

Algorytm 1: Kombinacje przez zamiany

1 « := jakakolwiek kombinacja n po k;
2 UaktywnijPo(0);
3 repeat

4 wypisz kombinacje ;

5 k= last(A);

6 if k=0 then

7 | STOP;

8 W ciggu 7 wymien 7[k] z przeciwnym bitem na jakiejkolwiek pozycji na prawo;
9 Alk] := 0;

10 UaktywnijPo (k);

11 until forever;

Rozwazmy inny algorytm, w ktérym wykonujemy jedna zamiane bitéw, a miedzy zamienianymi pozycjami
sa same zera. Chcemy mieé taks sztywniejszq wersje poprzedniego algorytmu, w ktorej pozycja na prawo od k,
z ktora jest wymieniany bit jest jak najwezej wyspecyfikowana.

Niech PierwJed(k) oznacza pozycje pierwszej jedynki w 7 na prawo od k; jesli na prawo nie ma jedynki
to PierwJed(k) = n + 1. Zadamy, aby algorytm spetnial ponadto nastepujacy niezmiennik: na prawo od k
jest co najwyzej jeden blok jedynek, algorytm zaczyna i konczy sie w sytuacji z jednym blokiem jedynek.

Algorytm 2: Kombinacje przez Sciste zamiany

1 7= [1F0"F);

2 UaktywnijPo(0);

3 repeat

4 wypisz kombinacje ;

5 k= last(A);

6 if k=0 then

7 STOP;

8 if 7[k] =1 then

9 | Wymiesi 7[k] z bitem na pozycji PierwJed(k) — 1;
10 else
11 ‘ Wymien 7[k] z bitem na pozycji PierwJed(k);
12 end
13 Alk] == 0;

14 UaktywnijPo (k);

15 until forever;

Poniewaz algorytm jest dos¢ ,sztywny” mozna go zaimplementowaé tak, aby jedna iteracja byta w czasie
O(1) (pamie¢ liniowa — wektor A).

3.3 Generacje prefiksowe

Oznaczmy przez shi fty, operacje cyklicznego przesuniecia k-tego prefiksu, polega ona na przesunieciu elementu
k-tego na poczatek ciagu.

Opiszemy kilka algorytmow generacji — permutacji, kombinacji, permutacji multizbioréw, ciagéw repre-
zentujacych drzewa binarne. W tych algorytmach istotne bedzie jaki jest pierwszy obiekt (start), a czasami
réwniez jaki ostatni (finish).
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Generacja permutacji

Oznaczmy permutacje przez 7 (tablica od 1 do n). W tym przypadku start = [1, 2,..., n].

Algorytm 3: Prefiksowe generowanie permutacji

1 m:=[1,2,...,n];

2 k:=n+1;

3 repeat

4 if (k <n)A (n[k] = k) then
5 ‘ ki=k—1;

6 else

7 Wypisz permutacje m;
8 k:=mn;

9 end

10 if k=1 then

11 ‘ STOP;

12 7= shifty(m);

13 until forever;

Dla n = 4 algorytm wygeneruje kolejno:

1234 4123 3412 2341 3124 4312 2431 1243 2314 4231 1423 3142
2134 4213 3421 1342 3214 4321 1432 2143 1324 4132 2413 3241

Generacja kombinacji

Oznaczmy kombinacje typu n, k rowniez przez w (tablica od 1 do n). Jest to ciag zerojedynkowy majacy
k jedynek i n — k zer. W tym przypadku start = 1%0"*, finish = 1¥710""*1. Potrzebna nam funkcja
pierwszego skoku w ciagu, oznaczmy ja przez

PozSkoku(m) = min{k : (n[k] > nlk —1]) V (k= |x|+ 1)}
gdzie || oznacza dtugosé ciagu. Na przyktad PozSkoku([1, 1, 0,0, 1,0,0]) =5

Algorytm 4: Prefiksowe generowanie kombinacji
1 = [1F0"H);

2 repeat

3 Wypisz kombinacje 7;
4 k := PozSkoku(r);

5 if kK =n then
6

7

8

9

STOP;
j:=min{k + 1, n};
= shift;(m);

until forever;

Dla k = 3, n = 6 algorytm wygeneruje:

111000 011100 101100 110100 011010 101010 010110 001110 100110 110010
011001 101001 010101 001101 100101 010011 001011 000111 100011 110001

Zauwazmy, ze w pierwszym wierszu mamy sufiks 0, w drugim sufiks 1. Jesli obetniemy ostatnie zero to
otrzymamy cigg dla n = 5, k = 3; jesli obetniemy ostatnie 1 to otrzymamy ciag dla n = 5, k = 2, ale
zaczynajacy sie w generacji w drugiej kombinacji.

Inaczej moéwiac w obu przypadkach mamy rekurencje, z tym ze w przypadku ciggéw z sufiksem 1 mamy
rekurencyjny ciag, ale cyklicznie przesuniety. Zauwazmy, ze w jednej iteracji zmieniamy co najwyzej 4 bity.
Mozna jedna iteracje zaimplementowaé tak, by dziatata w czasie O(1) i pamieci O(1).

Niech A oznacza ciag, w ktérym, pierwszy element staje sie ostatnim, tzn. przyktadowo:

A

0011 | 0101
0101 | 0110
0110 | 1001

1001 | 0011
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—
Ten algorytm rekurencyjnie generuje ciag binarny wszystkich kombinacji wedtug schematu Ry s = Ry s—10; Ri—1,s1.
Podobne do generacji koleksykograficznej (leksykograficznej patrzac od konca ciggu)

colexy, = colexy ;1 0; colexy_1 41

3.4 Generacja ciagéw zréwnowazonych, korzystajac z shi ft

Tak naprawde generacja pewnych ksztaltéw drzew binarnych. Bedzie to generacja analogiczna w pewnym
sensie do kodéw Graya — w drzewach binarnych bedziemy zmienia¢ tylko statg liczbe wskaznikéw generujac
kolejny element ciagu. Drzewa zwykle zapisuje sie¢ w postaci ciagu nawiasowego, tutaj zmieniamy ( na 11 )
na 0. Sposob reprezentacji drzewa za pomoca takiego ciagu:

1

Przejscie w porzadku preorder daje ciag 111000100 — zawsze jest jedno zero wiecej. Zwykle bedziemy z tego
zapisu odcina¢ pierwsza cyfre (jedynke — korzen) i ostatnia (zero — skrajnie prawy lis¢), nie tracac zadnej
informacji. Bedziemy generowaé ciagi o takiej wtasnosci, ze dowolny prefiks ciggu ma co najwyzej o jedno zero
wiecej niz jedynek.

Algorytm 5: Prefiksowe generowanie ciggéw zrownowazonych

1 = [01" o,

2 repeat

3 Wypisz ciag 7;

4 k := PozSkoku(r);

5 if k= ||+ 1 then
6 STOP;

7 if shiftiy1(m) poprawny then
8 ‘ 7= shiftgq(7);
9 else
10 ‘ 7w = shifty(rm);
11 end

12 until forever;

Dla n = 4 algorytm wygeneruje:

0111000 1011000 1101000

0110100 1010100 0101100 1001100 1100100

0110010 1010010 0101010 1001010 0101010 1001010 1100010
1110000

W kolejnych wierszach (pomijajac ostatni) mamy sufiksy 1000, 100, 10.
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011/1000
101} 1000
110, 1000
0110100
1010, 100
0101100
1001100
1100, 100
0110010
10100, 10
0101010
1001010
13 | 11000, 10

© 00 N & O = W N -

—_
o

—_
—_

—_
[\

Zauwazmy, ze w jednej iteracji zmieniamy O(1) bitow. Mozna jedna iteracje zaimplementowaé tak, zeby
dziatata w czasie O(1) i pamieci O(1).

Algorytm generuje ksztalty drzew binarnych, dla kazdego drzewa binarnego dotaczamy do kazdego liscia
dwoch synéw — sztuczne dwa liscie, oraz do kazdego wezla z jednym synem dodatkowego sztucznego syna.
Przechodzimy drzewo preorder i wypisujemy 1 gdy mamy oryginalny wezet albo 0 gdy sztuczny. Pierwsza
jedynke i ostatnie zero obcinamy. W ten sposéb mamy odpowiednio§é miedzy zréwnowazonymi ciggami i drze-
wami binarnymi. Operacja przesuniecia prefiskowego zmienia w drzewie O(1) wskaznikow typu ojciec <> syn.

3.5 Generacja anagraméw — permutacje multizbioréw

Mamy alfabet sktadajacy sie z m liter {1, 2,..., m}. Przypusémy, ze mamy f; kopii litery i dla 1 < i < m. Taki
zbior liter nazywamy multizbiorem M. Anagramem dla M jest dowolny ciag (stowo) zawierajace f; razy litere
i dla kazdego i. Oznaczmy przz Anag(M) zbiér wszystkich anagramoéw. Chcemy wygenerowaé¢ wszystkie
anagramy z Anag(M) poprzez cyklicznie przesuwanie prefiksow. Niech max(M) oznacza leksykograficznie

maksymalny anagram, tzn.
max(M) = m/m(m — 1)/m-1 221/

Na przyktad dla M = {1, 1, 2, 3, 3, 4, 4, 4} mamy max(M) = 44433211. Niech n bedzie dtugoscia ana-
gramu.

Algorytm 6: Prefiksowe generowanie anagramow
1 7 := shift,(max(M));

2 repeat

3 Wypisz anagram T;
4 k := PozSkoku(r);
5 if k= |n|+1 then
6

7

8

9

STOP;
if (k=n)V (n[k —1] < w[k + 1]) then
‘ 7 = shifty(m);

else
10 ‘ 7 = shiftiy1(m);
11 end

12 until forever;

Przyktad: przypusémy, ze M = {1, 1, 2, 2, 3}. Wtedy max(M) = 32211 ialgorytm wygeneruje nastepujacy
ciag anagramow:

13221 31221 23121 12321 21321 32121 13212 31212 13122 11322
31122 23112 12312 21312 12132 21132 32112 23211 22311 12231
21231 22131 12213 21213 21213 12123 11223 21123 22113 32211
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4 Gwiazdowe generowanie permutacji

Rozwazamy tylko transpozycje pewnego elementu z pierwszym, graf takich transpozycji jest gwiazdg. Zatdézmy,
ze numerujemy pozycje permutacji  od zera. Interesuje nas generacja ciagu pozycji, ktére wymieniamy kolejno
z elementem na pozycji 0. Niech F,, bedzie ciagiem dla wygenerowania wszystkich permutacji n-elementowych.
Chcemy, zeby FE, byt prefiksem E, 11, czyli otrzymujemy nieskoriczony ciag Fuo.

Ponizej wypisujemy ciag Es5 generujacy wszystkie permutacje zbioru 5-elementowego. Pozycje permutacji
numerujemy od zera. W i-tym kroku zamieniamy 7[Es[i]] z 7[0].

121213212123121213212124
313132131312313132131314
121213212123121213212124
313132131312313132131314
12121321212312121321212

Opiszemy jak gwiazdowo generowaé¢ permutacje zbioru {1, 2,..., n}, ciag E wymienianych pozycji w trakcie
algorytmu jest generowany. Oznaczmy

pi(k) = max{j : j1 | k)
Na przyklad pi(12) = 3, pi(44) = 2, pi(13) = 1. Wykorzystamy tablice (ciag kontrolny) BJ[1..n], poczatkowo
bedacy identycznodcia.

Algorytm 7: Gwiazdowe generowanie permutacji
1 vi€{1,2,...,n} Bli] :=1;
2 m:=[1,2,...,n);

3 Wypisz permutacje 7;
4 fori:=1ton!—1do
5 | k:=p(i);
6
7
8
9

Zamien 7[0] z w|[BIk]];

Wypisz permutacje m;

Enli] := BIK];

Odwro¢ kolejnosé elementow B[1..k — 1];
10 end

4.1 Generowanie podzbioréw k-elementowych przez sgsiednie wymiany

Chcemy wygenerowaé¢ wszystkie zbiory z K(n, k) tak, ze dla kolejnych dwoch zbioréw w ciagach je reprezen-
tujacych zamieniaja sie tylko sasiednie bity. Np. dla (4, 2):

1100 — 1010 — 1001
0110 —— 0101 ——] 0011

Jak wida¢ w takim grafie nie ma cyklu Hamiltona, bo istnieja wezty o stopniu 1. Mozemy wiec szukaé
sciezki Hamiltona, ale okazuje sie, ze ona tez istnieje tylko w niektérych grafach.

Lemat 1. Graf K(n, k) jest dwudzielny.

Dowdd. Graf dwudzielny nie ma cykli o nieparzystej dtugosci. Aby wychodzac z jakiego$ wierzchotka v mozna
byto do niego wroci¢, nalezy wykonaé parzysta liczbe zamian (czyli przej$é po krawedziach), poniewaz kazda
zamiana zmienia o 2 odlegtos¢ Hamminga. O

Twierdzenie 4. Istnieje Sciezka Hamiltona w grafie K(n, k) wtedy i tylko wtedy, gdy n jest parzyste i k jest
nieparzyste (oprocz specjalnego przypadku k =1V k=n—1).
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Dowdd. Ponizszy dowod obejmuje konstrukcje $ciezki Hamiltona dla graféw z podanej klasy, ale nie obejmuje
pokazania, ze w grafach dla pozostalych wartosci n i k cykl Hamiltona nie istnieje.

Graf K(n, k) = G(V, E) jest dwudzielny: V = V; U Va. Dla takich grafow |[Vi| — |Va| € {—1, 1}. Niech
K(n, k) = A(n, k) U B(n, k) UC(n, k) U D(n, k), gdzie:
k)

Gln—2,k—2)

n, k) indukowany przez 11(0+ 1)*, A(n, k)

A(
(n7
c(

k) indukowany przez 00(0 + 1)*, B(n, k) = G(n — 2, k)
n, k) indukowany przez 10(0 + 1)*, C(n, k) = G(n -2,k — 1)
D(n, k) indukowany przez 01(0 4+ 1)*, D(n, k) = G(n — 2, k — 1)

*

Sciezka Hamiltona ma posta¢ 1107 = 0T1t. Graf K(n, k) ma dwa wierzcholki o stopniu 1, ktére beda
punktami poczatkowymi/konicowymi $ciezki Hamiltona.

Poniewaz podgrafy A i B sg izomorficzne z mniejszymi grafami K, to przez indukcje istnieje w nich $ciezka
Hamiltona. Przejscie z podgrafu A do B bedzie przebiegaé przez Sciezke Hamiltona podgrafu C' U D. Sciezka
Hamiltona przebiegajaca przez A ma postaé¢ 111*0T i konczy sie na 110"1*, czyli zaczynamy z wszystkimi
jedynkami po lewej stronie, a koriczymy z wszystkimi poza dwoma ostatnimi po prawej. W ten sposéb mozemy
przejs¢ do podgrafu C'U D. Analogicznie wychodzimy z C'U D do B (rysunek 7).

Grzebieri to drzewo o maksymalnym stopniu wierzchotka co najwyzej 3 z dodatkowa wlasnoscia — wszystkie
wierzcholki stopnia 3 leza na jednej Sciezce (Sciezka gtowna). Jesli v jest wierzchotkiem na Sciezce glownej, to
zebem grzebienia nazywamy najdluzsza sSciezke, ktora przecina $ciezke gtéwnag tylko raz i doktadnie w wezle
v. Jesli stopien deg(v) < 3, to zab sktada si¢ z pojedynczego wierzchotka v (jest trywialny), w przeciwnym
przypadku ma przynajmniej dwa wierzchotki.

Obserwacja 2. Podgrafy C(n, k) i D(n, k) sq rozpinane przez grzebienie.

Poniewaz wezty z podgrafu C' reprezentuja ciagi 10w, a wezly z podgrafu D reprezentuja ciagu 01w dla od-
powiednich w € (0 + 1)*, to mozemy zbudowac graf z grzebieni rozpinajacych C' i D w taki sposob, ze ist-
nieje krawedz 10w <— 0lw dla odpowiednich w i nie naruszy to wlasnosci méwiacej o odlegtosci Hamminga
réwnej 2 pomiedzy ciggami binarnymi reprezentowanymi przez sasiadujace wierzchotki.

Pozostaje zatem znalezienie §ciezki Hamiltona od 101071* do 010170* w grafie zbudowanym ze sklejonych
grzebieni rozpinajacych podgrafy C i D. Wierzchotki {01, 10}1071* i {01, 10}0110* sa punktami koricowymi
grzebieni dla (odpowiednio) C'i D. Algorytm generowania Sciezki Hamiltona zaczyna od pierwszego punktu
konicowego grzebienia rozpinajacego C' i koniczy na drugim punkcie koricowym grzebienia D. Przechodzenie
odbywa sie nastepujaco: w danym wezle v bedacym na Sciezce gtownej grzebienia C' zejdz w dot zeba, przejdz
do odpowiadajacego zeba grzebienia dla D, przejdz w gore zeba do Sciezki gtéwnej D, przemiesé sie do kolejnego
wezta na §Sciezce gltéwnej itd., az do wyladowania na punkcie koricowym $ciezki gtéwnej grzebienia dla D.
Poniewaz mamy zalozenie, ze zaréwno n jak i k sa parzyste w podgrafach C'i D, a Sciezka gltéwna grzebienia
ma dtugosé 1+ (n—2)-(k—1) [éwiczenie: dlaczego?|, czyli nieparzysta, to zawsze mozna taka Sciezke wyznaczy¢.

O

5 Liczenie podzialéw liczby: algorytm Eulera

Podziaty liczb sa bardzo skomplikowanymi obiektami kombinatorycznymi. Przedstawimy dwa algorytmy li-
czenia takich oblektéw. Pierwszy prosty algorytm bedzie dzialal w czasie O(n?) i pamieci O(n?), natomiast
drugi, pochodzacy od Eulera i oparty na tzw. liczbach pentagonalnych, w czasie O(ny/n) i pamieci O(n).

Podzial m = (A1, A2,..., A;) to przedstawienie liczby n = A; + A2 + ... + A\, w postaci

n=MAM+X+...+ A, gdzie i Z=>2X>... A >0

Wszystkie podziaty liczby n, w porzadku antyleksykograficznym, mozna wygenerowaé iteracyjnie nastepujaco:
szukamy pierwszego A\; > 2 od prawej strony, zastepujemy A; przez \; — 1, a pozostale czesci na prawo dajemy
tak, aby sufiks na prawo od A; byl jak najwickszy. Na przyktad podzialy n = 5 w porzadku antyleksykogra-
ficznym to:

5, 4+1, 342 3+1+41, 242+1, 24+1+141, 1+14+1+1+1
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000°1" |

Rysunek 7: Schemat Sciezki Hamiltona w grafie K.

[111100] |010111]

[111001] [111010] [011011]

[110011] [110101] [110110] [011101]

| | |
100111 — 101011 — 101101 |— 101110 — 011110 |

18

Rysunek 8: Przyktadowy grzebien rozpinajacy graf K(6, 4). Wezly $ciezki glownej zaznaczone sa kolorem

niebieskim.
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Oznaczmy przez p(n) liczbe podziatow liczby n, mamy:

5 6 7 8 9 10 11 12 13 14 15 16
7 11 15 22 30 42 56 77 101 135 176 231

Dla n < 0 przyjmijmy czysto formalnie, ze p(n) = 0, natomiast p(0) = 1. Oznaczmy przez p(n, k) liczbe po-
dzialow liczby n na k czesci (niezerowych). Algorytm o czasie kwadratowym liczenia p(n) polega na policzeniu
(kwadratowej liczby) wartosci p(n, k) na podstawie rekurencji:

oy 0 dlak <nVk<0
P )= pin—1,k—1)+p(n—k, k) wp.p.

Rekurencja wynika stad, ze mamy dwa przypadki:
(Ax = 1) Wtedy mamy p(n — 1, k — 1) podzialéw pomijajac Ag.
(A > 1) Wtedy mozemy odja¢ jeden od kazdego \; otrzymujac podzial liczby n — k na k czesci.
W celu szybszego policzenia p(n) rozwazymy podzialy na rézne czesci, tzn.
AL > Ao > 0> A

Niech p(n) bedzie liczba takich podzialow. Przez peven, Deven, Podds Podd 0zhaczmy liczbe podziatow na (odpo-
wiednio) parzysta i nieparzysta liczbe czesci (o réznych rozmiarach w przypadku p). Na przyktad p(15) = 27,
Dodd(15) = 14, Deyen(15) = 13, patrz rysunek 11. Zauwazmy, ze liczby p(n) sa przewaznie znacznie mniejsze
od liczb p(n) (chociaz na poczatku niewiele sie réznia).

Mozemy roéniez zdefiniowaé p(n, k) — liczbe podzialow n na rézne czesci. Na przyktad p(50, 7) = 522,
co Euler policzyt prawie 300 lat temu bez komputera (ani kalkulatora) te konkretna wartos¢ odpwiadajac
na pytanie matematyka Ph. Naude.

Dygresja.
Liczba p(n) jest rowna liczbie podzialéw n na nieparzyste czesci (nie myli¢ z nieparzysta liczba czesei).

Kluczowa wartoscia jest zdefiniowana ponizej funkcja:
A<k) = ﬁodd(k) - ﬁeven(k‘)

Funkcje p(n) 1 p(n) sa bardzo skomplikowane, natomiast jest zadziwiajace, ze A jest bardzo prosta. Poczatkowe
wartosci to:

k:|l1 2 34 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
NOHIE o0-10-100 0 0 1 0 0 1 0 0 0 0 0 0 -1

Leonard Euler odkryt dwie istotne (dla liczenia p(n)) wtasnosci funkeji A:

Wtlasno$é 1:  p(n) spelnia rekurencje:

3

p(n) =) A(k)-p(n—k) (2)
k=1

Wtasnosé 2.
5odd(k) _ﬁeven(k) = A(k) = e(k) (3)

Jak wida¢ z poczatkowych wartosci A(k) jest ciagiem bardzo rzadkim (prawie same zera). Jest on obliczalny
latwo za pomoca tzw. liczb pentagonalnch. Wartosci ciagu to zera, +1 lub —1. Z tego, ze ciag A(n) jest bardzo
rzadki wynika, ze dla policzenia p(n) tylko O(y/n) wartosci k jest niezerowych. Zatem p(n) liczymy w czasie
O(y/n) znajac p(n — 1), p(n —2) ..., p(0). W sumie mamy algorytm dziatajacy w czasie O(ny/n) i pamieci
O(n), o ile potrafimy tatwo wylistowac niezerowe wartosci A(k).

Leonard Euler najpierw odkryl wlasnosci A heurystycznie, a dopiero po 10 latach znalazt dowod (byé¢ moze
nie zajmowal sie przez ten czas tym zagadnieniem).
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n=C0k 7164544 n=C0kF — 81 746+5
o o o (@) (@) (@) ( o o o (@) (@) (@) o (]
o o o (@) o { o o o (@) o (@) (]
o o o o e k=14 o o o o o ® k=14
([ ] ([ ] ([ ] [ ] [ ] ([ ] [ ] [ ] ®
h=4 h=5

Rysunek 9: Trapezy rzedu k, gdzie k = 4, pierwszego typu ma pen(k) elementéw, a drugiego typu ma pen(k)+k
elementéw. Podzialy odpowiadajace tego typu trapezom nazywamy podzialami trapezowymi.

Mozemy teraz zapisa¢ algorytm (jedna iteracje) liczenia p(n) nastepujaco:

p(n) => (=)' (p(n — pent(i)) + p(n — pent(i) — i))

121

W réwnaniu tym korzystamy jedynie z wartosci i takich, ze pent(i) < n, mamy jedynie O(y/n) takich wartosci.
Liczby pent(i) mozemy tatwo policzy¢.

Twierdzenie 5. Liczby p(1), p(2), ..., p(n) mozemy policzy¢ w czasie O(n/n) i pamieci O(n).

Dowo6d wlasnosci 1

Uzasadnienie jest sprytna manipulacjag algebraiczna, korzystajaca z tego, ze dwa wielomiany bedace ta sama
funkcja maja takie same wspotczynniki przy tych samych potegach zmiennej. Sztuczka polega na tym, zeby
te same wielomiany przedstawi¢ na dwa rézne sposoby. Z jednego wymnozenia otrzymujemy wynik, ktory
przyréwnujemy do wymnozenia w innej formie. Zdefiniujmy:

px)=0+z+22+... +2"), px)=1-=z
W) = [[e=), Wae) = [[ (=)
i=1 '

Wprowadzmy notacje = dla réwnosci wielomianoéw z dokladnoscia do poteg wyzszych niz n. Inaczej mowiac
bierzemy reszte z dzielenia przez ™!, Zauwazmy, ze zachodzi dosy¢ tatwe réwnanie:

Wi(z) - Wa(z) 2 1. (4)

Powyzsza réowno$é troche przypomina sytuacje w rownosci (1+z)(1 —2) = 1—22. Przedstawimy teraz te same
wielomiany w innej formie.

Wi(z) = p(0)z® + p(1)z! 4+ p(2)2? + ... + p(n)z™, Wo(z) =1 - A(1)z? — A(2)2® —... — A(n)z™  (5)
Z rownania (4) dla n > 1 wynika, ze wspolczynnik przy =™ w iloczynie Wi (z)- Wa(z) wynosi zero. Korzystajac

z rownania (5) mozemy ten wspotczynnik przedstawic¢ jako kombinacje iloczynow p(i), A(j), gdzie i + j = n,
w rezultacie otrzymujemy:

p(n)-1—=p(n—1)-A(1) =p(n—2)- A(2) —=p(n—3) - AB) ... = A(n) - p(0) = 0

Stad wynika bezposrednio roéwnanie (2).
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23=T+6+5+3+2 bijekeja 2=8+7+5+3
(@) @) o @) @] @] [ ]
O O O O O [ J @) O O @) @) @) O [ J
@) @) O O ® k=3 @) O @) O @) @) [ J
O O O O @) O O O k=2
[ ] e Hh=2 [ ) [ ) ® Hh=3

Rysunek 10: Dziatanie funkcji F'.

Dowo6d wlasnosci 2

W czesci tej rozwazamy tylko podzialy o réznych czeéciach. Dowdd wymaga rozwazenia interpretacji geome-
trycznej podziatow.

Podziatl liczby moze by¢ przedstawiony w postaci diagramu zwanego diagramem Ferrersa — w kolejnym
wierszu liczba elementéw odpowiada liczbie A;. Diagramy Ferrersa dla przykladowych podzialow liczb 22 i 26
sa przedstawione na rysunku 9. Sa to bardzo szczegblne podzialty, ktére bedziemy nazywaé trapezowymi.

Podzial trapezowy rzedu k pierwszego typu jest postaci (k+k—1, k+k—2, k+k—3,..., k) a drugiego
typu postaci (k+k, k+k—1,k+k—2,..., k+1).

Obserwacja: Podzial trapezowy majacy pen(k) lub pen(k) + k elementow sklada sie z k czesci.

Liczbe n nazywamy liczba trapezows, gdy istnieje podzial n bedacy trapezowym. Zawsze jest co najwyzej
jeden taki podzial dla danego n.

Obserwacja: Liczby trapezowe sa postaci pen(j) lub pen(j) + j.

Dla trapezu 7 przez k(m) oznaczmy liczbe elementéow na prawej diagonali poczynajac od gornej prawej strony.
Jesli odpowiadajacym podziatem jest (a1, ag, ..., a,) to k() jest najwicksza liczba naturalna taka, ze a; — 1 =
ai+1 dlai =1,2,..., k(r) — 1. Przez h(m) = a, oznaczmy liczbe elementéw w najmniejszej czesci. Jesli
podzial nie jest trapezowy oraz h(m) < k() to F(m) jest podziatem powstajacym z 7 przez dodanie do kazdej
z pierwszych k(m) czesci po jednym elemencie i usuniecie najmniejszej (dolnej) czesci, patrz rysunek 10.

Podzialy o parzystej (nieparzystej) liczbie czesci nazywamy parzystymi (nieparzystymi). Zauwazmy, ze funk-
cja F' zmienia parzystos¢ podziatu. Zachodzi nastepujacy, dosé oczywisty fakt.

Wtiasnosé funkceji F:  F jest bijekcja miedzy nietrapezowymi podziatami n z h(p) < k() i nietrapezowymi
podziatami n z h(p) > k().

1 gdy n jest nieparzysta liczba trapezowsa

Dodd(k) — Deven(k) = { —1 gdy n jest parzysta liczba trapezowa
0 w przeciwnym przypadku.

7 powyzszej wlasnosci wynika:
Dodd(k) — Deven (k) = e(k) dla kazdego k.
Wiecej informacji na temat liczenia podzialéw mozna znalezé w:

http://www.math.psu.edu/vstein/alg/antheory/preprint/andrews/chapter.pdf

http://www.rowan.edu/colleges/csm/departments/math/facultystaff/osler/
89%20Surprising’20Connection’20Between’20Partitions’20and’20Divisors.pdf . pdf
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1441 <+— 15 7T+54+2+1 <+— 84542
1342 «+— 124241 T+4+3+1 +— 8+4+3
1243 +— 11+2+1 9+3+2+1 <+— 10+3+2
1144 «+— 10+4+1 84+4+2+1 +— 9+4+2
1045 +— 9+5+1 6+5+3+1 +«— 74543
946 <«— 8+4+6+1 6+4+3+2 +— bH+4+4+3+2+1
8+7 +— T7T4+6+2 6+5+4 podziat trapezowy

Rysunek 11: Zgrupowanie podzialéw nietrapezowych liczby n = 15 korzystajac z funkeji F'.

http://hkumath.hku.hk/mks/EulerHeuristicReasoning.pdf

Jako ¢wiczenie propnujemy dowdd réwnosci:

p(n,2) = [(n+1)/2], p(n,3) = {(n+3)%/12},

where {x} means the integer closest to x.

Nieoczekiwana relacja miedzy funkcjami p(n) i o(n)

Jako ciekawostke podamy (bez uzasadnienia) pewien zwiazek dwoch pozornie odlegtych funkeji p(n) i o(n),
gdzie o(n) oznacza sume dzielnikow liczby n (wlacznie z n). Mamy

4 5 6 7 & 9 10 11 12 13 14 15 16
7

n:l[0 1
| 6 12 8 15 13 18 12 28 14 24 24 31

2 3
on): |0 1 3 4

Dla funkcji o zachodzi prawie taka sama rekurencja jak dla p(n), jedyna roznica to zastapienie p(0) przez n
we wzorze (2). Funkcja o(n) spelnia rekurencje:

o(n) =Y A(k)-o(n—k)+ An) - n. (6)

Przyktad. Dla n = 15 mamy:

o(15)=0(15—-1)+0(15—-2) —0(15-5) —o(15—=7) + 0(15 - 12) + 15
=244+14-18-15+4+4 15 = 24.

p(15) =p(15—1) + p(15 = 2) — p(15 — 5) — p(15 — 7) + p(15 — 12) + p(0)
=135+101 —-42 -22+ 34+ 1=176.

Poniewaz wartosci A(k) sa zwiazane z liczbami pentagonalnymi tak jak poprzednio, to wszystkie wartosci
o(n), o(n —1), ..., o(1) mozna policzy¢ w czasie O(ny/n) i pamieci O(n), tak jak poprzednio zrobilismy
to dla wartosci p(n). Zachodzi réwniez inny zadziwiajacy zwiazek:

o(n) =Y k- A(k)-p(n —k).
k=1

Jesli n =[] p/* gdzie p; liczby pierwsze to

e -1
[1(pi — 1)

Wydaje sie, ze liczenie o dla wszystkich liczb 1, 2,..., n jednak jest szybsze korzystajac ze wzoru (6) i liczb
pentagonalnych niz korzystajac z ostatnego wzoru.

o(n) =
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Dygresja. Liczby o(n) sa zwiazane z tzw. liczbami doskonatymi tzn. takimi, ze o(n) = 2n. Wiadomo, ze
n parzyste jest doskonale wtedy i tylko wtedy, gdy n = 2P~1(2P — 1), gdzie p i 2P — 1 sa pierwsze, np. dla
p = 11213, p = 30402456 (43. liczba doskonata). Pierwszych 7 liczb doskonalych to:

6, 28, 496, 8128, 33550336, 8589869056, 137438691 328.

Pierwsze 4 liczby doskonale policzyt juz Euklides. Kilka nastepnych Euler. Potem juz byt potrzebny komputer.
Nie wiadomo czy liczb parzystych doskonalych jest nieskoriczenie wiele, ani tez czy istnieje choéby jedna
nieparzysta liczba doskonata.

Permutacje a liczby pentagonalne

n+j—1

; ), gdzie c(n, j) =0

Zdefiniujmy b(n, k) jako liczbe n-permutacji majacych k inwersji, oraz c(n, j) = (
dla j < 0. Wtedy dla & < n mamy:

b(n, k) = c(n, k) + Z(—l)i - (e(n, k —pent(i)) + c(n, k — pent(i) — 1))

Otoz b(n, k) jest rowne liczbie ciagow (a1, ag, ..., an—1) takich, ze 0 < a; <4, Y, a; = k. Wynika to z analizy
algorytmu sortowania przez wstawianie (InsertionSort).
Przekladajac to na jezyk wielomianéw b(n, k) jest wspotczynnikiem przy x*¥ w wielomianie

Wi(z)=(1+z)1+z+22) .. . I+x+22+... +2"h)

Ale mozemy ten wielomian zapisaé jako W3 (z) = Wa(z)/(1—x)", a wielomian Ws(x) ma, jak to juz widzielismy
przy liczeniu podziatéw liczby, wiele wspolnego z liczbami pentagonalnymi, stad zatem mamy relacje miedzy
permutacjami i liczbami pentagonalnymi.

Ponize pokazujemy tabelke poczatkowych wartosci b(n, k), kolumny odpowidaja k& = 0,1,2,..., a wiersze
kolejneym n > 1.

1

2 2 1
3 5 6 o5 3 1

4 9 15 20 22 20 15 9 4 1

5 14 29 49 71 90 101 101 90 71 49 29 14 5 1

—_ = e e

Zauwazmy, ze wiersze sg symetryczne. Zalozmy, ze jesli k < 0 lub k& > (g) to b(n, k) = 0.
Wtedy dla k>0 & k > (}) zachodzi rownosé:

b(n,k) = b(n,k—1)4+b(n—1,k) —b(n—1,k—n).

6 Pierwiastkowanie permutacji

Rozwazymy pewien problem dotyczacy permutacji, rozwiazywalny w czasie liniowym za pomoca rozktadu na
cykle. Dla zadanej permutacji 7 i liczby k okreslamy:

Pierwiastkowanie: znalez¢ jakakolwiek permutacje « taka, ze v = m (oznaczmy takie v przez /), ewen-
tualnie stwierdzi¢, ze nie ma pierwiastka. Moze nie istnie¢ pierwiastek, np. dla 7 = (2, 1, 3, 4) nie ma
pierwiastka kwadratowego, a dla 7 = (1, 2, 3, 4) mamy az 10 takich pierwiastkow.
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Fakt. Rozklad permutacji na cykle mozna policzyé¢ w czasie liniowym. Wystarczy reprezentowaé¢ permutacje
jako graf skierowany, w ktérym do kazdego wierzchotka wchodzi i z ktérego wychodzi doktadnie jedna krawedz.
Nastepnie iterujemy przez wszystkie elementy permutacji szukajac nieodwiedzonego wierzchotka. Dla kazdego
takiego wezla przechodzimy przez wszystkie elementy cyklu, oznaczajac je po drodze jako odwiedzone. Mozemy
w ten sposéb znalezé wszystkie mozliwe informacje dotyczace cykli w permutacji: ich liczbe i dtugosé oraz ktory
element nalezy do ktorej.

Algorytm 8: Rozklad permutacji na cykle

L := pusta lista cykli;

for i :=1 ton do

if visited[i] = false then

C := pusty cykl;

j=1

repeat
dodaj 5 do C
visited[j] := true;
j = il

until ¢ = j;

dodaj C do L;

© 0w N O oA W N

[
= o

12 end

Zacznijmy od pierwiastka kwadratowego. Niech #cykle(r, k) oznacza liczbe cykli dlugosci k¥ w rozkladzie
cyklowym permutacji .

Fakt. 7 ma pierwiastek kwadratowy wtedy i tylko wtedy gdy dla kazdego parzystego k liczba #cykle(mw, k)
jest parzysta.

Potrzebna nam bedzie kluczowa operacja interlace. Jesli mamy kilka roztacznych cykli Ci, Co, ..., C
tej samej dtugosci to interlace(Cy, Co, ..., Cy) otrzymujemy wstawiajac kolejne elementy Cy po elementach
C1, nastepnie kolejne elementy C'5 po elementach Cy itd. Na przyktad:

interlace((1, 2, 3), (4, 5, 6), (7,8,9)) = (1,4, 7,2, 5,8, 3,6, 9).

Jesli mamy mamy cykl nieparzysty (ig, i1,..., ir—1), gdzie 7 = 2k + 1, to jego pierwiastkiem jest cykl
(Jos J1s- -+ Jr—1), gdzie jp = ip.(kq1) mod r- Na przyklad jesli mamy cykl (1, 2, 3, 4, 5) to jego pierwiastkiem
jest (1, 4, 2, 5, 3).

Natomiast jesli mamy dwa cykle parzyste C1 i Co tej samej dlugosci, to pierwiastkiem kombinacji tych
cykli jest interlace(Cy, Ca). Pierwiastek kwadratowy liczymy w ten sposob, ze dla kazdego nieparzystego cyklu
obliczamy jego cykl bedacy pierwiastkiem, a dla kazdej pary parzystych cykli tej samej dtugosci zastepujemy
je przez jeden cykl za pomoca operacji interlace.

Przyklad. Niech
T=1(2,3,4,51,7,8,9,6, 11, 12, 13, 10)

Rozktad na cykle to

(1,2,3,4,5), (6,7,8,9), (10, 11, 12, 13)
Pierwszy cykl pierwiastkujemy otrzymujac (1, 4, 2, 5, 3). Do dwoch pozostatych cykli (tej samej parzyste;
dtugosci) stosujemy interlace i otrzymujemy cykl (6, 10, 7, 11, 8, 12, 9, 13). Zatem wynikowa permutacja
ma rozktad na cykle

(1, 4, 2, 5, 3), (6,10, 7,11, 8,12, 9, 13)

Ostatecznie

Jr=(4,2,5,3,1,10, 7,11, 8, 12, 9, 13, 6)

Systuacja jest podobna, choé¢ bardziej skomplikowana, dla pierwiastka dowolnego stopnia m.

Systuacja jest podobna, choé¢ bardziej skomplikowana, dla pierwiastka dowolnego stopnia m. Zaldézmy, ze
faktoryzacja m na potegi liczb pierwszych wyglada nastepujaco:

_ al a2 (%
m = p1 Py ...Dg°
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|

0 +——

10 — 11

O —p O

|

13 «— 12

interlace

6 —— 10 —— 7

13 11

94— 12 «—38

Rysunek 12: Tlustracja operacji interlace.

Definiujemy:

Fact. 7 ma pierwiastek m-tego stopnia, gdzie m > 1, wtedy i tylko wtedy gdy dla kazdego k liczba ((k, m))
jest dzielnikiem liczby cykli dlugoéci k.

Inaczej mowiac jesli p; dzieli nwd(k, m) to pj jest dzielnikiem liczby cykli diugosci k.

Problem ten jest opisany doktadniej w ksigzce "Wyzwania algorytmiczne” z ICPC ACM, jako zadanie "Taso-
wanie” autorstwa P. Parysa.

Problem. Oblicz liczbe pierwiastkéw kwadratowych permutacji identycznosciowej rzedu n.

7 Generacja liczb pierwszych

Liczby pierwsze sa jednymi z najciekawszych obiektéow kombinatorycznych. Powszechna metoda sita Erato-
stenesa przetwarza tablice liczb z przedziatu [2, n]: w petli znajdujemy pierwsza niewykreslona liczbe, ktora
dodajemy do listy wynikowej, a nastepnie wykreslamy z tablicy wszystkie wielokrotnosci tej liczby. tacz-
nie wykonywanych jest O(nloglogn) wykreslenn — iterujac przez wielokrotnosci kolejno znajdowanych liczb
pierwszych niektore liczby wykreslimy wielokrotnie. Opiszemy algorytm z 1978 roku autorstwa Davida Griesa
i Jayadeva Misry, ktory generuje wszystkie liczby pierwsze z przedziatu [2, n] wykonujac jedynie liniowa liczbe
wykreslen.

Zdefiniujmy operacje RemovePowers(p, q, L), ktora z listy liczb naturalnych L usuwa wszystkie liczby
postaci p’ - ¢, dla i > 1. Chcemy, aby koszt tej operacji byl proporcjonalny do liczby usunietych elementéw
plus pewna stala. O ile usuwanie elementéw z listy dwukierunkowej jest tatwo wykonalne w czasie stalym,
o tyle trudne jest znalezienie elementu, ktéry chcemy usunaé.

Na szczescie mozna skorzystaé z doéé prostego triku technicznego, pozwalajacego szybko znajdowaé inte-
resujace nas elementy listy. Okreslimy tablice Ptr, ktora dla kazdej liczby x € L zawiera wskaznik do odpo-
wiadajacego mu elementu w L. Tablice Ptr inicjujemy podczas konstrukcji L. Jesli usuniemy liczbe z z L,
to zapisujemy Ptr[x] = NULL, co pozwala rozpoznaé liczby juz usuniete i nie duplikowaé wykreslen.

Operacje RemovePowers(p, q, L) mozemy zaimplementowa¢ w taki sposob, aby dla kazdej wykreslonej
liczby z zapamietaé liczby p’. Wtedy mozemy dokonaé faktoryzacji dowolnej liczby z zakresu [2, n] w czasie
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liniowym wzgledem liczby czynnikéw pierwszych x droga sukcesywnego dzielenia przez spamietane wartosci
P
Algorytm 9: Gries-Misra

L:=12,n];
Inicjuj tablice Ptr;
p:= L.begin(); // p wskazuje na liczbe 2
while p # NULL do
q:=p;
while ¢ # NULL do

RemovePowers(p, q, L);

q = next(q);
end
p = next(p);
end
return ;

© 00 N O Ok W N -

- e
[ )

Fakt. Algorytm Gries-Misra wykonuje O(n) wykresleri liczb — kazda liczba, ktora trafita do L albo jest liczba
pierwsza i nie zostaje wykreslona, albo zostaje wykreslona doktadnie raz i juz do niej nie wracamy.

8 Kilka prosciutkich probleméw algorytmiczno-teorioliczbowych

Na cyfrach liczby zapisanej dziesietnie mozna wykonywaé proste operacje.

Mozenie-Skreslanie. Dysponujemy operacjami skreslania zer i mnozenia przez dowolng liczbe naturalng.
Problem: Dla danej liczby n podaé ciag operacji n —* 9.

Postuzymy sie rozwiazaniem pomocnieczego problemu: dla danej liczby n, (n,10) = 1 mozna ja
przemnozté przez pewna liczbe otrzymujac liczbe zlozona z samych jedynek. Zapiszmy to n — m = 1* dla
pewnego k.

Teraz nasz cia operacji dla n —* 9 wyglada nastepujaco:

1. n —* z, dla pewnego x takiego, ze (x,10) = 1, wykonujac pewna liczbe mnozen przez 2 lub 5, oraz
skreslen zer.

r—*m = 1%

m:=m x 82 = 9111...02

skreslamy zero, mnozymy przez 9: m —* 8200..8

482000...8 — 828, mnozymy przez 25, skres§lmay zera, otrzymujemy 277.

mnozymy przez 4, skreslamy zera, otrzymujemy 18.

N T

mnozymy przez 5, skre§lamy zera. Otrzymujemy 9 !!!

Rozwigzanie problemu pomocniczego. Istnieja dwie liczby postaci 17, 19, gdzie p > ¢ dajace te sama
reszte modulo n. Wtedy 17 — 19 jest podzielne przez n, pomijajac zera mamy liczbe postaci 1* podzialna przez
n.

Dopisywanie-dzielenie. Dysponujemy operacjami dopisywania na koncu zera lub czwoérki, oraz dzielenia
liczby parzystej przez 2.
Problem: Dla danej liczby n podaé ciag operacji 4 —* n.

Generacja liczb 1-10:
4—-2—=1,2—-24—-12—-6—3, 6 —>64 — 32— 16 — 8,
2—-20—10—5, 10 - 14 — 7.
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Pojedyricze mnozenie. Dla danej liczby n zanalezé n* > x > 1 takie, ze n x x ma w zapisie dziesietnym
co najwyzej 4 rézne cyfry.

Zatozmy, ze 28=1 < n < 2F. Niech Sy bedzie zbiorem liczb majacych k cyfr - same zera/jedynki. Istnieja
dwie liczby a < b w zbiorze S majace te sama reszte modulo n, liczba b — a jest podzielna przez n i ma w
zapisie tylko cyfry 0,1,8,9. Wezmy x = (b — a)/n.

Sumy-réznice kwadratéw. Przedstawié liczbe n w postaci sumy typu
n = +124+22+3%. ..+ m?,
Mozna skorzystaé¢ z tozsamosci:
k2 — (k+1)2 = (k+2)*+ (k+3)* =4

gdzie m < 4n.

Odejmowanie cykliczne. Dla ciagu liczb catkowitych v = (a1, aq,...ay), definiujemy operacje
F(y) = (a1 —ag,a2 — as,...an—1 — an, ay — ay)

( w operacji tej wykonujemy dzialania na poprzednich wartosciach liczb.)
Zachodzi nastepujaca ciekawa wtasnosé tej operacji.

Fakt.. Jesli n jest potega dwojki to istnieje takie k, ze
F*(v) = (0,0,0,...,0).

9 Kombinatoryczne wlasnosci ciggu Thue-Morse’a

Niech 7, bedzie ciggime binarnym dlugosci 2" numerowanym od zera. Oznaczmy A,,, B, pozycje zawierajace
odpowidnio 0,1. Zedfniujmy ciag 7, rekurencyjnie:

Ag = {0}, Apy1 = Bn+2", Bpy1 = A, + 2"

Problem Poucheta-Tarry’ego-Escota Nastepujacy fakt dowodzimy indukcyjnie wzgledem n:

Fakt.
(VO<k<n) Y i = > 4~

i€By, JEAR

Konstrukcja kwadratéw magicznych rzedu 2" Ponumerujmy pola kwadratu N x N, dla N = 2" kolejno
wierszami tdgc od lewej do prawej w kazdym wierszu, pierwszy numer to zero. Pole o numerze i zawiera ¢ + 1
jesli A, 41 =0, wpp. zawiera 2"+ — .

Fakt. Tok wypetniony kwadrat jest kwadratem magicznym.

Wystarczy zauwazy¢, ze kazde kolejne cztery elementy wiersza (poczynajac od lewej strony) maja taka sama
sume, podobnie kazde kolejne cztery elementy kolumny maja te sama sume (poczynajac od gory kwadratu).
Natomiast przekatne sg jednorodne, ich wszystkie pozycje naleza do A, 11 albo do Bj41.

10 DFS i BFS

Zalozmy (dla uproszczenia), ze z wierzchotka zwanego root w danym grafie G mozna doj$¢ do kazdego innego
(w grafie skierowanym lub nieskierowanym). Ze $ciezek dojscia z root do wszystkich wierzchotkéw mozna
skonstruowaé¢ drzewo (tak zwane drzewo DFS) bedace rodzajem algorytmicznego ,szkieletu” grafu.

DFS jest abstrakcja algorytmu przeszukujacego graf ,w gtab”, startujac z jakiegos$ wezta ,odwiedzamy” we-
zly, najpierw syna aktualnie odwiedzonego wezta. W kazdym wezle odwiedzonym po raz pierwszy staramy sie
pojsé do jego kolejnego nieodwiedzonego syna. Jesli takiego nie ma to wycofujemy sie. W czasie chodzenia
po grafie otrzymujemy drzewo DFS, skladajace sie z krawedzi pierwszego doj$cia do weztow. Niech parent(v)
oznacza poprzednik wezla v w drzewie. Mamy dwie podstawowe kolejnosci wierzchotkéw drzewa:
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e preorder: wypisujemy w momencie pierwszego odwiedzenia
e postorder: wypisujemy w momencie ostatniego odwiedzenia

e EulerTour: wypisujemy wierzchotki w momentach pierwszego i ostatniego odwiedzenia (wchodzenie do
i wychodzenie z wierzchotka). Kolejnosé ta jest ztaczeniem preorder i postorder.

5/ \3
/éll 2/%\8

!
6

Preorder 9,5,1,4,3,2,6,7,8

1

Postorder 1,4,5,6,2,7,8,3,9

FulerTour 9,5,1,1°,4,4,5,3,2,6,6,2°,7,7,8,8,3,9
Rysunek 13: Kolejnosci wierzchotkéw dla przyktadowego drzewa

Graf nieskierowany jest 2-spojny gdy po usunieciu dowolnego wierzchotka jest spéjny. Wierzchotki, ktore
rozspOjniaja graf nazywamy weztami rozdzielajacymi lub punktami artykulacji. KrawedZ nazywamy mostem
(przewezeniem), gdy usuniecie tej krawedzi rozspojnia graf.

10.1 Zastosowanie DFS: silna orientacja grafu nieskierowanego

Graf jest silnie spojny jesli istnieje skierowana Sciezka miedzy kazdymi dwoma weztami. Wiadomo, ze graf
nieskierowany G mozna zorientowaé tak, aby byt silnie spojny wtedy i tylko wtedy, gdy jest spéjny i nie ma
mostu. Nastepujacy algorytm wykonuje orientacje.

Algorytm 10: Silna orientacja grafu

wejscie: G = (V, E) — graf nieskierowany bez mostow
wyjscie: G = (V, E) — wejsciowy graf po silnej orientacji
1 Policz preorder i DFS-drzewo T grafu G;

2 foreach e € F do

3 if e € T then

4 ‘ Zorientuj e w kierunku rosnacego preorder;
5 else

6 ‘ Zorientuj e w kierunku malejacego preorder;
7 end

8 end

10.2 Zastosowanie DFS: dwuspdjnosé, wezly rozdzielajagce i mosty

Pokazemy jedynie jak oblicza¢ wezly rozdzielajace i mosty grafu nieskierowanego, wypisywanie dwuspojnych
sktadowych zostawiamy jako ¢wiczenie.

Zatozmy, ze obliczylismy DFS-drzewo T oraz postorder i preorder. Utozsamiamy wezty z ich numerami
w porzadku preorder. Przechodzimy graf w porzadku postorder i obliczamy:

low[v] :=min({v} U{w: (v, w) € E—T} U {low[w] : parent(w) = v})

Teraz v jest weztem rozdzielajacym jesli dla pewnego syna w (tzn. parent(w) = v) zachodzi low[w] > v. Jesli
low[w] = w to (v, w) jest mostem (krawedzia rozdzielajaca).
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10.3 “Ear-decomposition” grafu dwuspdéjnego

Pokazemy konstruktywnie nastepujacy fakt:
kazdy nieskierowany graf dwuspojny G mozemy wygenerowaé startujac z cyklu prostego, a nastepnie do-
klejajac do grafu "uszy"(Sciezki majace tylko koncowe wezly w grafie).

Poczatkowo graf G’ jest jakimkolwiek cyklem prostym w G.
while G’ # G do

wybieramy (v,w) ¢ G', v € G;

if w € G then doklejamy krawedz (v, w) do G’

else

usuwamy v, bierzemy Sciezke od w do pewnego w’' € G’

na ktorej posrednie wezly nie sa w G’; doklejamy te $ciezke do G;

10.4 Silnie spdjne skladowe grafu skierowanego - algorytm Tarjana

Tym razem graf jest skierowany, zatem DFS-drzewo sklada si¢ z zadanym oryginalnie skierowaniem krawedzi.
Opiszemy algorytm Tarjana dzielacego graf wejsciowy na podgrafy. Zaskakujace jest jego podobienistwo do al-
gorytmu zwigzanego z dwuspdjnoscia. Teraz tez zakladamy, ze obliczylismy DFS-drzewo T oraz postorder
i preorder.

Utozsamiamy wezly z ich numerami w porzadku preorder. Dla kazdego wezta v obliczamy predykat repr{v]
czy jest on najmniejszym weztem w swojej silnie spojnej sktadowej (reprezentantem tej sktadowej). Poczatkowo
repr zawiera same zera.

Algorytm 11: Tarjan

1 foreach v € V' w kolejnosci postorder do

2 lowv] ;== min({v} U{w: (v, w) € E — T} U {loww] : parent(w) = v});
3 if low[v] = v then

4 repr[v] := true;

5 U := zbiér weztéow w poddrzewie T5;

6 V=V-U;

7 end

Teraz juz tatwo mozemy wypisa¢ sktadowe silnie spdjne:

Algorytm 12: Tarjan
1 SCC :=

2 foreach v € V, w kolejnosci postorder do

3 insert(v, SCC);

4 if repr{v] = true then

5 Wypisz sktadowa SCC;
6 SCC =

7 end

W algorytmie Tarjana trzeba tak zaimplementowaé instrukcje V :=V — U, aby nie usuwaé tego samego wezta
dwa razy. Wtedy algorytm dziala w czasie liniowym.
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D

Rysunek 14: Graf skierowany z pokolorowanymi silnie spéjnymi sktadowymi, oznaczonymi kolejnymi literami
od A do D. Po prawej graf silnie spéjnych sktadowych. Jak widaé¢ pojedynczy wierzcholek takze moze by¢é
silnie spojna sktadowa.

10.5 Silnie spdjne skltadowe grafu skierowanego - algorytm Kosaraju

A teraz podamy inny algorytm, historycznie p6zZniejszy i prostszy niz algorytm Tarjana.

Algorytm 13: Kosaraju

1 Przechodzimy graf DFSem i numerujemy w postorder;

2 odwracamy zorientowanie krawedzi grafu, otrzymujac graf G%;

3 foreach v € V, w kolejnosci malejgcego postorder do

4 if v nie jest usuniety then

5 Wypisz jako kolejng sktadowa zbior

6 wierzcholkéw osiggalnych z v w grafie G*;

7 usun wypisane wierzchotki i krawedzie prowadzace do nich;
8 end

Uzasadnienie poprawnosci:

Wystarczy udowodni¢, ze jesli v —* = w grafie G to v —* x w grafie G. Rozwazamy dwa przypadki,
niech preorder bedzie kolejnoscia odwiedzania w czasie pierwszego przechodzenia DFSem. Dowodd przez za-
przeczenie, przypusémy, ze nie zachodzi v —* z w grafie G

Przypadek 1: preorder(v) < preorder(z). Wtedy zakoriczymy v przed x, zatem postorder(v) < z, nie
zaczniemy wykonywaé szukania wierzchotkow osiggalnych w grafie G® z v. Sprzeczosé.

Przypadek 2: preorder(v) < preorder(z). Dowdd podobny.

10.6 Zastosowanie DFS: przydzial krawedzi incydentnych

Chcemy znalez¢ funkcje roznowartosciowa P (przydzial) ze zbioru wierzchotkéw w krawedzie, aby P(v) bylo
zawsze krawedzia incydentna. Zalézmy, ze graf nie jest drzewem. Wybierzmy jako root wierzcholek na jakim-
kolwiek cyklu, stworzmy drzewo DFS o korzeniu root. Wtedy Plv] = (v, parent(v)), dla v # root. Natomiast
P(root) to jakakolwiek krawedz incydentna z root jeszcze nie wybrana.
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10.7 Zastosowanie postorder do najliczniejszego zbioru f-niezaleznego

Niech f : [n] — [n]. Zbior X C [n] jest f-niezalezny gdy f(X)N X = 0. Mamy znalez¢ najliczniejszy zbior
f-niezalezny. Funkcja f moze by¢ traktowana jako zbior pseudo-drzew skierowanych (od syna do ojca) —
drzewa, w ktorych korzen ma swojego ,0jca” w drzewie. Graf taki nazywamy grafem funkcyjnym.

Zalozmy, ze naszej funkcji odpowiada jedno pseudo-drzewo (jesli nie to wszelkie obliczenia sa niezalezne
w roztacznych pseudodrzewach). Dla ustalonej permutacji 7 zbioru [n] definiujemy zbior X (7) jako wynik
algorytmu:

1 DEAD := (),

2 for i :=1ton do

3 if 7[i] € DEAD then

4 ‘ Insert (f(n[i]), DEAD);
5 end

6 end

7 return {1,2,..,n} — DEAD.

Niech 7 bedzie porzadkiem postorder drzewa DFS dla grafu funkcji f oraz niech 7’ bedzie cyklicznym prze-
sunieciem 7 (ostatni element na poczatek). Wtedy najliczniejszym (jednym z wielu) jest wiekszy ze zbiorow
X (m), X (7).

Zastanéwmy sie teraz nad permutacja m, ktora minimalizuje X (7). Zalozmy, ze pseudodrzewo nie jest
jedynie cyklem. Wybierzmy jako korzen wezet root taki, ze istnieje j # f(root), f(j) = f(f(root)). Wtedy
porzadkiem 7 minimalizujacym X () jest preorder w pseudodrzewie zakorzenionym w r00t.

10.8 Zastosowanie postorder do problemu najkroétszej Sciezki

Zalozmy, ze skierowany graf acykliczny G ma jedno Zrédto s (od stowa "source”) i ujscie t (od stowa “terminal”),
oraz krawedzie grafu maja wagi liczbowe.
Naszym problemem jest znalezienie najkrotszej sciezki s —* ¢.

Niech 7 bedzie porzadkiem postorder drzewa DFS dla grafu G w ktérym s jest ostatnim weztem a ¢ pierwszym.
Niech dist(t) = 0. Nastepnie dla weztow v # ¢ grafu G w porzadku malejacych wartosci m wykonujemy:

dist(v) = min { waga(v,w) + dist(w) : (v,w) € E}

Pokazemy teraz zastosowanie do (pozornie niezwiazanego) problemu liczenia najkrotszego bitonicznego cy-
klu Hamiltona w grafie skierowanym G, niekoniecznie acyklicznym. Dla uproszczenia zatdézmy, ze jakis cykl
Hamiltona w grafie G istnieje (chociaz nasz algorytm przy okazji to sprawdzi).

Definicja. Cykl Hamiltona jest bitoniczny jesli startujac od wezta o numerze 1 najpierw numery wezldéw
rosna (do numeru n) a potem maleja do 1. Z punktu widzenia wezlta 1 cykl ten sktada ise z dwoch roztacznych
rosnacych sciezek od 1 do n Nasz algorytm bedzie polegal na tym, ze bedziemy sie posuwaé¢ naraz na tych
sciezkach w kierunku n, koncentrujac sie na tzw. konfiguracjach specjalnych. Zaczniemy w wezle 1 i bedziemy
inkrematalnie budowaé¢ te sciezki. Oznaczmy przez j konfiguracje specjalna, ktora odpowiada sytuacji gdy
jedna ze $ciezek konczy sie na wezle j, druga na j — 1 oraz zawieraja (do tego momentu) wszystkie wezty od
1 do j. Istotne jest to, ze porzadek Sciezek jest pomijany, tzn. nie jestotne ktéra jest pierwsza a ktéra duga.

W nastepnym kroku na jednej ze sciezek idziemy diugg krawedzig i dochodzimy do j'. Wtedy na druguej
$ciezce musimy za pomocy krotkich krawedzi dojs¢ do 7 — 1.

Utworzymy graf acykliczny G’ stadajacy sie z przej$¢ miedzy konfiguracjami specjalnymi. Koszt krawedzi
to koszt dtugiej krawedzi w G plus sumaryczny koszt krotkich krawedzi, co mozemy wstepnie policzyé dla
kazdej dtugiej krawedzi. Pozostawimay szczegoly konstrukeji grafu G’ czytelnikowi.

Graf G’ ma tego samego rzedu liczbe weztow i krawedzi co graf G. Wazna jego wlasnoscia jest acyklicznos$c.

Teraz stosujemy algorytm dla graféw acyklicznych i liczymy minimalny koszt $ciezki z konfiguracji poczat-
kowej do koncowej. Sytuacja poczatkowa odpowiada gdy obie Sciezki koncza sie (i zaczynaja) w 1, nie jest ona
specjalna ale nastepna po niej juz jest.

Tak wiec otrzymujemy algorytm o ztozonosci liniowej liczacy minimalny bitoniczny cykl Hamiltona w
dowolnym grafie. !

1Przydalby sie przyklad graficzny ilustrujacy algorytm i graf G’.
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Opisany algorytm jest przedstawiony bardzo przystepnie w artykule J. Radoszewskiego w czasoposmie Delta
(Pazdziernik 2012).

10.9 Zastosowanie DFS do iteracji funkcji

Niech f : [n] — [n]. Chcemy policzy¢ w czasie liniowym f™ dla zadanego m. Algorytm w czasie O(nlogm)
jest oczywisty. Zaldézmy dalej, ze naszej funkcji odpowiada jedno pseudo-drzewo. Sktada sie ono z cyklu
(v[0], v[1] ..., v[k — 1]) oraz podwieszonych drzew. Niech 7' bedzie drzewem podwieszonym w root = vy.
Najpierw liczymy odlegltosé D[v] od kazdego wierzchotka v do root, jednoczesnie pamietajac w tablicy POM
Sciezke do v.

1 Dfroot] := 0;

2 POM|[0] := root;

3 foreach v # root in preorder do
1 | Dlv] = DIf(v)] +1:

5 POM|[D[v]] := v;

6 if D[v] > m then

7 ‘ f™(v) := POM[D[v] — m];
8 else

9 ‘ f™(v) :==v[(m — D[v]) mod k;
10 end
11 end

10.10 Obchodzenie drzewa 3-skokami

3-Sciezka (3-cykl) jest to taka permutacja weztow, ze kazdy nastepny wezet jest odlegly od poprzeniego co naj-
wyzej o 3 krawedzie.

Konstrukcja 3-cyklu Hamiltona w drzewie. Wezel jest parzysty jesli jego odleglosé (liczba krawe-
dzi) od korzenia jest parzysta. Listujemy FulerTour, jesli wezel parzysty, to usuwamy jego wersje druga
(postorder), w przeciwnym razie pierwsza (preorder). Rozwazmy drzewo z rysunku 13. Wezly na parzystych
odlegtosciach od korzenia to 9, 1, 4, 2, 7, 8. Mamy:

EulerTour =9,5,1,1,4,4,5,3,2,6,6,2,7,7,8,8,3,9.

Dla wezléw parzystych wyrzucamy druga kopie, dla nieparzystych pierwsza kopie. Zatem otrzymany 3-cykl
Hamiltona to:
9,1,4,5,2,6,7,8,3

Trzeba jeszcze usunaé oznaczenia kopii wezla, tzn. kazde v’ przepisujemy jako v. Dostajemy ostatecznie:

9,1,4,5,2,6,7,8, 3.

Inna konstrukcja 3-cyklu Hamiltona. Kostruujemy cykl majacy dodatkows wlasno$é: odlegto$é miedzy
korzeniem i jednym (lub dwoma) sasiednimi weztami na cyklu wynosi doktadnie 1. Krawedz realizujaca te od-
legtos$é nazwijmy specjalng. Wtedy rekurencyjnie konstruujemy cykle dla poddrzew zawieszonych w synach
danego wezta v. Potem odpowiednio podtaczmy cykle nawzajem do siebie uzywajac jedynie v i krawedzi
specjalnych, tak aby nowy cykl dla poddrzew z korzeniem w v mial dodatkowa wlasnosé.

10.11 Obchodzenie drzewa 2-skokami

Przypusémy ze chcemy przejs¢ od wierzchotka w do v, gdzie u # v 2-skokami realizujac pewna Sciezke Hamil-
tona. Algorytm jest bardzo prosty w dziataniu, ale nietrywialny “dlaczego dziala". Nie zawsze taka Sciezka
istnieje.



10 DFS I BFS 33

Algorytm.
Zaczynamy w u i za kazdym razem idziemy do jeszcze nie odwiedzonego wezta jak najbardziej odlegltego od v.
W przypadku remisu preferujemy lis¢ drzewa.

10.12 BFS

Podobny algorytm, w ktérym najpierw staramy sie odwiedzié¢ wszystkich synéw danego wierzchotka nazywa sie
szukaniem wszerz (BFS). Tutaj rowniez otrzymujemy drzewo zwane drzewem BFS, sktadajace sie z krawedzi
pierwszego dojscia do weztow.

10.13 Odlegtosci od ustalonego wierzchotka w grafie nieskierowanym

Pierwszym naturalnym zastosowaniem jest liczenie odlegtosci Dlv, -] najkrotszych Sciezek w grafie nieskiero-
wanym od wierzchotka v do kazdego innego. Majac drzewo BFS startujace w v odlegtos¢ od v jest numerem
kolejnej warstwy, w ktorej jest dany element.

10.14 Obliczanie Srednicy w grafie nieskierowanym

Dla dowolnego wezta znajdujemy najbardziej oddalony od niego wezet v, nastepnie najbardziej oddalony od v
wezel w, najkrotsza ciezka miedzy v i w jest (by¢ moze jedna z wielu) $rednica grafu.

10.15 Dla kazdego wierzchotka odlegto$é do najdalszego wierzchotka

W dalszym ciagu graf jest nieskierowanym drzewem. Wystarczy znalezé srednice i dla kazdego wierzchotka
policzy¢ maksimum z odlegtosci do koricéw Srednicy.

10.16 Sumy odleglosci w drzewie

W problemie tym dla kazdego wierzchotka v danego drzewa chcemy policzy¢ wartosé suma(v) réwna sumie
odlegtosci v do wszystkich innych wierzchotkéw. Mozna to tatwo policzyé w czasie liniowym przechodzac
drzewo DF'S najpierw po poziomach od dotu do géry a potem w przeciwnym kierunku.

10.17 Rozcyklanie grafu

Chcemy obliczy¢ minimalna moc zbioru X C E krawedzi grafu nieskierowanego G = (V, E) tak aby nie byto
cykli po susnieciu X. Zalézmy, ze graf jest spojny. Znajdujemy drzewo DFS (lub BFS), pozostale krawedzie
tworza zbiér X. Wynikiem jest moc tego zbioru.

Jest to bardzo proste. Nazwijmy ten algorytm Algorytmem A.

Sytuacja robi sie bardziej skomplikwana gdy wyréznimy pewien zbior wierzchotkéw N, nazwijmy je czerwo-
nymi. oraz gdy zaazdamy jedynie zeby nie byto cyklu przechodzacego przez wierzchotek czerwony. Krawedz
ktoérej co najmniej jeden z koricow jest czerwony nazwijmy czerwona.

Mzna udwodnié, ze najmniej liczny zbiér X krawedzi, ktérego usuniecie rozcykla graf w sensie czerwonym
zawiera tylko czerwone krawedzi.

Algorytm teraz polega na tym, ze konce nieczerwonych krawedzi sklejamy d tej pory az pozostana tylko
czerwone. Otrzymamy mniejszy graf G’. Teraz stosujemy algorytm A do grafu G’. Wynikiem jest minimlana
moc zbioru X dla grafu G'.

Sprawdzanie sekwencji stopni wezléw

Ciag niemalejacy (dy,ds, . ..d,) liczb naturalnych dodatnich jest sekwencja grafowa gdy istnieje graf majacy
taki ciag stopni wezlow (po posortowaniu).

Fakt. Zalozmy, ze ), d; jest liczba parzysta. Wtedy ciag (di,ds, ... d,) jest grafowy wtedy i tylko wtedy gdy
ciag (di,do, ..dp— — 1, dp—+1 — 1, ...dp—1 — 1) po posortowaniu jest grafowy.
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Daje to rekonstrukcje grafu (jedengo z wielu) z ciagu grafowego w czasie linowym ze wzgledu na rozmiar grafu.
Istnieje inne kryterium sprawdzania, czy ciag jest grafowy,

Fakt. [Erd"s-Gallai]
Zalozmy, ze . d; jest liczba parzysta oraz ciag stopni jest posortowany nierosnaco. Wtedy ciag (di, ds, . . . dy)
jest grafowy wtedy i tylko wtedy gdy

n

k
VE Y < k(k—1)+ Y min(d; k).

i=1 i=k+1

Kryterium to daje tatwo algorytm liniowy sprawdzania czy cigg jest grafowy.
Uzasadnienie. Wezmy k minimalne takie, ze dy > diy1 lub kK = n—1. Zmniejszamy di, d,,. Nowy ciag spetnia
warunki, indukeyjnie istnieje graf. Potem przetaczamy odpowiednio krawedzie dodajac po jednej krawedzi do
kin.
Kilka probleméw zwigzanych ze stpniami wezlow.

e Dla jakich n istnieje ciag grafowy w ktérym wszystkie elementy sa parami rozne.

e Kazdy graf o parzystej liczbie weztéw ma dwa wezlty o parzystej liczbie wszystkich wsplnyc sasiadow.

o Jesli graf jest spojny oraz liczba wspoélnych sgsiadow dla kazdej pary réznych weztéw wynosi 0 lub 5 to

graf jest k-regularny dla pewnego k.

10.18 Dwuspdjnosé grafu nieskierowanego
Operacja dzielenia krawedzi polega na wstawieniu nowego wezta w §rodek tej krawedzi, a operacja dodawania

krawedzi plega na potaczeniu krawedzia weztéw, ktore jeszcze nie sa polaczne krawedzig.

Fakt. Kazdy graf dwuspdjny majacy n > 2 weztéw mozna otrzymac z trojkata stosujac operacje dzielenia i
tworzenia krawedzi.

Uzasadnienie. Zaczynamy od jakiegokolwiek cyklu prostego. Potem znajdujemy nieutworzony wezet v do
ktorego jest krawedz z wezla juz utworzonego u. Usuwamy u, znajdujemy Sciezke z v do jakiegos wezta v’ juz
utworzonego, pozostale wezly tej Sciezki jeszcze nieutworzone. Dolaczamy do grafu $ciezke (ucho) od u do v
a nastepnie do v'. Jak otrzymamy juz wszystkie wezly to dotaczamy pojedyncze orginalne krawedzie.

Fakt. Graf jest 2-spéjny wtw kazde dwa rézne wezty lezg na pewnym cyklu prostym.

Kilka probleméw zwiazanych.
e Stopieni spojnosci grafu Hy (hypercube k-wymiarowy) wynosi k.

e Kazdy graf 14-wierzchotkowy spdjny i bez cykli o dtugosci co najwyzej 5 jest izomorficzny z grafem
Heawooda. Wezty to 0..13. Wezly o numerach parzystych ¢ taczymy z ¢ + 5 modulo 14.

11 Algorytmiczne tajemnice hiperkostki

11.1 Sciezka na hiperkostce

Niech nasz graf G = (V, E) bedzie hiperkostka n-wymiarowa z usunietym k-elementowym zbiorem N wierz-
chotkéw. Chcemy sprwdzié, czy istnieje Sciezka z x y, gdzie x,y ¢ N.

Niech K = n-k+1 oraz niech Ogr DF'S(z,y, K ) bedzie (ograniczonym) DFS, ktore sprawdza czy y jest osiagalne
z x. Ograniczony DFS dziata tak jak DFS, z tg réznica, ze jesli odwiedzimy juz K weztéw to zatrzymujemy sie
i zwracamy TRUE. Inaczej mowiac: jesli przejrzymy mniej niz K weztdéw startujac z x i DFS sie zakoriczy bez
znalezienia y (nie ma wiecej wezlow do odwiedzenia) to OgrDFS zwraca FALSE, natomiast jesli znajdziemy y
lub odwiedzimy juz K weztéow to OgrDFS sie zatrzymuje i zwraca TRUE.
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ALGORYTM
k:i=n k + 1;
z1:= 0grDFS(x,y,K); z2:=0grDFS(y,x,K)
return (z1 and z2)

Dlaczego to dziala. Poprawnos$é¢ wynika z pewnej ciekawej i dosyc prostej wlasnosci grafu hiperkostki @,
ktora nazwiemy wlasnoscia podziatowa:

| {(a,b) € Qn : a€ S,beV —S}|>min(|S], |V —95]).

Przypusémy teraz ze OgrDFS(z,y, K) oraz OgrDFS(y, x, K) nie wykryly Sciezki od x do y ale kazde z nich
odwiedzito co najmniej K weztow. Wrystarczy udowodnié, ze w tej sytuacji x i y sg w tej samej spdjnej
sktadowej w @, — N.

Dowo6d przez zaprzeczenie. Zatézmy, ze x, y sa w roéznych sktadowych grafu @, — N. Bez straty
ogolnosci niech S bedzie mniejsza z tych dwoch skltadowych (by¢ moze jest wiecej sktadowych). Rozwazmy
podzial (S, V —S) kostki @,. Zgodnie z wlasnoscig podziatowa z S wychodzi na zewngtrz co najmniej n-k+ 1
krawedzi. Do zbioru N moze wejsc co najwyzej n-k krawedzi, tak wiec jest jakas krawedz miedzy SV —(SUN),
przeczy to temu ze S jest sktadowa spojna @, — N, gdyz z definicji sktadowa jest maksymalng czescia spojna.

Udowodnimy teraz wlasnos$é¢ podziatowa. Zamierimy nasze krawedzie na krawedzie skierowane (kazda nieskie-
rowang zamieniamy na dwie skierowane). Sciezki stang sie skierowane. Dla kazdych dwoch weztow u, v przez
Sciezke standardowsg z u do v rozumiemy taksa, ktora jest najkrotszej dtugosci i odpowiada zmienianiu kolejnych
niezgodnych bitéw od lewej do prawej tak aby zamieni¢ « na y. Na przyktad dla x = 0101, y = 0010 $ciezka
standardowa odpowiada zmienianiu kolejno bitow 2-gi, 3-ci, 4-ty.

0101 — 0001 — 0011 — 0010

Zachodzi nastepujacy fakt (wlasnosé sciezek standardowych):

Przez zadang skierowana krawedz przechodzi dokladnie 27! §ciezek standardowych.

Dowéd tej wlasnosci: Rozwazmy krawedz na standardowej sciezce od u do v. Jesli krawedz dotyczy zmiany
na ¢-tym bicie, to ostatnie n — ¢ bitdéw u, oraz pierwsze i — 1 bitéw wezla-napisu v sa zdeterminowane przez
te krawedz. Poza tym krawedZ determinuje i-ty bit wezléw u,v. Zatem pozostaje n — 1 mozliwosci na wybor
niezdeterminowanych bitéw weztéw u, v, co daje 2"~ mozliwosci.

Dowoéd wlasnosci podziatowej. Zatozmy, ze |S| < |V — S|. Niech m = |S|. Mamy m - (2" — m), Sciezek
standardowych z weztow S do weztéw V — S. Kazda z nich przechodzi przez doktadnie jedng krawedz miedzy
S iV — 8. Przez jedna taka krawedz przechodzi co najwyzej 27! éciezek. Mamy m < 277!, Zatem liczba
krawedzi miedzy S i V — S jest co najmniej

m- (2" —m)/2" > m. 2o = = | S|

Koniec dowodu.

11.2 Przesuwanie zetonéw na hiperkostce

In this problem we have token in vertices of the hypercube. We can take 2 tokens from one vertex and put one
token on its neighbor. The goal is to put a token on a specified vertex. No moves are required if this specified
vertex already has at least one token.

Define the operation moves(u, v, W) which moves W from the vertex u to v, removing 2W tokens from u and
more massive operation MOV E(A, B,W), which for two disjoint subsets of the same size of the hypercube
removes 2W tokens from A and places W tokens in vertices of B.

For a subset A define odd(A) the number of vertices containing odd number of tokens and by tokens(A)
the total number of tokens in A.

Obserwacja 3.
The operation MOV E(A, B,W) is possible if there is a perfect matching between A and B in the hypercube
and tokens(A) > 2W + odd(A).
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We describe 2 functions, the first of them is placing (after some number of moves) a token on a vertex v, the
second one places two tokens. Let X be a subhypercube and Split(X,v) be the partition of X into 2 disjoint
subhypercubes, v belongs to the first one.

function PlaceSingleToken(X,v)
k:=dim(X); // Assume tokens(X) > 2F
if K =1 or v already has a token then trivial solution and return;
(A, B) := Split(X);
v’ := neighbor of v in B;
if tokens(A) > 2¥~! then PlaceSingleToken(A,v)
else if odd(B) > tokens(A) then
PlaceTwoTokens(B,v’); move(v’,v,1)
else

MOV E(B, A,2"1 —tokens(A)); PlaceSingleToken(A,v);

function PlaceTwoTokens(X,v)

k:=dim(X); // Assume tokens(X) > 281 — odd(X)

if K =1 or v already has a token then trivial solution and return;

(A, B) := Split(X);

v’ := neighbor of v in B;

if tokens(A) > 2% — odd(A) then PlaceTwoTokens(A,v)

else
if tokens(A) < 2F=1 then MOV E(B, A, 281 — tokens(A))
PlaceSingleToken(A,v); PlaceTwoTokens(B,v’); move(v’,v,1)

The proof of the following theorem is by induction on the dimension of the hypercube together with Observa-
tion 3.

Twierdzenie
(a) If tokens(Q,) > 2™ then we can place a token on any specified vertex v.
(b) If tokens(Qn) > 2" — 0dd(Q,) then we can place 2 tokens on any specified vertex.

11.3 Dopelnianie skojarzenia do cyklu Hamiltona na hiperkostce

Rozwazamy nastepujacy problem.

Wejscie: skojarzenie pelne X hiperkostki Cube,,;
Wyjscie: cykl C' Hamiltona hiperkostki Cube,, taki, ze X C C.

Niech K(n) bedzie grafem petnym o tym samym zbiorze weztéw co Cube,, kazde dwa rozne wezty sa potaczone
krawedzia.
Wzmocnijmy nasz problem nastepujaco.

Wejscie: pelne skojarzenie X grafu K(n);

Wyjscie: cykl C Hamiltona grafu IC(n) taki, ze C' — X jest pelnym

skojarzeniem grafu Cube,,.

Inaczej méwigc majac pelne skojarzenie w grafie pelnym chcemy je dopelnié krawedziami z hiperkostki do cyklu
Hamiltona. Dla innych graféw moze to by¢ niewykonalne. Znacznie wzmocniliSmy nasz problem, dopuszczajac
na wejéciu dowolny zbiér rozlagcznych par wierzchotkéw.

Jesli C jest cyklem Hamiltona oraz Z jest podzbiorem krawedzi cyklu i jednoczesnie skojarzeniem (nieko-
niecznie pelnym) to przez SEKW (C, Z) oznaczmy liste [(z1,v1), (x2,Y2) - .., Tk, Yr)| krawedzi skojarzenia Z
w kolejnosci i skierowaniu tak jak na cyklu (w czasie tej operacji chwilowo zamieniamy nieskierowany cykl na
skierowany).

Przyktad. Jesli C = (1,2,4,3,6,5,1), Z = {(5,6), (2,4)}) to
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SEKW(C,Z) = [(2,4), (6,5)]
Glownym trikiem jest sprytne dotozenie pomocniczych krawedzi w pohiperkostkach (zbiory My, Ms), policzenie
rekurencyjnie cykli w pod-hiperkostkach, nastepnie usuniecie pomocniczych krawedzi i dotozenie krawedzi ze
zbioru Z C X laczacych pod-hiperkostki.

Algorytm Oblicz-Cykl(X, H); (H jest hiperkostka n-wymiarowa,)
Jesli n = 2 to oblicz wynik naiwnie i zatrzymaj sie;

podziel hiperkostke H na dwie hiperkostki Hy, Hy (o wymiarach n — 1)
miedzy ktoérymi jest jakakolwiek krawedz ze zbioru X;

X1 =XNHy;; Xo:=XNHy Z =X — X — Xo;
(Z jest tacznikiem miedzy Hy i Ha);

D := gbiér wierzchotkéw w Hy bedacych koricami krawedzi z Z;

M; := dowolne pelne skojarzenie podgrafu K(n) ograniczonego
do zbioru D (X7 U M jest pelnym skojarzeniem w Hi);

Rekursja: Cj := Oblicz-Cykl(X; U My, Hy);

(z1,91), (x2,92) ..., 2k, y)] := SEKW(Cy, My);

niech z},y; € Hy beda partnerami x;, odpowiednio y;, w taczniku Z;
My = {(y1,25), (y3,25), (U3, 2), - (yp 21) 15

Rekursja: 5 := Oblicz-Cykl(Xy U My, Hj);

return cykl Hamiltona (C; — Mp) U (Cy — Ma) U Z.

Rysunek 15: Podzial hiperkostki H,, na dwie hiperkostki H;, Ho o mniejszym wymiarze. Interpretacja
graficzna czesciowych sztucznie dodanych skojarzen My, My oraz tacznika Z: podzbioru X krawedzi pomiedzy
Hy, Hs. Zauwazmy ze liczba tych krawedzi jest dodatnia liczbg parzysta. Algorytm znajduje rekurencyjnie
dwa cykle w grafach Hy, Hy. Koricowy cykl powstaje przez usuniecie sztucznie dodanych krawedzi oraz dodanie
krawedzi z tacznika.

Algorytm ma charakter rekurencyjny i korzysta z prostych rekurencyjnych wtasnosci hiperkostki n-wymiarowej,
glownie z tatwego podziatu kostki na dwie o mniejszym wymiarze. Ztozonosé czasowa algorytmu jest O(nlogn),
co wynika z rekurencji

T(n) = 2-T(n/2) 4+ O(n).

Z rekurencja tego typu mozna sie spotka¢ w klasycznym problemie sortowania przez scalanie (ang. mergesort).
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Poprawnos¢ algorytmu jest dosy¢ oczywista (wystarczy sobie rozrysowaé schematycznie cykle generowane przez
algorytm w pod-hiperkostkach.)

12 Uspdjnianie grafu skierowanego

Na wejsciu mamy graf skierowany G = (V, E). Chcemy w czasie liniowym dodaé¢ minimalna liczbe krawedzi
skierowanych tak, aby G byt silnie spéjny. W rozwiazaniu zredukujemy problem kolejno do grafu acyklicznego,
potem do dwudzielnego, a potem do gwiazdy. Skierowany graf dwudzielny to taki, w ktérym V jest suma
roztaczna V = AUB, oraz E C Ax B. Gwiazda to graf, w ktérym jest jeden wierzchotek nalezgcy do wszystkich
krawedzi, natomiast pozostate korice krawedzi sg parami rézne. Zaczniemy opis algorytmu od konca:

1. Jesli graf jest pojedyncza gwiazda to rozwiagzanie jest proste. Niech vy bedzie §rodkiem gwiazdy. Wtedy
E = E1 U Ey, gdzie E1 C {vg} x (V —A{wvo}), E2 C(V —{vo}) x {wo})

(E7 1 E5 to zbiory krawedzi wychodzacych i wchodzacych do vy).

Bez straty ogolnosci przyjmijmy, ze |E1| < |F2|. Wtedy kazdej krawedzi z (vo, a) € E; przyporzad-
kowujemy krawedz (b, vg) € E2 (zawsze inna) i dodajemy krawedz (a, b), tworzac w ten sposob cykl
vg = a — b — vg. Dla krawedzi, ktérych nie pogrupowaliémy w pary dodajemy krawedzie odwrotne,
tworzac cykle dtugosci 2. W ten sposob robimy z gwiazdy graf silnie sp6jny za pomoca minimalnej liczby
dodatkowych krawedzi.

v ~ A v ) a7
( s | ,7 - ( 1)8 ) 7 ) (U8 ) ,7 -
(vg ( v6 ] _Lve
( 'Ug \ / ( ’U9 \ i\UQ/i‘ '/ //
_ ‘ ‘7 \/ S 2 o
‘ UO ‘—{ U5 ‘ |\ ‘ UO ‘—{ U5 ‘ I\ /UO f‘/‘—{\ /U5/:‘
( 121 w (U1 :w ! (V1) !
J / 4 /
- (vs) - (v4)
( ’1)2 ) U ‘vzl ,U’ \ o w\’Ug\w U\ o
‘ 3 ) el y‘\f’{;‘ Ry 73 )

2. Rozpatrujemy teraz grafy dwudzielne. Dla uproszczenia zalézmy w tej czesci, ze graf nie ma odizolowa-
nych wezlow, tzn. takich, Ze nie sa poczatkiem ani koricem zadnej krawedzi. W trakcie algorytmu be-
dziemy utrzymywaé pewien roboczy zbiér wybranych krawedzi, krawedzie wolne to takie, ktoére nie maja
wspolnego wezta z zadna z wybranych krawedzi.

Tworzymy duzy cykl C' w sposdb zachtanny: dopoki istnieje jakakolwiek krawedZ wolna, to dodajemy
dowolna z nich do zbioru roboczego. W ten sposéb otrzymujemy zbior {(u1, v1), (uz, v2) ..., (ug, vg)}.
Teraz dodajemy k nowych krawedzi (vi, ua), (v2, us), ..., (vg, u1) tworzac cykl C. Nastepnie $ciagamy
C do jednego wezla vg i otrzymujemy gwiazde.
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3. Jesli G jest dowolnym grafem to znajdujemy silnie spdjne sktadowe i kazda z nich $ciggamy do poje-
dynczego wezla, otrzymujac graf acykliczny (rys. 14). Niech A bedzie zbiorem weztow, do ktorych nie
wchodzi zadna krawedz. Analogicznie niech B oznacza zbior wezldéw, z ktérych nie wychodzi zadna
krawedz. Tworzymy nowy graf dwudzielny G’ = (AU B, E'), gdzie (u, v) € E’ gdy istnieje $ciezka
skierowana od u do v w grafie acyklicznym.

Fakt. Problem minimalnego uspoéjnienia grafu skierowanego mozna rozwiaza¢ w czasie liniowym. Wynika
to z rozwiazywalnosci problemu podziatu grafu na silnie spojne sktadowe w czasie liniowym (rozdziat 77?).

Problem ten razem z rozwiazaniem zostal tez przystepnie (cho¢ troche inaczej) opisany w artykule J.Radoszewskieg
w numerze 09/2012 czasopisma Delta.

Minimalne drzewo skierowane.

Zalozmy, ze mamy nieujemne wagi (koszty) waga(i, j) potencjalnych skierowanych krawedzi ¢ — j drzewa i
chcemy skonstruowac drzewo ukorzenione o najmniejszej sumarycznej wadze. Zbiorem wierzcholéw drzewa
jest V.={1,2,..n}, oraz r € V jest ustalonym korzeniem. Formalne piszac, chcemy zminimalizowaé wartos¢

MIN (v) = Z waga(i, Parent(i)),
i#£r

gdzie Parent to poprzednik (ojciec) wierzchotka.
Zaczynamy of prostego podejscia zachtannego:
dla kazdego i € V, i # r wybieramy najlzejsza krawedz wychodzaca z 1.

Jesli nie wygenerowalismy cyklu to orzymaliSmy minimalne drzewo skierowane.

Co si¢ dzieje gdy wygenerowalismy cykl (Parent generuje cykl, dla pewnego elementu Parent®(i) =i,k > 0),
ktorego zbiorem elementow jest zbior C' C V — {r} ? Pozornie wydaje sie, ze nasze zachtanne podejscie nie
ma sensu. Zauwazmy jednak (dowodd w éwiczeniach), ze zbior C' ma bardzo pozyteczna wlasnosé:

(*) Istnieje optymalne drzewo w ktorym z C' wychodzi tylko jedna krawedz.



13 GENERACJA CIAGOW LYNDONA I CIAGOW DE BRULINA 40

Mozemy zatem potraktowac zbior C' jako jeden superwierzchotek. Definiujemy:
MinOut (i) := min {waga(i,j) : j€ V}.

Teraz mozemy napisaé co robimy gdy jest cykl C.
Uruchamiamy funkcje CONT RACT ktora zamienia cykl na superwierzchotek. Funkcja ta dziata nastepu-

jaco:

funkcja CONTRACT(C):
v* := nowy element; V =V — CU{v*};
for each k € V, k # v* do
waga(k,v*) := min {waga(k,j) : j € C};
waga(v*, k) := min {waga(i, k) — MinOut(i) : i € C}

Krawedzie cyklu C' beda uzyte w optymalnym drzewie poza dokladnie jedna krawedzia. Jesli ta krawedzig
jest i — k to wymieniajac krawedz wychodzaca z i do elementu w cyklu (o wadze MinOut(i)) na krawedz
i — zwiekszamy caltkowity koszt o wartosé waga(i, k) — MinOut(i). Stad sie bierze operacja definiujaca wagi
krawedzi wychodzacych z superwierzchotka v*.

Zdefiniujmy jeszcze waga(C') jako sume wag krawedzi skierowanych w cyklu C. Caly algorytm ma charakter
rekurencyjny:

Funkcja Min-Greedy(V)
for each i # r do
Parent(i) := j, gdzie waga(i, j) = MinOut(i);
if funkcja Parent nie generuje cyklu then
return )., waga(i, Parent(i))

else
C := jakis cykl generowany przez Parent;
CONTRACT(C);

return waga(C) + Min-Greedy (V')

Zauwazmy, ze policzylismy tylko minimalny koszt, tablice Parent mozna wyluska¢ z algorytmu, wymaga to
nieznacznej komplikacji. W tej wersji funkcja Parent jest liczona lokalnie w kazdej instancji i nie jest poprawna
globalnie.

13 Generacja ciaggéw Lyndona i ciagéw de Bruijna

Uwaga: dla uproszczenia rozwazamy tylko teksty binarne.

Stowem (ciagiem) de Bruijna rzedu n jest ciag binarny o dtugosci 2", w ktorym (traktowanym jako ciag
cykliczny) kazdy ciag binarny dlugosci n wystepuje dokladnie raz.

Stowa Lyndona sa zwartymi reprezentacjami liniowymi stéw cyklicznych. Dla stowa x niech y bedzie
minimalnym cyklicznym przesunieciem . Wtedy pierwiastek pierwotny z stowa y jest stowem Lyndona. Stowo
jest ciagiem Lyndona wtedy i tylko wtedy, gdy moze powsta¢ w ten sposéb. Przypomnienie: pierwiastek
pierwotny y to najkrotszy prefiks z stowa y taki, ze y jest naturalna potega z.

Definicja ré6wnowazna Stowo jest Lyndona jesli jest leksykograficznie najmniejsze ze swoich przesunieé
cyklicznych (rownowaznie, najmniejsze ze swoich sufiksow).

Dla danego n przez ext(x, n) oznaczmy rozszerzenie okresowe stowa x do dtugosci n, oraz przez Last Zero(x)
oznaczamy najdtuzszy prefiks stowa x koriczacy sie zerem. Na przyktad:

ext(00111, 13) = 00111 00111 001, LastZero(0010111) = 0010.
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Nastepujacy algorytm generuje wszytkie stowa Lyndona o dlugosci co najwyzej n:

Algorytm 14: Fredricksen-Maiorana

1 xz:=7"0"
2 Wypisz stowo Lyndona z;
3 while z # ’1”’ do

4 x = LastZero(ext(z, n));

5 Zamien ostatni symbol x na jedynke;
6 Wypisz stowo Lyndona x;

7 end

Niech Lo < L1 < Ly < ... < Ls bedzie leksykograficznie posortowana sekwencja wszystkich binarnych stow
Lyndona o dtugosci bedacej dzielnikiem n. Niech £, oznacza konkatenacje

Ly, = Lo-Ly-Ly-Lg-...-Lg

Przyklad Dla n =4 algorytm FM wygeneruje:
0 0001 001 0011 01 o011 O0111 1
Ly,=0 0001 0011 01 oO111 1

Powiemy, ze Ly jest ,male” gdy |Li| < n, w przeciwnym przypadku jest ,duze”. Z poprawnosci algorytmu FM
(Fredricksena-Maiorany) wynikaja wtasnosci:

1. Lo=0, Ly =011, L,_; =01, Ly =1;
2. jesli Ly = Ba oraz « zawiera zero, to 3 jest prefiksem Lj;
3. Jesli Ly jest matei k > 0 to

o L 1 jest duze;
e Lj_; koriczy sie co najmniej n — |L| jedynkami;

e L;_ 1 jest bezposrednio wygenerowane przed L; w algorytmie FM.

Twierdzenie 6 (Fredricksen-Maiorana). Przypadek szczegolny — rozgrzewka: jesli n jest liczbg pierwsza, to
L, zawiera (cyklicznie) kazde binarne stowo x dlugosci n.

Dowdd. Przeprowadzmy dowod rozpatrujac kilka przypadkow.
Przypadek 1. Niech z € 1*0*. Wtedy z jest podstowem L,_;LsLoLy = 01"0"1. Zalézmy zatem (do kornca

dowodu), ze nie zachodzi przypadek 1. Stowo z jest cyklicznie rownowazne pewnemu stowu L, (réwnemu
minimalnemu cyklicznemu przesunieciu z). Wtedy dla pewnych «, (3

r=af, L,=p«a
Ustalmy do korica dowodu « i 5.

Przypadek 2. « zawiera zero. Wtedy S jest prefiksem L,;;, zatem z jest podstowem L,L,;1, ktérego
prefiksem jest Saf.

Przypadek 3. « € 1", Zalézmy, ze nie zachodzi przypadek 2. Wtedy 3 ¢ 0T. Istnieje zatem taki indeks k&,
ze 3 jest prefiksem Ly, ale 8 nie jest prefiksem Li_1. Niech v bedzie prefiksem Lj_1 o dlugosci 5. Zapiszmy
Li_1 =~6. Udowodnimy:

Fakt. § € 17. Dowod nie wprost. Przypusémy, ze J zawiera 0, wtedy zgodnie z algorytmem Fredricksena-
Maiorany nastepne leksykograficznie stowo Lyndona ma prefiks . Wiemy, ze # # «. Natomiast nastepnym
stowem z definicji jest Lg, ktore ma prefiks 5 # v, o tej samej dhugosci co . Sprzecznosc.

7 powyzszego faktu wynika, ze § = «, poniewaz sa to stowa tej samej dtugosci sktadajace sie z samych jedynek.
Zatem x jest podstowem Ly 1L jako 03, w konsekwencji x jest podstowem catego stowa L,,. O



13 GENERACJA CIAGOW LYNDONA I CIAGOW DE BRULINA 42

Twierdzenie 7 (Fredricksen-Maiorana). Przypadek ogdlny, dowolne n. L, zawiera (jako stowo cykliczne)
kazde binarne stowo x diugosci n.

Dowdd. Ponownie rozpatrujemy przypadki.

Przypadek 1: z € 1*0*. Dowod bez zmian (w stosunku do dowodu przypadku szczegolnego). Zalozmy,
zatem (do konca dowodu), ze nie zachodzi przypadek 1. W przypadkach 2-4 zakladamy, ze slowo z
jest pierwotne. Zaktadamy réwniez, ze x nie jest rowne zadnemu L,. Wtedy z jest cyklicznie réwnowazne
pewnemu stowu L, (rownemu minimalnemu cyklicznemu przesunieciu ). Wtedy dla pewnych niepustych «,

r=af, L =Pa

Niech L bedzie leksykograficznie pierwszym duzym stowem o prefiksie 3.
Przypadek 2: o ¢ 1*. Dow6d bez zmian.
Przypadek 3: o € 1", Ly_; jest duze. Dowdd bez zmian.

Przypadek 4: « € 17, L;_1 jest male.

Rozwazamy podprzypadki A-C:

(A) |B] < |Lg—1|- Wtedy Lj_s jest duzym stowem o prefiksie S co przeczy temu, ze Ly jest najwczesniejsze.
Zatem przypadek niemozliwy.

(B) Lg_1 koriczy sie co najmniej |a] jedynkami i o = x jest podstowem Ljy_1 L.

(C) Li_1 koriczy sie mniej niz |a| jedynkami. Z definicji operacji okresowego rozszerzania wynika, ze Lj_1
jest okresem (3. Jednoczesnie Ly_o (duze stowo) koriczy sie co najmniej n— |Lx_1| > |a| jedynkami (gdyz
|B] = |Li—1| oraz |a| = n — |B|). Zatem af = x jest podstowem Lj_oLj_1 L.

Przypadek 5: Slowo x nie jest pierwotne. Wtedy dla pewnych & > 1 oraz r, a, 8 mamy z = (af)¥,
L, = Ba. Jesli a ¢ 11, to poniewaz slowo L, jest male i rozszerzenie okresowe zostaje zaburzone dopiero
w ostatnim « to L, jest duze i ma prefiks (Ba)*~13. Zatem z jest podstowem L, L, 1.

Jesli @« € 17 to L, koniczy sie na a (ma dostatecznie duzo jedynek), a poniewaz (z rozszerzenia okreso-
wego) L,11 ma prefiks (8a)*~! to x jest podstowem L, 1L, L, 1. O

Kilka wzoréw. Niech zapisy Lyn(n), Pierw(n) oznaczaja liczbe binarnych stow Lyndona oraz liczbe stow
pierwotnych (nierozktadalnych) dtugosci n. Niech p bedzie funkcja Mobiusa; spelnia ona wzor rekurencyjny:

S ) = [ =1].
dln
Niech ¢ bedzie funkcja Eulera (ile jest liczb mniejszych od n wzglednie pierwszych z n). Przyjmujemy ¢(1) = 1.
Uzytecznym narzedziem kombinatorycznym jest formuta Mobiusa:
n
Vo f(n) =D g(d) = Y g(n) = > u (%) £(@)
din dn

Mamy tez wzory:

2" =" Pierw(d), n=>Y_¢(d).

dln dln

Z formuty inwersyjnej Mdbiusa i powyzszego wzoru wynikaja wzory:

Pierw(n) = Z,u (g) 29 Lyn(n) = %Z,u (%) 24
dln dln
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Jesli £,, = Lo-Lq-Lo-Ls . .. Lg jest rozktadem na stowa Lyndona o dlugosci dzielacej n to oznaczmy || L, || = s+1.
Inaczej mowiac ||Ly]| jest liczba stow dlugosci n cyklicznie nieréwnowaznych (liczba naszyjnikéw binarnych
z doktadnoscia do obrotu). Korzystajac z poprzednich wzoré6w mozna udowodnié, ze:

Il =50 (%) 2"
dn

Na przyktad:

Lyn(6) =9, Lyn(3) =2, Lyn(2) =1, Lyn(l) =2 (7)
|L6| = Lyn(1) + Lyn(2) + Lyn(3) + Lyn(6) = 14 (8)

1 1
Lo = 6(d)(l)-26+¢>(2)-23+¢>(3)~22+¢>(6)~21) = 6(1‘26“'23”'22”'21) (9)
(10)

Stusznosé tych wzoréw mozna przesledzi¢ na przykltadzie:

Le = 0000001 000011 000101 000111 001 001011 (11)
001101 001111 01 010111 011 011111 1 (12)

14 Grafy de Bruijna

Ciag de Bruijna rzedu n nad alfabetem binarnym (dla uproszczenia) mozna tez wygenerowaé korzystajac z pew-
nej klasy grafow. Zbudujmy graf (tzw. graf de Bruijna rzedu n), ktorego wierzchotki etykietujemy wszystkimi
mozliwymi stowami binarnymi dtugosci n. Krawedzie etykietujemy symbolami z alfabetu i prowadzimy je
wedlug nastepujacej reguty:

o Wez wierzchotek opisany n-znakowsa etykieta ajas . .. ay.
e Poprowadz krawedz etykietowana 0 do wierzchotka as . .. a,0.

e Poprowadz krawedz etykietowana 1 do wierzchotka ay ... ap,l.

Innymi stowy symbol na krawedzi jest dodawany od prawej strony do stowa reprezentowanego przez biezacy
wierzchotek, spychajac jednoczesnie skrajnie lewy znak.
Zatem przejscie pewna sekwencja krawedzi

vlgvzgvg...vk

mozemy utozsami¢ z wygenerowaniem ciggu znakow ajae . .. apcicocs . .. cp_1, gdzie oczywiscie stowo o . .. ay,
stanowi etykiete wierzchotka v.

Takie rozumowanie prowadzi wprost do rozwigzania problemu: w zbudowanym grafie odnajdujemy cykl
Hamiltona, z ktoérego bezposrednio otrzymujemy ciag de Bruijna. Poniewaz przejécie cyklem Hamiltona od-
wiedzi kazdy wierzchotek grafu, wiec wygenerowany w ten sposéb ciag bedzie zawierat jako podstowo kazde
binarne stowo dtugosci n. Co prawda nie interesuje nas zawieranie kazdego podstowa w sensie dostownym, lecz
w sensie cyklicznosci ciagéw de Bruijna, ale oznacza to, ze w wynikowym ciagu wystarczy wycia¢ n pierwszych
albo ostatnich znakéw. Przyktad dla n = 3 mozna zobaczy¢ na rysunku 16.

Niestety problem znajdowania cyklu Hamiltona jest NP-zupelny. Zauwazmy jednak dwie istotne wtasnosci
graféw de Bruijna:

1. Grafy de Bruijna posiadaja cykl Eulera — do kazdego wierzchotka wchodzi tyle samo krawedzi ile wychodzi
z niego.

2. Wezmy graf de Bruijna rzedu n — 1 i skonstruujmy dla niego tzw. graf krawedziowy (szczegdly ponizej).
Otrzymamy w ten sposob graf de Bruijna rzedu n.

Graf krawedziowy dowolnego grafu G, to taki graf G’, w ktorym wierzchotkami sa krawedzie grafu G, natomiast
krawedziami jest relacja sasiedztwa krawedzi w grafie G. Tzn. jesli dwie krawedzie w grafie G maja wspolny
wierzchotek, to odpowiadajace tym krawedziom wierzchotki w grafie G’ polaczone sa krawedzia.

Mozna tatwo pokazaé, ze cykl Eulera w pewnym grafie G ma jednoznaczne przelozenie na cykl Hamiltona
w jego grafie krawedziowym G’. Z tego wynika, ze mozemy odnalezé ciagg de Bruijna uzywajac liniowego
algorytmu znajdujacego cykl Eulera w grafie rzedu mniejszego o jeden. Zatem dla n = 3 operujemy na grafie
de Bruijna rzedu 2. Przyktady kilku kolejnych graféw podajemy ponizej.
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14.1 Zastosowanie ciaggéw de Bruijna do konstrukcji stéow o duzej liczbie podstow.

Niech MaxSub(n) oznacza maksymalna liczbe réznych podstow w stowie binarnym dlugosci n. Zachodzi:

Fakt.

Vicjen MazSub(n) < 27t — 1+ <n ; + >
Dowdd. Mamy co nawyzej 2/ —1 podstéw binarnych dtugoéci co najwyzej j oraz co najwyzej ("_gﬂ) podstow
dtugosci co najmniej 5 + 1. O

Wystarczy teraz znalez¢ takie j dla ktorego zachodzi rownosé. Oznaczmy i, = 258+k—1. Zachodzi nastepujacy
fakt:

Fakt. Jesli v < n < Ypg1 to MazSub(n) > 281 -1+ (n#;“). Stowo osiggajgce maksymalng liczbe podstow
mozna skonstruowac w czasie lintowym.

Dowdd. Skonstruujemy stowo spetniajace warunki:

e wszystkie podstowa dlugosci k + 1 w 7 sa parami rozne (w konsekwencji wszystkie podstowa o wigkszej

lub réwnej dtugosci tez sa rozne, jest ich (n#;“)),

e T zawiera wszystkie (czyli 2F) podstowa binarne dtugosci k (w konsekwencji wszystkie krotsze lub o tej
samej dhugosci stowa binarne, jest ich w sumie 2841 — 1),

Wtedy stowo 7 jest stowem dltugosci n o maksymalnej liczbie podstéw, wynika to z poprzedniego faktu. [

Stowa spelniajace powyzsze warunki warunki nazywamy gestymi.

Konstrukcja stowa gestego Wezmy graf de Bruijna G rzedu k — wierzchotkami sg wszystkie stowa binarne
dtugosci k. Znajdujemy w nim ciag
T =a1ag...0n_f

bedacy ciagiem etykiet krawedzi pewnego cyklu spetniajacego warunki:
(A) cykl ten ma doktadnie n — k krawedzi w G,
(B) przechodzi przez kazda krawedz co najwyzej raz,

(C) przechodzi przez kazdy wierzchotek G co namniej jeden raz.

Fakt (Ciekawy fakt teoriografowy). Graf de Bruijna rzedu k posiada cykl 7 spetniajacy warunki (A-C) dla kaz-
dego v, <N < Yt1-

Uzasadnienie. Pokrycie cyklami prostymi to zbiér roztacznych cykli prostych zawierajacych wszystkie wezty
grafu.

Pokazemy najpierw ze jesli C jest cyklem w grafie G,, to istnieje pokrycie cyklami zawierajace C' ktore mozna
skonstruowaé¢ w czasie liniwym.

W grafie G,,_1 jest czesciowym cyklem Eulera C’, Wezly C odpowiadaja krawedziom C’. Usuwamy w
Gn_1 krawezie C’. Otzrymany graf bedzie pewna liczba sktadowych Eulerowskich silnie spojnych.
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Grafy de Bruijna rzedu 1, 2, 3, 4, 5
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0 <000
\ /
Rysunek 16: Graf de Bruijna dla n = 3 nad alfabetem binarnym. Zaznaczono czerwonym kolorem cykl

Hamiltona, ktory (rozpoczety od wierzchotka o etykiecie 000) generuje ciag 00010111000. Po odcieciu n
ostatnich znakéw mamy 00010111.

Wezmy cykle Eulera w kazdej z nich. Te cykle, po przethumaczeniu krawedzi na wezlty w grafie G, razem
z C' daja szukane pokrycie.

Pokazemy teraz jak majac pokrycie C' znalez¢ pokrycie roztaczne krawedziow z C. Zanjdujemy pokrycie P’
zawierajace C. Potem usuwamy krawedzie P’ i znajdujem pokrycie P ktore jest automatycznie rozlaczne
krawedziowo z C. Po usnieciu krawedzi C kazdy wezel sspelnia indeg(v) = oudeg(v) > 0. Pokrycie P
znajdujemy zachtannie.

Teraz bierzemy graf ztozony z cyklu C i jego krawedzi oraz z krawedzi pokrycia P. Zamieniamy graf P U C
na czesciowy cykl Eulera spetniajacy warunki (A-C).

Wprowadzamy operacje scalania cykli, jesli z jakiego§ wierzchotka u cyklu C; jest krawedz do wierzchotka
v innego cyklu Cs te cykle mozna polaczyé w jeden cykl o tym samym zbiorze wezléw stosujac przekierowanie
krawedzi. Pozostawiamy to jako ¢wiczenie.

W ten sposob scalamy cykle po kolei otrzymujac jeden czesciowy cykl Eulera speliajacy warunki (A-C).

Majac czesciowy cykl Eulera niech 7 bedzie ciagiem etykiet jego krawedzi. Uliniawiamy 7 dodajac na koricu
k poczatkowych liter 7, czyli stowo ajaz...ar. Stowo m ma teraz wlasnosci (A-B) i jest binarnym stowem
dhugosci n maksymalizujacym liczbe podstow.

Przyktad. Dla n = 14 mamy k = 3, zaczynamy w wierzchotku (000) w grafie rzedu 3, a nastepnie konstru-
ujemy cykl speliajacy warunki (A-C) o dlugosci n — k = 11. Ciag etykiet krawedzi cyklu to (patrz rysunek
grafu):

7=1001111010000
Dodajemy na koricu 3 poczatkowe litery i otrzymujemy wynik:
m=100111101000 0000

Ciag ten jest binarnym stowem dtugosci 14 o maksymalnej liczbie podstéw wynoszace;j

—k+1 12
2k+1—1+<n 2+ >:24—1—|—<2>:15—|—6-11:81.

Stowa, ktorych kazdy prefiks jest gesty w danym alfabecie nazywamy super-gestymi. Zachodzi ciekawy fakt.
(a) Najdtuzszym binarnym stowem super-gestym jest stowo o dtugosci 9.

(b) Jesli dany alfabet ma wiecej niz dwie litery to istnieje nieskoricznoe stowo super-geste. Dla danego n
mozemy skonstruowaé stowo super-geste dlugosci n w czasie O(n).
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Rysunek 17: Graf de Bruijna rzedu 2. Cyklowi Hamiltona z poprzedniego rysunku odpowiada cykl Eulera
(00) — (00) — (01) — (10) — (01) — (11) — (11) — (10) — (00).

Przyktad. W alfabecie 3 literowym stowem super-gestym jest liniowe stowo de Bruijna 012, rozszerazmy
je do stowa de Bruijna 012200211 0. Mozemy to stowo rozszerzyé¢ do liniowego stowa de Bruijna 012200211
000101112022212102 01 itd. Poniewaz poprzednie stowa sg super-geste to z wtasnosci ciggu de Bruijna wynika,
ze nastepne tez sa. Nie jest oczywistym, ze zawsze tak mozemy roszeraé, ale jest to prawdziwe (korzystamy z
kryteriow istnienia cyklu Eulera).

Redukcja problemu rzedu n do problemu rzedu n — 1

Pokazemy na przykladzie obliczania ciagdéw de Bruijna w jaki sposéb skomplikowany problem sprowadzamy
do jednej instancji tego samego problemu dla danych mniejszego rozmiaru.

Niech SubC(z), SubCy(x) oznaczaja odpowiednio wszystkie podstowa (wszystkie dtugosci k) stowa zz.
Inaczej moéwiac stowo x traktujemy jako ciagg cykliczny oraz podstowa jako fragmenty cyklu.

Obserwacja 4. Stowo binarne x jest (cyklicznym) ciggiem de Bruijna rzedu n gdy
|x| = 2" & [SubCp(x)| = 2".

Oznaczmy przez DB(n) zbior stow cyklicznych de Bruijna rzedu n. Oznaczmy jeszcze przez Sync(zx,)
przesuniecie cykliczne ciagu z tak, aby na koricu bylo stowo v, o ile v € SubC(x).

Przyktad. Sync(001011101, 011) = 101001011.

Dla dwoch stéw binarnych u,v wprowadzamy operacje zsynchronizowanego scalania tych stéw za pomoca
dodatkowego synchronizujgcego stowa v € SubC(u) N SubC(v):

SyncMerge(u,v,vy) = Sync(u,y) - Sync(v,).

Rysunek 18: Graficzna ilutracja synchronicznego scalania SyncMerge(u,v,0101) dla stow cyklicznych v =
00011010, v = 11110010. Stowem sychronizujacym jest v = 010 (oba slowa koricza si¢ na +, tak wiec sa od
razu zsynchronizowane). Wynikiem jest stowo cykliczne 0001101011110010. Kazde stowo binarne dlugosci
4 wystepowalo (cyklicznie) doktadnie raz w rozlacznym zestawie slow cyklicznych w,v. Teraz wystepuje
doktadnie raz w ich scaleniu.

Nastepna obserwacja wynika bezposrednio z definicji operacji SyncMerge), patrz Rysunek 18.
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Obserwacja 5. Niech n > 2. Zatdzmy, ze dla stow binarnych w,v dtugosci 2" i stowa v dtugosci n zachodzi
warunek:

() |SubChi1(u) U SubChiq(v)] = 2" & v € SubCh,(u) N SubCy(v).
Wtedy w = SyncMerge(u,v,vy) € DB(n+ 1), inaczej méwigc w jest stowem de Bruijna rzedu n + 1.

Dla ciagu binarnego w zdefiniujmy dziwna operacje, ktorej wynikiem jest nastepujacy ciag ¥(w) tej samej

dtugosci: '
(V1<i< ) U] = (3 wlj]) mod 2.
j=1

Przyktad. ¥(11100101) = 10111001.
Obserwacja. Mozliwa jest sytuacja neg(V(z)) # Y(neg(z)).

Niech «, bedzie stowem binarnym dlugosci n zaczynajacym sie od zera i nie majacych dwoch takich samych
kolejnych liter. Dla ciagu binarnego z operacja neg(z) polega na zanegowaniu kolejnych liter. Nastepna
obserwacja wynika z definicji operacji W:

Obserwacja 6.
Niech x € DB(n), n > 2. Wtedy warunek (x) jest spetniony dla X = ¥(x) oraz Y = neg(V(x)) i dowolnego
v € SubCp(X) N SubC,(Y). W szczegdlnosci mozna wzigé v = oy,

Powyzszy fakt jest podstawa nastepujacego algorytmu typu redukcja problemu konstrukeji ciggéw de Bru-
ijna (pewnego typu, jest wiele innych ciagéw de Bruijna). Konstrukcje problemu dla n redukujemy do jednej
instancji problemu rzedu n — 1.

Algorytm DeBruijn(n) {Zakladamy, ze n > 2}

if n = 2 return 0011;

X = U(DeBruijn(n —1)); Y :=neg(X);

wybierz dowolne stowo v € SubCy,(X) N SubCyp(Y).;
{ 7 jest stowem synchronizujacym dtugosci n }

return SyncMerge(X,Y,7)

Algorytm ten dziata w czasie liniowym ze wzgledu na rozmiar wyjscia.

14.2 Generowanie on-line binarnego slowa de Bruijna

Pokazemy jeszcze jedno zastosowanie porzadku w alfabecie. Nastepujacy algorytm generuje kolejne fragmenty
n-elementowe ciggu liniowego de Bruijna rzedu n, jest to algorytm ktéry, w odréznieniu od algorytmu reku-
rencyjnego uzywa pamiecie O(n), generujac on-line symbole ciagu o dtugosci 2™.

Zakladamy, ze alfanetem jest {0, 1}, oraz b oznacza negacje bitu.

Jesli b1by..by, jest aktualnym fragmentem to nastepny fragment otrzymujemy obcinajac pierwsza, litere by i
dopisujac na konicu litere b. Litera b zalezy od aktualnego ciagu w sposéb nastepujacy.

Algorytm On-Line generacji ciagu de Bruijna
przejscie do kolejnej n-krotki: bibs . ..b, — babs...b,b
if babs ...b,1 jest ciggiem minimalnym w swojej klasie cyklicznosci then b := by
else b := by;

Aby udowodnié¢ poprawnosé¢ wystarczy zinterpretowaé ten algorytm jako algorytm przechodzenia drzewa
cykli rotacyjnych, patrz rysunek 2. Cykle polaczone sa dwukierunkowymsi mostami.
Drzewo cykli rotacyjnych jest podgrafem grafu de Bruijna G, = (V, E), gdzie V = {0,1}" oraz mamy
krawedz ac — ab dla kazdego
a,be {0,1}, a € {0,1}"1

Zachodzi nastepujacy oczywisty fakt:

2Rysunek wykonany przez Bartosza Lukasiewicza
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Obserwacja 7.

(1) Kazde stowo cykliczne w de Bruijna rzedu n odpowiada ciggowi etykiet krawedzi w cyklu Hamiltona grafu
Gy, startujgc z sufiksu stowa w dlugosci n.

(2) Kazde stowo cykliczne w de Bruijna rzedu n odpowiada ciggowi etykiet krawedzi w cyklu Eulera grafu Gp_1,
startujgc z sufiksu stowa w dlugosci n — 1.

////,——>11101

11110
™ /
11111 ! 11011
10000 00000 01111 k///
R
01000 Lo 10111
00001
00100 ! _--=> 01110
r ‘ .7
Y=~~~ 00010 00111 \\\\\X
7‘
->00011 i 11100
10001 . |
////,——>1001Q Y 10011
01001 \\\ 00110 S 11001
0010 11000
/ K\\\\-—-01100
10100 o
\ L’
01010
--> 01011
Y001
10110
11010

R\\\-—-01101

Rysunek 19: Graficzna ilustracja algorytmu generacji kolejnych n-krotek w ciaggu de Bruijna wygenerowanym
algorytmem on-line. Algorytm dopowiada obej$ciu drzewa cykli rotacyjnych. Cykle potaczone sa dwukierun-
kowymi mostams.

Alternatywny algorytm generacji ciagu de Bruijna. Rozwazmy nastepujacg wersje generacji on-line
ciggu de Bruijna.

Algorytm On-Line generacji ciggu de Bruijna
przejscie do kolejnej n-krotki: bi1bs . ..b, — babs...b,b

0b2bs . .. by, jest ciagiem minimalnym w swojej klasie cyklicznosci
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wtedy i tylko wtedy gdy b = b;.

Podobnie jak w poprzednim algorytmie mozna zinterpretowaé algorytm jako obchodzenie drzewa cykli
rotacyjnych, patrz rysunek °.

00100 00010

/ 1000172

11300 00011
01100 00110
10011

iLi‘ 11111

11001 00111

1\1100 01110 01111 /
A

‘\\. // 11110

10010
\\ 10111 11701
01001 00 101
I § 01011 11011

10100 01010
— ‘\—10101 10110

1101U1101

Rysunek 20: Graficzna ilustracja alternatywnego algorytmu generacji kolejnych n-krotek w ciagu de Bruijna
wygenerowanym algorytmem on-line

15 Zastosowanie wyznacznika

Wyznacznik det(A) macierzy kwadratowej jest funkcja (od macierzy) o nastepujacych wlasnosciach.
e det(l,) =1, gdzie I,, jest jednostkowa n x n macierza.
e Jedli pomnozymy wiersz lub kolumne przez stata to wyznacznik tez sic pomnozy przez te sama stata.
e Przestawienie dwoch kolumn /wierszy zmienia znak wyznacznika.

e Dodanie do danej kolumny/wiersza innej kolumny/wiersza pomnozonej przez staly nie zmienia znaku
wyznacznika.

e Wyznacznik macierzy transponowanej jest taki sam.

3Rysunek wykonany przez Aleksandre Jarmoliniska,
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2 1-1]-1 2 -2
2 -11-1 2 -2
2 -1 -1 2 -2
-1 2 -1 2
-1]-1 2 -1 -1 2
-1]-1 2 1] -1 2
-1 1 -1 1
2 2
2 2
2 2
21-1 1111
-1 -1 2 |-1|-1 -1 -1 2 |-1|-1
-1]-1 2 1117 2
-1(1 ;11

Tablica 1: Ilustracja trzech redukcji zastosowanych do macierzy dla grafu de Bruijna, poczatkowo mamy
macierz L, dla n = 3, po 3 redukcjach prawg dolna macierza jest L,_1.

15.1 Twierdzenie Matriz-Tree i wyznaczniki

Dla grafu skierowanego G o macierzy sasiedztwa A przez L(G) oznaczmy macierz D(G) — A, gdzie D(G) jest
macierza, w ktorej na przekatnej sa wartosci D(G); ; = indegree(i). Dla i # j mamy: L(G); ; = —1 wtedy
i tylko wtedy gdy jest krawedz od 7 do j.

Twierdzenie 8 (Matrix-Tree Theorem). Zatdzmy, ze G jest grafem skierowanym, spéjnym i Eulerowskim
oraz stopien wejsciowy/wyjsciowy kazdego wezta jest co najwyzej 2. Wtedy liczba cykli Eulera jest rowna liczbie
drzew rozpinajgcych skierowanych o (dowolnym) ustalonym korzeniu, oraz jest réwna wyznacznikowi macierzy
L(G) z usunietym pierwszym wierszem i pierwszq kolumng.

15.2 Zastosowanie wyznacznika do liczenia ciaggéw de Bruijna

Pokazemy, jak policzy¢ liczbe wszystkich ciagéow i cykli de Bruijna stosujac wyznaczniki. Niech G, = (V, E)
bedzie grafem de Bruijna rzedu n:

V=0+1)"1 E={aac—>ab:ac(0+1)"2 a,be {0, 1}}

Redukcja macierzy

1. X1:=X1—-X2;
2.Y2:=Y2+4+Y1;

3. Dodajemy do srodkowego wiersza wszystkie wiersze X 2.

Po redukcji dostajemy, ze wartoscia wyznacznika jest
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A C = X1
on—2 A C
B D
B D = X2
2n—2
A C
Y1l = | Y2 = |
B D

Rysunek 21: Podzial macierzy. Z macierzy usuwamy pierwszy wiersz i kolumne, uzyskujac macierz L,, o ksztal-
cie (21 — 1) x (2»~! —1). Po pominieciu srodkowego ,krzyza”’ mamy cztery éwiartki A, B, C, D.
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det(L,) = 2¥ - det(L,_1), gdziek = 2772 — 1
Stad mamy wzor na liczbe wszystkich cykli de Bruijna:
det(L,) =2¥""'n
Wzér na liczbe wszystkich ciagéw de Bruijna jest prostszy: V22"

15.3 Inne grafy.
Oznaczmy przez Q,, graf bedacy kostka n-wymiarows. Stosujac wyznaczniki podobnie jak poprzednio mozna

pokazaé nastepujacy fakt.

Fakt. Liczba drzew rozpinajacych w grafie @, wynosi:

[scp,isiz2 2181 =TTk (2k) (%)
Dla grafu petnego K, otrzymujemy:

Fakt. Liczba drzew rozpinajacych w grafie Q,, wynosi n" 2.

Podobnie prosty wzér mozna otrzymac dla grafu pelnego dwudzielnego K, ;.

Fakt. Liczba drzew rozpinajacych w grafie K,,, wynosi n™ 2m" 2

16 Dwa liniowe algorytmy konstrukcji binarnych drzew

W sekcji tej opiszemy dwa bardzo tadne i bardzo proste algorytmy dzialajace w czasie liniowym, ktére dla
zadanego ciagu ai, ag, ..., a, roéznych liczb konstruuja dwa typy drzew.

e Drzewo Kartezjanskie K (a1, ag, ...ay,): korzeniem jest najmniejszy element ag, jego lewe poddrzewo jest
drzewem Kartezjanskim dla ciagu a1, ag,..., ax—1, a prawe dla ciagu agyq ... an.

e Drzewo wyszukiwan binarnych BST(ai, ag, ..., a,). Zakladamy tutaj, ze elementy ciaggu mozna po-
sortowaé w czasie liniowym. Tak wiec bez straty ogdlnosci dla konstrukcji BST przyjmijmy, ze ciag
jest permutacja. Korzeniem jest a1, lewe poddrzewo jest BST dla podciagu elementéw mniejszych od
a1, prawym poddrzewem dla podciagu elementéow wiekszych od a; (w kolejnosci tak jak w poczatkowe;j
permutacji).

Skonstruowanie tych drzew bezposrednio z definicji daje naturalne algorytmy, ktére nie dziataja w czasie
liniowym.

Algorytm 15: Algorytm konstrukeji K (ay,..., a,) (ciag réznych elementow)

1 poczatkowo drzewo sktada sie z korzenia o wartosci a;

2 for i =2 to n do

3 v := pierwszy od dohu wezel na prawostronnej gatezi taki, ze v > a;;
4 leftson(a;) := rightson(v); rightson(v) := a;;

5 end

Algorytm 16: Algorytm konstrukcji BST(ay, ..., ay) (ciag jest permutacja)

1 rank(i) jest pozycja i w permutacji (a1, ag, ..., a,);
2 lista L:=(1,2,..., n);

3 for i = n downto 1 do

4 if |L| > 1 then

5 v := sasiad a; w liscie L z wickszym rank;

6 if v < a; then rightson(v) := a;;

7 else leftson(v) := a;;

8 ;

9 usuni a; z listy L;

10 end
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17 Kilka prostych gier kombinatorycznych.

Na poczatku pokazemy uzyteczno§é operacji bitowej xor w grach kombinatorycznych. W grach tych chodzi
przede wszystkim o to, zeby znalezé algorytmicznie prosta funkcje odpowiadajaca na pytania: czy zadana
konfiguracja jest wygrywajaca (zaktadajac perfekcyjna gre obu graczy). W bardziej skomplikowanych grach
(szachy, wacaby, go) takiej prostej funkcji raczej nie ma. Skoncentrujemy si¢ na bardzo prostych grach,
w ktorych funkcja konfiguracji wygrywajacej zwiazana jest z operacjami bitowymi na liczbach opisujacych
konfiguracje.

Operacja @, nazywana zorem jest uzyteczna w wielu prostych grach kombinatorycznych w opisie tzw.
funkcji Grundy’ego Gr.

Inng operacja jest operacja M EX (minimal excludant). Niech N bedzie zbiorem liczb naturalnych z zerem.

MEX(X) = min(N — X)

W szczegodlnosci
MEX(0)=0

Zaloézmy, ze grze odpowiada acykliczny, z reguty bardzo duzy, graf konfiguracji. Niech x — y bedzie
przejéciem od konfiguracji « do konfiguracji y. W to zbiér konfiguracji wygrywajacych, P to zbiér konfiguracji
przegrywajacych.

Funkcja catkowitoliczbowa Gr na zbiorze konfiguracji jest funkcja Grundy’ego gdy

g(r) = MEX ({g9(y) : * = y})

Funkcja ta moze istnie¢ nawet dla grafow z cyklami, tym niemniej zaktadamy dalej w tej sekcji acyklicznosé.
Funkcja g spetnia:

1. ze W& Gr(x) #0,
2.xe PNz —y=Gr(y) #0,

3.xeW=3,,2—y,Gr(y) =0.

17.1 Gra NIM

Zbiorem konfiguracji jest zbiér wektorow k-wymiarowych o wspotczynnikach naturalnych, ruch polega na
zmniejszeniu co najmniej o jeden ktorejs wspotrzednej. Konfiguracja zerowa jest przegrana. W tym przypadku

Gr(xy, xo,..., k) =21 D X2 D x3... D T}

17.2 Staircase (schodkowy) NIM

Gra ta jest wersja gry NIM, jest opisana jako zadanie ,Gra” na XI OI. W tej grze mozemy zmniejszy¢ (co naj-
mniej o jeden) pierwsza wspolrzedna, lub wykonaé dla i > 1:

if 2; > A > 0 then
=2 — Ay i1 i= w1+ A

Inaczej méwiac mozemy przesuwaé elementy ze schodka wyzszego na bezposrednio nizszy lub usuwaé
z pierwszego schodka. W tym przypadku

Gr(zy, zo,...,Tk) =21 Dx3DT5...D ...

17.3 Monotoniczny NIM

Gra ta jest opisana jako zadanie ,Kamyki” na XVI OI. Gra jest podobna do NIM z dodatkowym wymaganiem
aby wspotrzedne wektora konfiguracji byly zawsze niemalejace. W przypadku tej gry zalézmy, ze k jest
parzyste, ewentualnie dodajac z przodu (gdy k nieparzyste) jedna ,sztuczna’ wspotrzedna zawsze zerows. W
tym przypadku zachodzi:

Gr(ry, m2,..., 7)) = (x2 —21) © (w4 —23) D ... (Tp — Tpp—1)-
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17.4 Ograniczony NIM

7 dowolnego dokladnie jednego stosu mozemy wziaé¢ niezerowa liczbe ale ograniczona przez 4.

17.5 Twierdzenie Sprague-Grundy’ego

Gra jest graf acykliczny w ktéorym kazda $ciezka sie gdzie§ koinczy. Jesli mamy gry Gy, ..., Gy to ich suma
G1+ G2 + G, jest gra, w ktorej gracze kolejno wybieraja jedng z G; i wykonuja w niej ruch. Konfiguracja gry
to ciag (ui, ug,..., ux) konfiguracji w grach G;.

Twierdzenie Sprague-Grundy’ego
Funkcja Grundy’ego konfiguracji sumy gier jest xor-suma funkcji Grundy’ego dla poszczegdlnych komponentdw.

Twierdzenie Boutona jest szczegdélnym przypadkiem. Dla komponentéw mamy tutaj funkcje: g(k) = k.

17.6 Gry typu NIM i mocne twierdzenie Sprague-Grundy’ego

Zdefiniujmy teraz gre w inny sposdéb. W grze tej konfiguracjami beda multizbiory pewnego zbioru V.
Zatozmy, ze mamy czesciowo uporzadkowany zbiér elementéw V' w ktérym nie ma nieskoriczonego $cidle
malejacego ciagu, schodzenie do poprzednich wierzchotkéw kiedys si¢ koriczy. Inaczej méwiac mamy pewien
graf acykliczny G z korzeniem. Korzen to jest utozsamienie wszystkich elemenéw minimalnych.
Mamy funkcje PRED taka, ze PRED(v) jest skoriczonym zbiorem skonczonych podzbiorow V. Jesli
X € PRED(V) to wszystkie elementy z X sa mniejsze, w sensie czesciowego porzadku, od v (musza by¢
bezposrednimi poprzednikami v w grafie ).

Obserwacja. Graf G jest tu wtasciwie nieistotny, ale wygodny.

W zwigzanej z tym grze konfiguracjami K sg skoniczone multizbiory V. Gracz wybiera v € K, usuwa v i
wstawia do multizbioru K jeden ze zbiorow X € PRED(v). Gracz, ktory nie ma ruchu przegrywa. Tak
zdefiniowana gre na multizbiorach nazywamy grq typu NIM (zadana przez funkcje PRED). Inaczej mowiac
mamy gre w ktorej gracz moze zainicjowaé kilka wierzchotkdéw, np. rozbié stos na dwie czesci o ustalonej relacji
miedzy nimi (np. rézne rozmiary, lub rozmiar jednej 5 razy wiekszy od rozmiaru drugiej czesci). Dodajemy
graczowi duzo mozliwosci. Konfiguracja jest tak naprawde uogdlniong sumag gier.

Oznaczmy przez mult (u) wielokrotnosé (multiplicity) element u w konfiguracji K. Niech ® oznacza ope-
racje mnozenia niezaleznie po bitach modulo 2 (bierzemy wor wiele razy).

Mocne twierdzenie Sprague-Grundy’ego
W grze typu NIM dla konfiguracji (multizbioru) K mamy

9(K) = XORyek; multg(u) ® g(u)

Whiosek.
Funkcja Grundy’ego dla gry typu NIM dla v € V' (dla singletonéw) spelnia:

g(v) = MEX({XORycx; g(u) : X € PRED(v)})

Daje to z reguty wielomianowy algorytm liczenia funkcji Grundy’ego dla singletonéw. Zauwazmy, ze
potencjalnych konfiguracji generowanych z singletona moze by¢ z reguty wyktadniczo wiele.
Poprzednie (standardowe) twierdzenie Sprague-Grundy’ego wynika stad, jesli zalozymy, ze V jest rozlaczna
sumg V3 U Va... W Vg, gdzie V; jest zbiorem lokalnych konfiguracji w grze G;, oraz dla kazdego elementu v
funkcja PRED(v) daje zbior singletonéw (poprzednikow v) w grze G, gdzie v € V;.

17.7 Gra Grundy’ego

Kolejno gracze dziela jeden ze stoséw (rozmiaru n) na dwie nieréwne i niepuste czesci o rozmiarach 4, j. Liczba
stos6w moze rosnaé¢. Gracz ktéry nie ma ruchu przegrywa.

g9(n) = MEX({g(t) ©9(j) : i #j, i+ =mn, 0<i, j <n})
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Poczatkowe wyrazy tego ciggu dla n = 0..20 to:
0o o0 010210210 213 213 2 4 30

Otwarty problem i hipoteza. Ciag Grundy’ego jest od pewnego miejsca okresowy (w kazdym razie przy-
najmniej zbiér mozliwych wartosci jest O(1)).

17.8 Gra PASKI

Mamy paski (prostokaty o ksztalcie 1 x ¢;) dlugosci ¢, ¢a, ¢3, jako narzedzia do wycinania. Na poczatku
w grze mamy plansze o ksztalcie 1 x n dlugosci n, w trakcie gry mamy pewng liczbe plansz by¢ moze réznej
dtugosci. Jeden ruch polega na wybraniu jednej planszy i wycieciu z niej paska (podplanszy) dtugosci ¢;, gdzie
1<i<3.

Liczymy funkcje Grundy’ego g(n) dla kazdej (spojnej) planszy bez dziur dlugosci n.

W tym przypadku PRED(n) jest rodzina zbiorow skladajacych sie z pary elementéow (i, j), 0 < 7, j < n,
takich, ze po wlozeniu ustalonego paska rozbijamy n na plansze spojne rozmiaréw i, j (moga by¢ zerowe).

17.9 Gra ,Obcinanie drzewa”
Artykut Kulezyniskiego z Delty.

17.10 Kayles

Valdaldlalalle

1 4 2 6

12+ 4 1 2 7 1 4 3 2
1 4 6 7

24+ 4 1 2 8 5 4 7 2
1 8 6 7

36+ 4 1 2 3 1 4 7 2
1 8 2 7

48+ 4 1 2 8 1 4 7 2
1 4 2 7

60+ 4 1 2 8 1 4 7 2
1 8 6 7

2+ 4 1 2 8 1 4 7 2
1 8 2 7

17.11 Gra NIMg i Twierdzenie Moore’a

Ta gra jest tym samym co standardowy NIM, z ta réznica, ze gracz w jednym ruchu moze zmniejszy¢ rozmiar
co najwyzej K > 1 stoséw jednoczeénie, przy czym co najmniej jeden ze stoséw musi sie zmniejszy¢.
Oznaczamy te gre przez NI M.

Zdefiniujmy @k jako operacje dodawania modulo K + 1.

Twierdzenie Moore’a.(Eliakim Hastings Moore, 1909)
(E.H. Moore, "A Generalization of the Game Called Nim” Ann. Math. Princeton, Series 2, Vol. 11, pp. 93-94
(1909-1910) )
W grze NIMg z m stosami zachodzi:

g(x1, T2, .., Tp) = 21 Ok T2 DR 23 ... DK Ty

Pozycje przegrane to te z wartoscia g(x1, z2,..., y) = 0.
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17.12 Gra Wythoffa
17.13 Problem Josephusa: eliminacja cykliczna

Problem ten nie jest gra w dostownym znaczeniu, ale mozna go tak potraktowa¢. W tej grze mamy liczby od
1 do m umieszczone na okregu, poczawszy od liczby 1 usuwamy co drugi element az zostaje jeden. Niech J(n)
bedzie numerem tego elementu. Problem polega na szybkim policzeniu J(n). Element o numerze J(n) wygrywa
(przezywa), a pozostale przegrywaja (gina). Niech shift(n) bedzie liczba powstala z n przez przesuniecie
pierwszego bitu na koniec. Na przyktad

shift(12) = shift([1100]3) = [1001]; =9

Mozna pokazaé, ze J(n) = shift(n).

17.14 Gra ,kompletowanie zbioru”

Mamy m zbioréw n elementowych Xj, Xo,..., X,,. Pierwszy gracz (wybieracz) wybiera pewien element,
drugi gracz (usuwacz) usuwa jeden element dotychczas nie wybrany, i tak na przemian. Usuniety element jest
usuwany ze wszystkich zbiorow do ktérych nalezy. Pierwszy gracz wygrywa gdy skompletuje jeden ze zbioréw.

Przyktad. Wezmy m = 2"~ !. Kazdy ze zbioréw zawiera ten sam element a, oraz dokladnie jeden sposrod
a;, b;dlai=1,..., n—1. Mamy zatem 2"~ ! podzbioréw, kazdy mocy n. W takim zestawie 1-szy gracz zawsze
wygrywa. Wybiera najpierw a a potem a; gdy usuwacz wybierze b;, lub b; gdy usuwacz wybierze a;.

Twierdzenie (Erdos-Selfridge 1973)
jesli m < 271 to, zakladajac, ze usuwacz dziala optymalnie, 1-szy gracz nie wygrywa.

Uzasadnienie. Zalozmy, ze wybieracz wybral juz zbior elementéw Y. Potencjatem elementu x ¢ Y jest

O(x) = 2NV

rxeX;

W kazdym kroku wybieracz usuwa element o maksymalnym potencjale. Wtedy wartosé >, 21X o wyko-
naniu 2 kolejnych ruchéw: (usuwacz; wybieracz) sie nie zwigksza. Zatem wybieracz nigdy nie osiagnie zadnego
kompletnego zbioru X; (tzn. nigdy nie bedzie X; C Y), gdyz gdyby tak sie stalo to ta suma bytaby nie
mniejsza niz 2", a jest ona mniejsza od 2" po pierwszym ruchu wybieracza.

Rozwazmy podobng gre. W tej grze wybieracz wybiera krawedzie z grafu petlnego K, a usuwacz usuwa
te jeszcze nie wybrane. Wybieracz wygrywa gdy z wybranych krawedzi mozna utworzyé¢ pelny graf K,.. Z
Twierdzenia Erdosa-Selfridge’a wynika

Fakt. Jesli (Z) < 2(:)-1 to wybieracz nie wygra (nie utworzy podgrafu K,) przy optymalnej strategii
usuwacza.
18 Sortowanie Berge’a

Mamy ciag n-elementowy c,, = 10101010.. ., ostatnim elementem jest 1 wtedy i tylko wtedy gdy n nieparzyste.
Zakladamy n > 5.

Operacja elementarna to przeniesienie 2 sasiednich elementéw na dwa wolne sasiadujace pola, wszystkie
(nieskoriczenie wiele) pola na lewo i na prawo ciagu « sa poczatkowo wolne. Celem jest posortowanie ciagu w
optymalnym czasie, oznaczmy przez q., ciag posortowany.

Na przyktad dla n = 5 optymalnym sortowaniem (w [4] = 3 ruchach) jest
a5 =10101 - 1U4LO0101 — 1100UUL — 00111 =a5

Fakt. Optymalny czas > [5].
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Dowd6d metoda zmniejszania potencjatu - liczby elementéw niepustych za ktérymi bezposrednio na prawo

jest wolne pole lub element innego koloru.

Sortowanie jest silne, gdy ciag do posortowania uzywa tylko pol na ktoérych jest cigg plus dwoch pustych

pol na prawo, po posortowaniu ciag przesuwa sie o dwa pola na prawo.

Sortowanie Berge’a - schemat algorytmu

(1) Znajdujemy recznie w czasie O(1) silne sortowanie dla n € {8, 10, 12, 14, 16}

oraz (niekoniecznie silne) sortowanie dla nieparzystych 5 < n < 17.

(2) (rekurencja) Dla parzystych n > 16, sprowadzamy silne sortowanie «, do

silnego sortowania «,_g korzystajac z 4 ruchéw.

(3) Sprowadzamy sortowanie (tym razem nie silne) dla nieparzystych n > 17 w 5

krokach do silnego sortowania a,,—g (mamy n — 9 parzyste).

Opiszemy teraz dokladniej kroki (2), (3).

Rekurencyjny algorytm n > 16 parzyste.

101081010 - 1UUO00y,—8101001 — 11000y,—stLI1001

— 11000a,_gULIT001 —"kursie 11001 1Ud,_51001 —

110000@,-s1UUU1l — 0000q,-s1111 = o,

Sprowadzenie przypadku nieparzystego do parzystego
Zakladamy, ze n > 17 nieparzyste (wtedy n — 9 jest parzyste).

onp=1010100,—9101 = 10100910110 —

1UU00,—91011001 — 11000,,—gLULU11001

(sortowanie dla przypadku parzystego) —* 1100 UUay,—911001 —

110000@p—9111L1 — 0000c,—911111 = ay,

Sortowania Berge’a dla n = 6, 8, 10, 12, 14

n==~06
[ ] o] [ O [ (o)
[ ] o] (o) [}
[ (o) (o) [}
O (@] (@] [ ] [ ] [ ]
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[ ] O [ O [ O
[ ] O [ o o [}
[ ] [ ] o] (o) [ ) O o [}
[ ] [ ] (o) [ ) [}
O O [ ] [ ] [ ] [ ]
n =10
[} O [ ] [ [e) (e) [ J o
[} (o) [ J o o [ ]
[ J O O [ (o) [ J o o [ ]
[} O (o) [} (e} o [ ]
[} o] o] O (o) [} [ ]
o] (o] (o) (o) (o) [ ) [} [} [} [ ]
n =12
[ ] (@] [ ] O [ ] O [ ] O [ ] O [ ] (@]
[} ] [ O [ ] [e) [ ] o [ J o o] [ ]
[ J [ J ] O [ (o) [ ] o [} o ] [ ]
[} [ J ] o] O [ [ ] (o) [ o ] [
[ J [} ] O O (o) [ ) [} [} o o] [
[} [} ] o] o] O (o) (o) [ ) [} [} [ ]
o] o] o] (o) (o) (o) [ ) [} [} [} [ ] [
n=14
[ ] (@] [ ] O [ ] O [ ] O [ ] O [ ] (@] [ ] O
[ J O [ ] (o) [ ] (e) [} o [ J o] O [ ]
[} [ J o ] [ ] [ (o) [ J o [ J ] O [
[ J [ J o o] [ (o) (o) [ [ J o [ J ] O [
[} [} o ] [ [ O (o) (o) [ ) [} o] o] [
[} [} o o] O (o) (o) [ ) [} [} [} o] (o] [
[} [} o o] o] O (o) (o) [ ) [} [} [} [
(@] O O O O [ ] [ ] [ ] [ ] [ ] [ ] [ ]

19 Grafy szachowe

Rozwazamy grafy pieciu figur szachowych: S — skoczek, K — Krol, H — hetman, W — Wieza, G — goniec. Przez
F,, m oznaczmy graf figury F' na szachownicy n x m. Jesli n = m, to bedziemy pisa¢ F),. Zajmiemy si¢ (miedzy
innymi) liczeniem nastepujacych parametrow dla grafow szachowych:

e 7(G) — liczba dominacji grafu G, minimalna liczba figur ktore bijg wszystkie pola;

(
e (@) — liczba niezaleznosci, maksymalna liczba figur ktore sie nawzajem nie bijg;
e w(G) — liczba klikowa (rozmiar najliczniejszej kliki);

(G)

e Y\(G) — liczba chromatyczna grafu G.

Poza tym zajmiemy sie istnieniem cyklu (Sciezki) Hamiltona.

19.1 Graf hetmana

Mamy 92 zbiory niezalezne rozmiaru 8 w grafie hetmana Hg. Nie ma ogdlnego wzoru na liczbe zbioréw
niezaleznych w H,,, natomiast ogélnie zachodzi:

a(H,)=ndlan>5
Uzasadnienie Ponizsze rysunki pokazuja, ze mozemy dla n > 6 rozmiesci¢é n hetmandéw nawzajem nieza-

leznych. Nastepnie zauwazmy, ze przekatne sa wolne, zatem mozna rozszerzy¢ na szachownice o boku o jeden
wiekszym.
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Rysunek 22: Schemat ustawienia n niezaleznych hetmanéw dla szachownicy o boku 6k lub 6k + 4.

HJ

m

Rysunek 23: Schemat dla szachownicy o boku 6k + 2.

Wariacje problemu niebijacych sie hetmanow
e Szachownica cylindryczna. Na cylindrycznej szachownicy 8 x8 o$miu niezaleznych hetmanéw sie nie ustawi.

e Niech HS bedzie skrzyzowaniem skoczka z hetmanem, wtedy na szachownicy 8 x 8 nie ma 8 niezaleznych
figur HS, natomiast na szachownicy 10 x 10 mozna ustawi¢ 10 takich niezaleznych (niebijacych sie) figur
HS.

Zajmiemy sie teraz liczba dominacji y(n) = v(H,,). Dla malych wartosci mamy
V213 = [1, 1,2, 3,3,...]

Niech diag(n) bedzie minimalna liczba hetmanow, ktére dominuja szachownice n x n i ktore sa tylko na gtowne;
przekatnej. Méwimy ze zbiér liczb naturalnych X jest jedno-parzysty, gdy elementy X sa tej samej parzystosci.
X jest bezsrodkowy jesli

a+b

2

Niech mid(n) bedzie moca maksymalnego jednoparzystego i bezérodkowego podzbioru [n]. Zachodzi nastepu-
jacy fakt:

Vaybeg\{a#bé ¢X

diag(n) = n — mid(n)
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Zauwazmy, ze v(n) = diag(n) dla n < 9, natomiast diag(10) > ~(n). Nie potrafimy policzy¢ szybko wartosci
v(n), natomiast mamy konstrukcje, ktora przybliza dobrze wartos¢ -.

1 2
g(n— 1) <v(n) < L})nJ + n mod 3

Uzasadnienie

e Gorna granica: mozemy zalozyé, ze n podzielne przez 3. Dzielimy plansze na 9 takich samych czesci,
w lewej dolnej czesci umieszczamy 5 hetmanéw nastepujaco: jeden w dolnym lewym rogu, pozostale
na gltéwnej odwrotnej przekatnej przesunietej o jeden w gére. W prawej gornej czesci umieszczamy
hetmany na gtéwnej odwrotej przekatne;.

e Dolna granica: argument kombinatoryczny, rachunki.

Liczba chromatyczna Wiadomo, ze 8 < x(Hg) < 9, tzn. istnieje kolorowanie za pomoca 9 kolorow,
patrz rysunek. Czy istnieje za pomoca 87 Oczywiscie 8 to dolna granica. Prawdopodobnie (ale nie wiadomo
na pewno)

X(Hyp) € {n,n+1,n+2}

O W N O D
OV = N WO
N~ O| U b= | CO| W
N OO O OV W[ ©
QU WO | O 00| DN W~

= O W O = Do =] Ot

O 00N | O W | +—

WO T DN =W

Rysunek 24: Kolorowanie grafu hetmana na szachownicy 8 x 8 za pomoca 9 koloréw.

Dwa niezalezne hetmany Ustawiamy dwa hetmany losowo na szachownicy n x n. Niech p, oznacza
prawdopododobienistwo, ze sie nie atakuja. Wtedy lim p,, = % A co z trzema hetmanami?

19.2 Graf skoczka

Mamy a(Sp,») = [%]. Natomiast nie ma sensownego wzoru na (S, ).

S
S|S S|S
S
S|S S
S S|S

Rysunek 25: v(Ss) =12

Zajmiemy si¢ istnieniem i konstrukcjg cyklu Hamiltona w S, 1.

Twierdzenie 9 (Schwenk). Zaldzmy m < n. Istnieje cykl Hamiltona na Sy, wtedy i tylko wtedy, gdy
nie zachodzi zZaden z nastepujacych warunkdow.

1. n<2lubm < 2;
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2. n, m obie nieparzyste;
3. m=3, n<10;
4. m=4.

Dowadd. Jesli m < 2, to szachownica nie jest dos¢ ,szeroka” na istnienie cyklu — z niektérych wierzchotkéw
grafu skoczka wychodzi tylko jedna krawedz. Punkt (2) jest oczywisty — jesli obie wspotrzedne szachownicy sa
nieparzyste, to laczne pole tez jest nieparzyste. A poniewaz graf skoczka jest dwudzielny (przeskoki pomiedzy
czarnymi i bialymi polami), to nie moze istnie¢ cykl o dtugosci nieparzyste;j.

Udowodnienie nieistnienia cyklu Hamiltona dla pozostatych z wyzej wymienionych przypadkéw jest nie-
trywialne. O

Reszta dowodu jest konstruktywna — polega na konstrukcji cyklu w czasie liniowym jesli istnieje. Jeden
dowod Parberry’ego (ale tylko dla parzystych n, m) poprzez dzielenie na cztery (prawie) ¢wiartki. Drugi dowod
z oryginalnej pracy Schwenka przez dodawania 4 kolumn lub czterech wierszy. Mamy 9862 cykli na Sg oraz
13267 364 410 532 cykli na Sg.

Twierdzenie 10. Na szachownicy skoczka m X n bedgcej torusem zawsze jest cykl Hamiltona.

Twierdzenie 11. Na szachownicy skoczka m x n (n kolumn) bedgcej cylindrem (ostatnia kolumna sgsiaduje
z pierwszq) jest cykl Hamiltona wtw. gdy nie zachodzi zaden z warunkow:

1. m=1orazn >1

2. m € {2, 4} oraz n parzyste

19.3 Graf kroéla
Mamy

3

(Ko n) = [n—l—ﬂ

W szczegolnosci
V(K7) = 7(Ks) = 7(K9) =0

Rowniez tatwo sie liczy oKy, n) 1 X(Kn, n)-

20 Relokacja (przesuwanie) na grafie — uogolnienie gry Pietnastka

Mamy plansze n X n, oznaczamy ja przez G,. Graf G, jest gridem rzedu n. W prawym dolnym rogu jest
puste pole, pozostate zawieraja liczby od 1 do n? — 1. Konfiguracja jest permutacja 7 tych liczb. Z jednej
konfiguracji mozemy przejé¢ do innej przesuwajac liczba na sasiednie wolne pole.

Twierdzenie 12. Z konfiguracji @ mozemy otrzymac konfiguracje identyczno$ciowq wtedy i tylko wtedy, gdy
m ma znak dodatni (parzysta liczba transpozycji, permutacja parzysta). Jesli mozna otrzymad, to wystarczy i
czasami trzeba ©(n?) ruchow.

Sa dwa dowody tego faktu, oba konstruktywne. Jeden Aarona Archera, drugi Parberry’ego, z tym ze ten
drugi sprowadza problem do n = 3 i wtedy korzysta z dowodu Aarona Archera. R.M. Wilson uogdélnit ten
probem na dowolne grafy nieskierowane. W dowodzie Aarona Archera korzystamy z nastepujacego faktu
kombinatorycznego.

Twierdzenie 13. Zbidr wszystkich permutacji cyklicznych postaci (k, k + 1, k + 2) generuje doktadnie zbior
wszystkich permutacyi parzystych zbioru [n].
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20.1 Algorytm rozwiazywania ,,pietnastki” rozmiaru 3 x 3

Idea algorytmu opiera sie na zdefiniowaniu 5 operacji, bedacych ciagami elementarnych ruchéw, jakie mozna
wykonywaé przesuwajac sasiedni element na puste pole. 7 operacji tych zostanie zbudowane rozwigzanie
postawionego problemu. Ponizszy diagram przedstawia jak poszczegdlne operacje zmieniajg stan tamigtowki:

a al|e|f

1. operacjaAl |d|e || = |d
glh|O glh|O
a a

2. operacja B1 f| = |d]|f
gl|h g 0
al|b al|b

3. operacja A2 fl| = Jg|h|f
gl h
albl|c alblc

4. operacja B2 e| f| = Je f

h h 0

a ¢ a

5. operacja C dje|f| = |d|e|f
g

Operacje A2 i B1 sa symetryczne do (odpowiedno) Al i Bl. Zauwazmy, ze za pomoca operacji Al, Bi,
A2 i B2 mozemy przesunaé¢ dowolny klocek z prawego gérnego kwadratu 2 x 2 do lewego dolnego kwadratu
2 x 2 i odwrotnie. Jest tak, poniewaz zlozenie operacji Al i B1 powoduje cykliczne obracanie elementéw
w prawym goérnym kwadracie 2 X 2, a ztozenie operacji A2 i B2 powoduje analogiczny skutek w lewym dolnym
kwadracie 2 x 2. W takim razie, dowolny element z prawego gbérnego kwadratu 2 x 2 mozemy przeniesé
w miejsce o wspolrzednych (2, 2) za pomoca ciagu operacji Al i B1. Analogicznie mozemy robi¢ z lewym
dolnym kwadratem 2 x 2 i operacjami A2 i B2. Algorytm sklada si¢ z nastepujacych krokow:

1. Przesuwamy klocek z numerem jeden w lewy gérny rég i wracamy pustym miejscem w prawy dolny rog.

1|blc
2. Mamy nastepujaca sytuacje: | d | e | f | Korzystajac z operacji A1, B1, A2 i B2 ,przerzucamy” elementy
g|h|O

z prawego gornego kwadratu 2 x 2 do lewego dolnego kwadratu 2 x 2 i odwrotnie, tak aby uzyskaé
w prawym gornym kwadracie 2 x 2 elementy ze zbioru {2, 3, 5, 6}, a w lewym dolnym kwadracie 2 x 2
elementy ze zbioru {4, 5, 7, 8}. Zauwazmy, ze w takim ukladzie elementéw na pozycji o wspotrzednych
(2, 2) musi znajdowaé sie element o wartosci 5.

3. Zauwazmy, ze prawy gorny kwadrat 2 X 2 moze mieé jedna z szesciu postaci:

Trzy gérne mozliwosci wymagaja parzystej liczby zamian elementéw, a trzy dolne wymagaja nieparzystej
liczby zamian do osiagniecia porzadku (2, 3, 5, 6). Zauwazmy, ze mozemy przechodzi¢ cyklicznie miedzy
trzema gornymi stanami stosujac kilkakrotnie ponizsze ruchy (nazwijmy je operacja D):
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11213 11213 11213
516 = |d|5|6]| = 0|6
g 0 g|0]h g|5]h
U
1136 1130 11013
d|{2|0| « 216 < 216
g|5|h g|5|h g|5]h
4
1136 1136 1 6
d|0o]2| = 512 = 512
g|5|h g|0|h g|h|O

Analogicznie mozna przechodzi¢ miedzy dolnymi stanami. Symetryczna sytuacja ma miejsce w lewym
dolnym kwadracie 2 x 2. Zauwazmy, ze mamy cztery mozliwe przypadki:

I[. W prawym gérnym kwadracie 2 x 2 jest parzysta permutacja i w lewym dolnym kwadracie 2 x 2
jest parzysta permutacja.

II. W prawym goérnym kwadracie 2 x 2 jest parzysta permutacja i w lewym dolnym kwadracie 2 x 2
jest nieparzysta permutacja.

I[II. W prawym gérnym kwadracie 2 x 2 jest nieparzysta permutacja i w lewym dolnym kwadracie 2 x 2
jest parzysta permutacja.

IV. W prawym gérnym kwadracie 2 X 2 jest nieparzysta permutacja i w lewym dolnym kwadracie 2 x 2
jest nieparzysta permutacja.

W takim razie w przypadkach II i III uktadanka nie ma rozwiazania, poniewaz permutacja dla catego
kwadratu 3 x 3 jest nieparzysta. W przypadku [ mozemy doprowadzi¢ prawy goérny kwadrat 2 x 2
do porzadku (2, 3, 5, 6) za pomoca operacji D i lewy dolny kwadrat do porzadku (4, 5, 7, 8) za pomoca
operacji symetrycznej do D. W przypadku IV stosujemy operacje C, ktoéra zmienia parzystosé permutacji
w prawym goérnym kwadracie 2 X 2 i w lewym dolnym kwadracie 2 x 2, dajac w efekcie przypadek I.
Ostatecznie osiagamy ukladanke utozona w porzadku (1, 2, 3, 4, 5, 6, 7, 8).

20.2 Uogolnienie ,,pietnastki” na dowolne grafy dwuspdjne

Twierdzenie 14 (Wilson). Jesli G jest prostym grafem dwuspdjnym, réznym od cyklu oraz réznym od grafu
@0.’

to kazdg permutacje parzyste da sie osiggnaé. Gdy graf jest niedwudzielny, to mozna wszystkie permutacije.

Mamy graf G (r6zny od cyklu i rozny od Og) etykietowany {1, ...,n — 1} U{0}. T'(z) — zbiér permutacji
powstalych z marszrut z x do x. Zbiér ten stanowi pewna podgrupe grupy permutacji:

e lacznosé — zlozenie marszrut (Py o Py) o Py = Py o (Pyo Py),
e clement odwrotny: marszruta odwrotna (zapuszczona do tytu).
e clement neutralny: pusta marszruta.

Pojecia

e G — graf dwuspojny. Niech S(G) = m —n + 1. Jesli B(G) = 1, to graf jest cyklem. Jesli 5(G) = 2,
to graf jest ©-grafem. Dla §(G) > 3 krok indukcyjny.
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e Sciagniecie (zwiniecie taricuchow krawedzi w pojedyncze krawedzie) grafu G w graf G’ (potencjalnie
dostaniemy multigraf):

przed po

Sciggniecie grafu dla § = 3:

Lemat 2. Niech G' Sciggnicty dwuspdjny graf o B(G) = 3. Istnieje krawedz w G', po usunieciu ktdrej graf
pozostaje dwuspojny oraz jest rozny od g po rozciggnieciu.

Sciggniecie ©-grafu to

Grupa H dzialajgca na zbiorze X jest tranzytywna, jesli potrafi przeprowadzi¢ kazdy element na kazdy
element. Grupa I'(z) dzialajaca na V\{z} jest tranzytywna, jesli umiemy wstawi¢ kazdy element V\{z}
pojedynczo wszedzie.

Twierdzenie 15. ['(z) jest tranzytywna < gdy graf G jest dwuspdjny.

Grupa H dziatajaca na zbiorze X jest 2-tranzytywna, jesli potrafi przeprowadzi¢ dowolng pare réznych
elementéw z X na dowolng pare réznych elementow z X.

Lemat 3. Rozwazmy zbior X, | X| > 3; wezmy dowolne u, v € X. Zbidr 3-cykli postaci (uvx) dla x € X\{u, v}
generuje alt(X) — permutacje parzyste.

Lemat 4. Niech X bedzie zbiorem 3-cykli na zbiorze X |X| > 3. Oznaczmy przez X* grupe generowang przez
3., Nastepujgce warunki sg rownowazne:

1. ¥ = alt(X)
2. X* jest tranzytywna

Lemat 5. Niech H bedzie 2-tranzytywnag grupg permutacji (niekoniecznie wszystkich permutacji! moze byé
podzbidr permutacyi, ktore stanowiq grupe), ktora zawiera co najmniej jeden 3-cykl. Wtedy alt(X) C H.

Z powrotem do kroku indukcyjnego twierdzenia poczatkowego Mamy graf G, dwuspdjny, B(G) >
3. 7Z ktoregos lematu dostajemy ,ucho” do usuniecia (taricuch pomiedzy dwoma wierzchotkami z, y € V),
otrzymujac graf H. Wiemy, ze graf H jest dwuspojny, S(H) > 2, H jest rozny od Oq (z zalozenia), zatem
mozemy skorzystaé¢ z zalozenia indukcyjnego: mamy permutacje parzyste w H, czyli mamy 3-cykl.

Nasza para (y, z), gdzie z to dowolny wierzcholek w H rézny od z i y. Bierzemy (a, b):

e b wsadzamy na z,
e jesli a jest na uchu, to krecimy cyklem, a trafia do y

e wp.p. ajest w G, to umiemy przetozy¢ (z, a) na (z, y), bo z zalozenia indukcyjnego H jest 2-tranzytywna
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21 Problemy wagowe

Zajmiemy sie nastepujacym problemem, dany jest zbiér Z odwaznikéw. Chcemy obliczy¢é minimalng liczbe
odwaznikow do zwazenia zadaen]j liczby . Mamy dowolnie wiele odwaznikéw kazdego typu.

21.1 Waga tréjkowa

Niech Z bedzie multizbiorem poteg trojki. Problem mozna zinterpretowaé jako zapis liczby naturalnej m w
specjalnej reprezentacji trojkowej: w postaci tej baza jest liczba 3 a cyfry sa ze zbioru {-1, 0, 1}. Oznaczmy
te reprezentacje przez repr(m).

Mamy repr(m) = (ag,a1,az2,...,ax), gdzie a; € {—1, 0, +1}, ax # 0 oraz

Majac obliczong reprezentacje na prawej szalce kladziemy odwazniki 3° dla ktérych a; = 1, natomiast na lewej
szalce kladziemy obiekt o masie m i odwazniki 3’ dla a; = —1.

Oznaczmy przez [m|s normalna reprezentacje trojkowa liczby ma

W algorytmie mamy do czynienia z bardzo duzymi liczbami, tak ze dodtakowym utrudnieniem jest implem-
natcja arytmetyki na reprezentacjach dziesietnych i tréjkowych duzych liczb.

Obserwacja. Rozwigzanie opiera sie na nastepujacym spostrzezeniu. Zaldézmy, ze mamy liczby naturalne
m > 01 liczbe x taka, ze [x]3 sklada si¢ z samych k+ 1 jedynek oraz @ > m. Jesli [z + m|3 = (bo, b1, b2, . .., bk)
torepr(z) = (bp —1,bp — 1,ba — 1,...b; — 1), z doktadnoscia do pominiecia nieznaczacych ostatnich zer.

Opis algorytmu.

Obliczmy najmniejsza liczbe x, taka ze [x]3 sklada si¢ z samych jedynek oraz x > m.
Niechy = m+=.

Obhczmy [ ] = (bo,b1,bz,...,bk).

return repr(m) = (bg— 1,01 — 1,bg — 1,...b5 — 1)

Przyktad.
Niech m = 42. Mamy [42]3 = (0,2,1,1), oraz x = 121, [z]s = (1,1,1,1,1),
y = mtx = 424121 = 163, gdzie y = (1,0,0,0,2).
Tak wiec repr(42) = (0,—1,—-1,—1, 1).

A wiec na prawej szalce ktadziemy 2% a na lewej obiekt o masie 42 i odwazniki 2!, 22, 23.

21.2 Waga czworkowa

W tym przypadku zbiorem odwaznikéw jest zbidr poteg czworki.
Skoncentrujmy sie najpierw na opracowaniu metody wyznaczenia minimalnej liczby odwaznikéw, jaka jest
potrzebna do zwazenia przedmiotu o zadanej wadze n. Oznaczmy te liczbe M (n).

Ponadto niech n;_; oznacza liczbe ulozona z pierwszych (najbardziej znaczacych) i cyfr liczby n w zapisie
czworkowym. Konkretnie ny_; = [n-4~("=9 | gdzie |n| to ilos¢ cyfr liczby n zapisanej w systemie czworkowym.

Kluczows obserwacja prowadzaca do rozwiazania tego zadania jest to, ze na podstawie M (nqy. ;) (ozn. x;)
oraz M(ni ;+ 1) (ozn. y;) mozemy w prosty sposob obliczy¢ M (ni_i+1) (czyli x;41) oraz M(ny._i+1 + 1)
(czyli yi11). Jesli przez n; oznaczymy i-ta najbardziej znaczaca cyfre liczby n, to sposob obliczania wyglada
nastepujgco:

nitv1 =0 = (Tit1,Yi+1) = (@i, + 1)
niy1 =1 = (Tit1,¥i+1) = (v + 1, min(z; + 2,y; + 2))
nit1 =2 = (Tiy1, Y1) = (min(z; + 2,y +2),y + 1)
nip1 =3 = (i1, ¥i01) = (i + 1,4)
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Pierwszy przypadek dla x;41 moéwi m.in. tyle, ze jesli do dotychczas rozpatrywanej wartosci dopisujemy
zero, to optymalny sposéb jej zwazenia polega na zastapieniu wszystkich odwaznikéw czterokrotnie ciezszymi.
Gdyby bowiem istniala lepsza strategia, wowczas i liczbe n;.; daloby sie odwazyé przy pomocy mniej niz x;
odwaznikow, gdyz mogliby$my wszystkie odwazniki tej strategii dla ny_ ;11 zastapi¢ czterokrotnie lzejszymi,
gdyz nie ma w niej ani jednego odwaznika o wadze 1.

Drugi przypadek méwi, ze przy dopisaniu jedynki zamieniamy wszystkie odwazniki na ciezsze oraz doktadamy
jeden o wadze 1 na szalke przeciwng do tej, na ktorej lezy sztabka.

Trzeci przypadek jest nieco bardziej skompilowany. Jesli dopisujemy dwojke, to sytuacje mozemy rozwiazacé na
dwa sposoby: albo zamieniamy wszystkie odwazniki na ciezsze i doktadamy dwie jedynki, albo tez bierzemy
optymalna konfiguracje odwazajaca (n1.; + 1), mnozymy wszystkie wagi przez 4, i dokladamy dwie jedynki
na ta sama szalke, na ktérej lezy sztabka.

Czwarty przypadek — gdy dopisujemy 3, mowi, ze najpierw nalezy w sposoéb optymalny odwazy¢ (ny. ; + 1),
nastepnie zamieni¢ odwazniki na ciezsze, a nastepnie na szalce ze sztabka potozy¢ odwaznik jednostkowy.

Aktualizacja zmiennych y; przebiega analogicznie. U podstaw przedstawionej metody lezy obserwacja, iz
jesli ostatnig cyfra rozpatrywanej liczby jest 0, to w optymalnej sytuacji zawsze uzyjemy doktadnie 0 odwazni-
kéw jednostkowych. Podobnie, jesli liczba koriczy sie na 1 lub 3, to uzyjemy jednego odwaznika jednostkowego.
Jedli za to koriczy sie na 2, to trzeba zawsze uzy¢ dwoéch odwaznikéw jednostkowych.

Pozostaje jeszcze policzy¢, na ile sposobéw mozna uzyskaé¢ optymalne konfiguracje. Ale to robimy w podobny
sposob. Niech X; oznacza liczbe optymalnych sposobéw zwazenia liczby ni._ 4, a Y; liczbe optymalnych spo-
sobow dla (ny._; + 1). Wowczas wykorzystujemy nastepujace zaleznosci, wynikajace z powyzszego opisu i
wczedniejszych wzoréw dla z; oraz y;.

Ni+1 = 0 = ( i+1, H—l) = <X27X2)
niv1 =Lz <y = (Xig1,Yip1) = (X4, Xp)
niv1 =Lz, =y, = (X1, Yiq) = (X, Xi +Y))
niv1 =1Lz >y = (Xip1, Y1) = (X4, Y5)
nit1 = 2,2, <y = (Xig1,Yiq1) = (X, Y5)
niy1 =2,z =y; = (Xiy1,Yi1) = (X; +Y3,Y))
nitv1 = 2,2, >y = (Xiy1,Yiq1) = (Y3, Y5)

niv1 =3 =  (Xig1, H—l) = (Y, Y))

Warto réwniez wspomnieé¢ o warunkach poczatkowych:

xozo,y():l,XO:l,Yg:l.

Jezeli pominaé koszt implementacji wlasnej arytmetyki duzych liczb, to powyzsze rozwiazanie ma ztozonosé
czasowa O(logn).

21.3 Waga Fibonacciego

W tym przypadku zbiorem odwaznikow jest zbior liczb Fibonacciego {1, 2, 3, 5, 8, 13, ...}.
Algorytm dziala w sposob zachtanny, w kazdej iteracji bierzemy odwaznik bedacy najblizszg liczbg Fibo-
nacciego F'ib; wzgledem danego przedmiotu o aktualnej wadze n. Inaczej méwiac wykonujemy:

wynik = 0;
while n # 0 do
wybierz i minimalizujace [n — Fib;|
= |n — Flbz‘,
wynik = wynik + 1

21.4 Identyfikacja falszywej monety za pomoca wazen

Mamy n = (3" — 3)/2 monet, sa jednakowe poza jedna, za pomoca n wazen na wadze szalkowejz znajdujemy
te monete i stwierdzamy czy jest lzejsza, czy tez ciezsza od normalnych.
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Niech S,, bedzie zbiorem ciagow n cyfr trojkowych typu 172..., 270.. lub 0" 1.. (kropki oznaczaja dowolny
ciag, ale razem ma by¢ n cyfr).

Niech S, (k,0), S,(k,2) bedzie zbiorem ciagéw majacych na k-tej pozycji 0 lub odpowiednio 2. Identyfi-
kujemy monety z elementami zbioru .S,,.

Algorytm wazenia
for k =1ton do
Wykonujemy wazenia zbioru Sy, (k,0) (lewa szalka) kontra S, (k,2) (prawa szalka).
Tworzymy ciag cyfr tréjkowych W o dtugosci n.
Gdy lewa szalka ciezsza zapisujemy na k-tej pozycji 0, jesli prawa to 2, a jesli wagi réwne to 1.

Jesli W jest identyfikatorem pewnej monety to jest to falszywa mneta, wage ma lzejsza, w przeciwnym wypadku
jest to moneta o identyfikatorze W, wage ma wieksza niz normalna.
W oznacza zamiane 2 <+ 0 na kazdej pozycji ciagu W.

21.5 Problemy wagowe Munchausena

W XVIII wieku zyt baron Hieronymus Carl Friedrich von Miinchhausen (znany tez jako Munchausen), ktory
wstawit sie opowiadaniem réznych bardzo dziwnych opowiesci. Miedzy innymi znany jest z wprowdzenia
nastepujacego problemu typu wagowego.

Mamy wage szalkowa i n elementéw o wagach 1, 2, ..., n. Baron Munchausen wie ktory element jest ktory
i chce udowodnié¢ widowni za pomoca jedynie wagi szalkowej, jaka jest waga pewnego pojedynczego elementu,
ktory moze sobie dowlnie wybra¢. Minimalna liczbe potrzebnych wazen oznaczmy przez b(n).

Munchausen podat rozwigzanie dla n = 8 — wystarczy jedno nastepujace wazenie:

1+24+34+4+5=7+8

W ten sposob zidentyfikujemy element o wadze 6. Mamy wiec b(8) = 1.

W ogélnym przypadku dziata nastepujace twierdzenie:
Twierdzenie 16. 1 < b(n) < 2.

Problem mozna skomplikowaé nastepujaco. Niech a(n) bedzie minimalna liczba wazeni pozwalajaca na identy-
fikacje wszytkich elementow. Dalej zakladamy, ze maja one wagi 1, 2, ..., n. Na przyklad a(6) = 2 poniewaz
mozemy wykona¢ dwa wazenia, jedno po drugim:

1+24+5<3+6 1+3<5.

lub dwa wazenia:
1+2+3=6 1+6<3+5

Zachodzi ogoélne nietrywialne twierdzenie.

Twierdzenie 17. a(n) < 2[logn].

22 Skojarzenia i systemy réznych reprezentantéow

G = (V, E) —graf. M CV to skojarzenie, jesli zadne dwie krawedzie w M nie maja wspolnego korica. Zwykle
szukamy najwiekszego skojarzenia. Skojarzenie, ktére pokrywa wszystkie wierzchotki to skojarzenie doskonate.

22.1 System Roéznych Reprezentantow

T =(S1, Sa, ..., Sp) — rodzina niepustych skonczonych zbiorow. Niech Z' C 7, oznaczmy przez Sz podsystem
(Si: i € I'). Przez Sy U Spn oznaczmy podsystem (S;: i € 7' UZ"). Podsystem Sz/ jest krytyczny gdy
| > e Sil = |T'|. Cazy istnieje taki wektor (a1, ..., a,,) parami roznych elementow, ze a; € S; dla i =
1,...,m?
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Twierdzenie 18 (Hall). Rodzina zbioréw I posiada SRR gdy spetniony jest tzw. warunek Halla:

> s

1€’

(vz'lgl') 2 ‘I/‘ .

Fakt.
1. Jesli dwa podsystemy sq krytyczne, to ich suma tez.

2. Jesli system spetnia warunek Halla oraz krotnosé kazdego elementu jest 1, to wybierajgc dowolny element
z kazdego zbioru otrzymujemy SRR (system rdznych reprezententiw).

Dowdd. Udowodnimy, ze jesli system (S, Sa,...S,) spelnia warunek Halla, oraz a € S1NSs, to system spetnia
warunek Halla po usunieciu a z S1 lub a z Sz. Przypusémy, ze tak nie jest. Przyktadowo, niech

|Sl — a, 537 S47 S57 56‘ < 55 |S1 —a, S37 847 S77 SS| < 5
Wtedy podsystemy (Ss3, S4, S5, Se), (S3, S, S7, Ss) sa krytyczne oraz
S1—aC S3US4U...USy

No ale na mocy wczesniejszego faktu mamy, ze moc sumy podsystemow (Ss, Sy, Ss, Sg), (S3, Sa, S7, Sg) jest
mniejsza rowna 6 (suma indeksoéw), nawet jak dodamy element a to |S; U S2...Ss| < 6 +1 =7, co przeczy
oryginalnemu zaltozeniu o warunku Halla. Zatem system sprowadza sie do rodziny zbioréw, w ktorej kazdy
element wystepuje tylko raz, a zatem system posiada SRR. O

Zalézmy, ze spelniony jest warunek Halla. Mozna powyzsze rozumowanie wyrazié¢ algorytmem niewielomiano-
wym:

1 while istnieje element a nalezgcy do dwoch roznych zbiorow do

2 Usun a z jednego z tych dwoch zbioréow tak, aby warunek Halla nadal zachodzil (to jest zawsze
mozliwe);

3 end

4 Usun z kazdego zbioru wszystkie elementy, poza jednym dowolnym;

5 Wypisz otrzymany system jako SRR dla wejéciowego systemu;

22.2 Oszacowania na liczbe SRR
Zalozmy, ze min; |S;| =t 1 spelniony jest warunek Halla.

Teza 1. T posiada
t! SRR gdyt<m
. i SRR gdyt>m

22.3 Grafy regularne

G = (V, E) dwudzielny, regularny stopnia A > 3. Chcemy znalez¢ skojarzenie doskonale.

przypisz kazdej krawedzi w grafie wage 1;
while podgraf rozpiety na krawedziach z dodatnimi wagami nie jest lasem do
C := dowolny cykl (elementarny);
My, My — doskonale skojarzenia na C'
end
if waga M1 > waga Ms then
‘ od wagi kazdej krawedzi z M; odejmij 1, do wagi kazdej krawedzi z My dodaj 1
else
‘ odejmujemy z Ms i dodajemy do M,
Niezmiennik petli: suma wag krawedzi wychodzacych z wierzchotka wynosi A.

© w0 N O oA W N
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22.4 Najliczniejsze skojarzenie

G = (V, E) graf prosty, spojny. M C E — skojarzenie, gdy zadne dwie krawedzie nie maja wspolnego korica.
Zmalezé M o najwiekszej licznosci. Wiekszosé algorytméw znajdujacych najwieksze skojarzenie dziata przez
szukanie Sciezek powiekszajacych — gdy taka nie istnieje, skojarzenie jest najwieksze.

G = (W, K, E) — graf dwudzielny, gdzie W to wiersze {1, 2, ..., w}, K kolumny {1, 2, ..., k} (reprezen-
tacja macierzowa). Zakladamy bez straty ogolnosci |W| > |K|. Budujemy drzewa rozpinajace ukorzenione
w wierszach. Silne drzewo rozpinajace to takie drzewo rozpinajace, w ktérym kazda kolumna-lisé musi byé
synem korzenia. Jesli T to silne drzewo rozpinajace, to niech Q(7T) oznacza zbior kolumn-lici.

Nie kazdy graf dwudzielny ma silne drzewo rozpinajace. Modyfikujemy graf G — G*:

o G*= (WU{0}, K, E?)
e F*=FU{(0,5):j€ K}
Korzeniem silnego drzewa rozpinajacego T bedzie zawsze zero. Kolumne h nazwiemy kandydatem, gdy:

1. posiada dwoch synow w T,

2. istnieje Sciezka w G z h do pewnego liscia-kolumny taka, ze pierwsza krawedZ prowadzaca poza drzewo
T'(h) jest postaci wiersz — kolumna.

gdzie T'(h) to poddrzewo T ukorzenione w h. Niech C(T) to bedzie zbior kandydatow. Przez Z(T) oznaczamy
skojarzenie indukowane przez T'. Jesli C(T) jest puste, to skojarzenie jest najwicksze.

Definiujemy operacje pivot na krawedzi (I, h) typu wiersz — kolumna, gdzie h jest korzeniem T'(h), a [
jest jego rodzicem w drzewie T. Operacja polega na usunieciu krawedzi (I, h) z T i dodaniu zamiast tego
krawedzi z warunku drugiego istnienia kandydata.

Obserwacja 8. Jezeli h ma > 2 syndw, to po wykonaniu zamiany mamy nadal silne drzewo rozpinajgce.
Obserwacja 9. Rozmiar skojarzenia indukowanego przez nowe drzewo moze byé o 1 wieksze od poprzedniego.

Dominatory: kolumny o co najmniej dwoch synach, nie posiadajace wtasciwych przodkéw o tej wlasnosci.
Oznaczenie: D(T). Jesli D(T) puste, to mamy najliczniejsze skojarzenie. W (KP) — wiersze zdominowane.
Powiemy, ze silne drzewo rozpinajace jest zamkniete, gdy

L. D(T)=01ub Q(T) =10
2. lub z faktu, ze a € WP oraz (a, b) € G wynika, ze b € KP.

Twierdzenie 19. Jezeli T' jest drzewem zamknietym, to kazde skojarzenie indukowane przez'l' jest najwieksze.

22.5 Kolorowanie

Dla danego nieskierowanego grafu G = (V, E) szukamy jego liczby chromatycznej x(G), czyli minimalnej liczby
roznych koloréw, jakich potrzeba na pokolorowanie krawedzi grafu w taki sposob, zeby w zadnym wierzchotku
nie spotykaly sie dwie krawedzie tego samego koloru. Czasami oprocz liczby chromatycznej chcemy wyznaczy¢
samo kolorowanie — nie zawsze jest to proste. Wprowadzamy A(G) jako maksymalny stopieri wierzchotka w G.

Twierdzenie 20 (Vizing). W kazdym prostym grafie (bez petli i nie-multigraf) G zachodzi x(G) < A(G) + 1.

Dow6d indukeyjny: przyjmiemy, ze istnieje (A + 1)-kolorowanie grafu G’ gdzie G’ to graf G pozbawiony
dowolnego wierzchotka v. Wtedy wystarczy pokazaé, ze z istnienia takiego kolorowania grafu G’ mozna uzyskac
(A+1)-kolorowanie grafu G. Powiemy, ze dany kolor « jest dostepny w wierzchotku v, jesli nie istnieje krawedz
incydentna z v pokolorowana kolorem a. Pomocniczy...

Lemat 6. Niech G bedzie grafem prostym, v jakims jego wierzchotkiem i k > A(G) pewng liczbg catkowitq.
Zatozmy, ze graf G' = G — v ma k-kolorowanie krawedziowe takie, ze kazdy sqsiad (bez co najwyzej jednego)
v z grafu G ma przynagmniej dwa kolory dostepne. Pojedynczy wyjgtek moze mieé tylko jeden kolor dostepny.
Wtedy graf G takze jest k-kolorowalny.

Lemat jest prawdziwy gdy k = A + 1, bo wtedy kazdy sasiad v w grafie G’ ma stopien co najwyzej A — 1.
Twierdzenie Vizinga mozna rozszerzy¢ na multigrafy bez petli.

Twierdzenie 21 (Brooks). Jesli G jest grafem spdjnym, to x(G) < A(G), chyba ze G jest grafem petnym albo
cyklem dtugosci nieparzystej - wtedy x(G) = A(G) + 1.
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22.6 Algorytmy kolorowania dla grafé6w dwudzielnych
22.6.1 Algorytm najprostszy O(nm)

Dla kazdego wierzchotka grafu dwudzielnego G ustalamy zbior koloréw dostepnych {1, 2,..., A}. Bedziemy po
kolei dokonywali kolorowania kazdej krawedzi grafu. Powiedzmy, ze bierzemy teraz krawedz (u, v). W wierz-
chotku u na pewno nie uzyliSmy jeszcze wszystkich koloréw, wiec bierzemy dowolny kolor o dostepny w wu.
Podobnie bierzemy dowolny kolor S dostepny w v. Jesli a = 3, to juz jest dobrze: kolorujemy krawedz tym
kolorem i usuwamy go ze zbioru koloréw dostepnych w wierzchotkach v i v.

Jesli jednak « # 3, to szukamy $ciezki powickszajacej w grafie G postaci v — w1 — v1 — ug — ... takiej,
ze krawedzie, po ktérych przechodzimy, sg na przemian koloru « i 8. Po znalezieniu takiej Sciezki odwra-
camy kolorowanie krawedzi (krawedzie koloru « kolorujemy na S i odwrotnie), dzieki czemu w wierzchotku v
,zwolnit sie” kolor o i mamy przypadek pierwszy.

22.7 Algorytm O(Am)

Zatozmy, ze graf dwudzielny G jest k-regularny. 7Z grafami nieregularnymi za moment sobie poradzimy. 7 twier-
dzenia Halla wynika, ze kazdy k-regularny graf dwudzielny ma skojarzenie doskonate. Indukcyjnie mozna zna-
lez¢ skojarzenie doskonate w grafie k-regularnym, usunaé je i nastepnie zajmowac si¢ grafem (k—1)-regularnym,
az do usuniecia wszystkich krawedzi. W ten sposéb otrzymamy k roztgcznych krawedziowo skojarzen dosko-
natych. Jedli dla kazdego z tych skojarzen dobierzemy inny kolor, to mamy k-kolorowanie grafu.

Niestety znajdowanie kolejnych skojarzen nie jest wystarczajaco szybkie. Uzyjemy algorytmu typu ,dziel
i zwyciezaj™

1. Jesli k jest nieparzyste, znajdz skojarzenie doskonale i usuii je — mozemy to zrobi¢ w czasie O(km).
W ten sposodb redukujemy problem do grafu (k — 1)-regularnego.

2. Jesli k jest parzyste, znajdz cykl Eulera. Podziel krawedzie cyklu na dwa zbiory (krawedzie o parzystych
i nieparzystych numerach), otrzymujac w ten sposob dwa %—regularne podgrafy.

Jesli mamy graf H = (U, V; E), ktory nie jest regularny, to wezmy d = A(H) i stworzymy graf G, ktory
bedzie d-regularny. Z kolorowania grafu G mozna odtworzy¢ kolorowanie grafu H. Dzialamy nastepujaco:

1. Dopoki jest wiecej niz jeden wierzchotek w U (lub odpowiednio V') stopnia co najwyzej g, to wybierz
dowolne dwa z nich i sklej je w jeden wierzchotek.

2. Dodaj ,falszywe” wierzchotki i krawedzie, zeby powstal graf d-regularny. Mozna w ten sposéb uzyskaé
multigraf, ale to nie przeszkadza.
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