
Wprowadzenie do kombinatoryki algorytmicznej

Wojciech Rytter ∗

Skrypt ten zawiera szereg krótkich esejów opisujących proste, ale ciekawe algorytmy wielomianowe dla proble-
mów związanych z generacją, zliczaniem lub obliczaniem elementarnych obiektów kombinatorycznych, których
ilość jest z reguły wykładnicza. Inaczej mówiąc przedstawimy szereg małych zwycięskich potyczek z eksplozją
kombinatoryczną.

1 Grafy związane z wieżami Hanoi

Mamy n krążków (każdy o innym rozmiarze) na trzech wieżach. Początkowo wszystkie leżą na jednej wieży,
w kolejności od największego u dołu do największego u góry. Trzeba je przełożyć na jakąś inną wieżę, ale
nie można stawiać większego krążka na mniejszym.

Ustalmy przykładowo, że n = 3. Konfiguracja to trójka (a1, a2, a3), oznaczająca położenie tych trzech
krążków (ai ∈ {1, 2, 3} dla i = 1 . . . n). Niech początkowa konfiguracja będzie (1, 1, 1) (lub krócej 1+)
a końcowa (3, 3, 3) (lub 3+).

Budujemy graf H3 = (V, E), gdzie V – zbiór konfiguracji, krawędzie nieskierowane to dozwolone ruchy.
Widać, że graf ma 3n wierzchołków dla dowolnego n. Problem: znaleźć najkrótszą ścieżkę z konfiguracji
początkowej do końcowej. Grafy Hn mają podobną strukturę jak trójkąty Sierpińskiego, powstające przez
usunięcie z trójkąta Pascala elementów podzielnych przez 2.

Początkowe iteracje tworzenia trójkąta Sierpińskiego.
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Graf H3 ma 33 = 27 węzłów.

Graf Hn można definiować rekurencyjnie. Niech H
(j)
m (dla dowolnego m > 2) będzie grafem Hm w którym

każdy węzeł (i1, i2 . . . im) zamienimy na ((i1, i2 . . . im, j). Wtedy Hn można zapisac rekurencyjnie jako:
∗Przy znacznej pomocy technicznej Bartosza Szredera
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1.1 Najkrótsze ścieżki i cykle Hamiltona w grafach Hanoi

Typy ruchów:

• α – przekładamy najmniejszy krążek na następny drążek (zgodnie z ruchem wskazówek zegara)

• β – przekładamy najmniejszy krążek na poprzedni drążek (przeciwnie do ruchu wskazówek zegara)

• γ – inny ruch (jest wyznaczony jednoznacznie)

Najkrótsza ścieżka

• n parzyste: αγαγαγ . . .

• n nieparzyste: βγβγβγ . . .

Jak zapiszemy ciąg przełożeń kolejnych krążków, to wyjdą pozycje najmniej znaczącego zapalonego bitu
w reprezentacjach binarnych kolejnych liczb od 1 do 2n − 1.

Ścieżka Hamiltona: β2γα2γβ2γα2γ . . .

Cykl Hamiltona: ciąg ruchów: (δγ)3, gdzie δ = (β2γα2γ)k, gdzie k tak dobrane, żeby długość tej ścieżki
była 3n−1 (licząc odwiedzane wierzchołki). Budowanie cyklu Hamiltona należy zacząć od odpowiedniego
wierzchołka — nie od narożnika, tylko od jednego z dwóch węzłów leżących na krawędzi łączącej dwa podgrafy
Hn−1.

Uwaga! Wartość k w powyższym wykładniku nie musi być całkowita, np. dla przykładowego H3 mamy
z grubsza k ≈ 3

2 , co przekłada się na δ = β2γα2γβ2.

Długa ścieżka Dla każdego 2n − 1 6 M 6 3n − 1 istnieje prosta ścieżka z konfiguracji 1+ do 3+ mająca
dokładnie M konfiguracji (taka, że żadna konfiguracja się nie powtarza).

Najkrótsza ścieżka z dowolnej konfiguracji Długość najkrótszej ścieżki z konfiguracji (a1, a2, . . . , an)
do 3+ wynosi ∑

ai 6=3

2i−1

1.2 Algorytm wyznaczania następnego ruchu

Dla n-tego ruchu możemy znaleźć wieżę początkową i docelową, odpowiednio z następujących wzorów:

początkowa: (n&(n− 1)) mod 3

docelowa: ((n|(n− 1)) + 1) mod 3

Gdzie & i | to bitowe operatory AND i OR i przy założeniu, że wszystkie krążki zaczynają na wieży o numerze 0
i docelowo trafiają na wieżę o numerze 1 albo 2 w zależności od tego, czy liczba krążków jest parzysta czy nie.
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1.3 Algorytm wyznaczania konfiguracji

Jeśli chcemy się dowiedzieć jaki jest układ m krążków po n-tym ruchu, możemy zastosować następujący
algorytm. Zapisujemy wiersze o długościach kolejno 1, 2, . . .m w taki sposób, że wiersz o długości k ma
konstrukcję 21 . . . 1︸ ︷︷ ︸

k−1

, wiersz o długości k − 1: 12 . . . 2︸ ︷︷ ︸
k−2

itd., czyli kolejne wiersze na zmianę:

• zaczynają się dwójką i są dopełniane jedynkami,

• zaczynają się jedynką i są dopełniane dwójkami.

Ponadto najdłuższy wiersz zaczyna się od dwójki i wiersze są wyrównane do prawej strony. Następnie zapi-
sujemy liczbę n w postaci binarnej i usuwamy te wiersze, które odpowiadają bitowi zgaszonemu. Na końcu
sumujemy wartości (mod 3) pozostałych wierszy w kolejnych kolumnach 1 . . .m i otrzymujemy układ krążków
na wieżach ponumerowanych kolejno 0, 1, 2.

Przykład n = 23 = 101112

2 1
1 2 1

2 1 1 1
1 2 2 2 0

2 1 1 1 1 1
2 1 3 3 6 mod 3
2 1 0 0 0 układ

Drugi algorytm wyznaczania konfiguracji

Założenie: przenosimy wszystkie krążki z wieży 0 na wieżę 2 w sposób optymalny. Następujący algorytm
oblicza konfigurację po m ruchach:

wejście: bit[1..n] – binarna reprezentacja m (najbardziej znaczący bit: bit[n])
wyjście: a[1..n] – konfiguracja n wież, ∀i a[i] ∈ {0, 1, 2}

1 a[n] := 2bit[n];
2 x := a[n]− 1;
3 for i := n− 1 downto 1 do
4 if bit[i+ 1] = bit[i] then
5 x := −x;
6 a[i] := a[i+ 1];
7 else
8 a[i] := (a[i+ 1]− x) mod 3;
9 end

10 end

Związki teorioliczbowe 3 wież Hanoi z trójkątem Pascala

W sekcji tej przedstawimy kilka ciekawych faktów i obliczeń teorioliczbowych związanych z trójkątem Pascala.
Zajmiemy się liczeniem

(
n
k

)
modulo liczba pierwsza p. Jeśli p = 2 to mamy bezpośredni związek z grafem Hk

z poprzedniej sekcji.

Jeśli
(
n
k

)
≡ 1 (mod 2), to wierzchołek z trójkąta Pascala zostaje, w p.p. usuwamy go.

Niech H ′k będzie grafem który otrzymamy z trójkąta Pascala po usunięciu węzłów takich, że(
i

k

)
(mod 2) = 0 ∨ i > n.

Węzeł
(
i
k

)
jest połączony nieskierowanymi krawędziami z istniejącymi węzłami

(
i′

k′

)
takimi, że |i−i′|+ |k−k′| =

1, podobnie jak w grafie Hn.
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Fakt. Grafy Hn, H
′
n są izomorficzne.

Mamy proste kryterium stwierdzające, które pary (i, k), i, k ≤ n odpowiadają węzłom grafu H ′n.

Fakt.
Niech W (m) będzie zbiorem pozycji zawierających jedynkę w zapisie binarnym liczby m. Zachodzi(

n

k

)
(mod 2) = 1 ⇔ W (k) ⊆W (n)

Przykład. Dla n = 6 = [110], k = 4 = [010] mamy W (n) = {1, 2}, W (k) = {2}, zatem W (k) ⊆ W (n) and(
n
k

)
(mod 2) = 1.

Powyższy fakt wynika prosto z następującego trudniejszego twierdzenia odkrytego przez Lucasa.

Twierdzenie 1. Niech p – liczba pierwsza, oraz niech:

r = (rk, rk−1, . . . , r0), c = (ck, ck−1, . . . , c0)

będą reprezentacjami liczb c ≤ r w systemie liczbowym o podstawie p. Zachodzi(
r

c

)
≡

r∏
i=0

(
ri
ci

)
(mod p).

Uzasadnienie twierdzenia.
Skorzystamy z następującej równości:

(1 + x)p
m

= 1 + xp
m

(mod p). (1)

Uzasadninie pozostawiamy czytelnikowi.

Wykorzystamy też trochę manipulacji na wielomianach, przyrównując współczynnik przy c-tej potędze zmien-
nej x w pewnym wielomianie W (x), obliczenia są modulo p:

W (x) = (1 + x)r ≡
k∑
t=0

(
r

t

)
On the other hand, due to Równanie 1 mamy:

W (x) ≡
k∏
i=0

[(1 + x)p
i
)]ri ≡

k∏
i=0

(

ri∑
j=0

(
ri
j

)
xj·p

i
)

Współczynnik przy xc w ostanim iloczynie wynosi

r∏
i=0

(

(
ri
ci

)
(mod p) )

Jednocześnie ten wsółczynnik jest równy
(
r
t

)
. Stąd wynika praawdziwość tezy.

2 Więcej niż 3 wieże

Mamy n krążków i m > 4 wieże. Problem staję sie teraz dużo bardziej skomplikowany, nie jest znany żaden
efektywny algorytm na optymalny cią ruchów.

Opiszemy pewną klasę algorytmów. Algorytm Frame-Stewart’a:

1. Rekurencyjnie przenieś stos n − ζn najmniejszych krążków z początkowej wieży do tymczasowej wieży
T , używając wszystkich m wież.
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Rysunek 1: Trójkąt Pascala z wyciętymi elementami podzielnymi przez 3.

2. Przenieś pozostały stos ζn największych krążków z początkowej wieży na docelową wieżę, używając m−1
wież (wszystkich poza wieżą T ).

3. Rekurencyjnie przenieś stos n − ζn najmniejszych krążków z wieży T na wieżę docelową, używając
wszystkich m wież.

Algorytm nie jest całkowicie wyspecyfikowany ponieważ nie podaje explicite wartości ζn rekurencyjnego
podziału. Trzeba tak te wartości wybrac, żeby było optymalne w tej klasie. Dla 4 wież podamy dokładnie jak
wyliczyć szybko ζn.

Niech wartość FS(n, m) oznacza minimalną liczbę ruchów potrzebną do przeniesienia wszystkich n krążków
z wieży początkowej do wieży końcowej, mając do dyspozycji m wież. Korzystając z powyższego algorytmu
otrzymujemy wzór:

FS(n, m) =

{
2n − 1 dla m = 3
min

16p<n
{2FS(n− p, m) + FS(p, m− 1)} dla m > 4

Problem z tym algorytmem jest taki, że nie ma żadnego dowodu, że działa (ale wygląda, jakby działać
miał). Eksperymentalnie sprawdzono jego poprawność dla m = 4 i n 6 30.

W algorytmie Frame-Stewart obliczane jest najlepsze p, dla którego opłaca się wykonać operację przenie-
sienia najmniejszych n−p krążków na tymczasowy stos. Obliczanie jest wykonywane niejako naiwnie, poprzez
szukanie minimum po kolejnych p = 1 . . . n − 1. W przypadku 4 wież Hanoi odpowiednie p można znaleźć
bezpośrednio.

Obserwacja 1. Dla n = 3 . . . 5 (czyli dla trzech kolejnych) mamy p = 2, dla n = 6 . . . 9 (czyli dla czte-
rech kolejnych) mamy p = 3 itd. Wartości n dla pierwszych „wystąpień” danej wartości p to odpowiednio
3, 6, 10, 15 . . . czyli ∆k =

(
k+1
2

)
= k(k+1)

2 dla kolejnych wartości k.

Twierdzenie 2. Dla n = ∆k =
(
k+1
2

)
zachodzi FS(n, 4) = (k − 1)2k + 1.

Dowód. Dowód indukcyjny. Łatwo sprawdzić, że zachodzi FS(∆1, 4) = 1 i FS(∆2, 4) = 5, zatem na początku
jest dobrze. Weźmy teraz jakieś FS(∆i, 4) dla i > 2. Z wcześniejszej obserwacji wynika, że dla liczby krążków
n = ∆i, ∆i + 1, . . . , ∆i + i = ∆i+1 − 1 zachodzi p = i. Zatem

FS(∆i, 4) = 2 · FS(∆i − i, 4) + FS(i, 3)

= 2 · FS(∆i−1, 4) + 2i − 1

= 2 ·
(
(i− 2)2i−1 + 1

)
+ 2i − 1

= (i− 2)2i + 2i + 1

= (i− 1)2i + 1

Wniosek 1. Dla problemu 4 wież Hanoi z liczbą krążków n, górne ograniczenie na liczbę ruchów wynosi 2c·
√
n.
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Przykład. Dla każdego n istnieje konfiguracja 3 wież, w której wystarczy 2n−2 + 1 ruchów do uaktywnienia
wszystkich krążków. Konfiguracja ta to n− 2 najmniejsze krążki na pierwszej wieży, pozostałe dwa na drugiej
wieży. Przekładamy krążek n − 1 na trzecią wieżę, potem n − 2 najmniejszych na trzecią wieżę, a następnie
krążek n na pierwszą wieżę.

2.1 Dolne ograniczenie na liczbę ruchów (z pracy Mario Szegedy)

Mario Szegedy udowodnił, że dla 4 wież minimalna liczba ruchów xn spełnia:

2c·
√
n 6 xn 6 2c

′·
√
n

dla pewnych stałych c, c′.
Dowód opiera się na założeniu, że pomiędzy konfiguracją początkową a końcową każdy krążek przemiesz-

cza się przynajmniej raz. Pierwsze przemieszczenie nazywamy aktywacją krążka. Dzięki takiemu podejściu
można przeprowadzić dowód indukcyjny po liczbie wież. Wszędzie dalej zakładamy, że liczba krążków n > 2.

Dla trzech wież Weźmy dowolną początkową konfigurację n krążków i sekwencję ruchów S, po których
każdy krążek jest aktywny (co nie znaczy, że każdy krążek ruszył się tylko jeden raz). Powiedzmy, że największy
krążek jest aktywowany w ruchu i-tym. W takim razie zarówno w ruchu (i−1)-szym oraz (i+1)-szym wszystkie
pozostałe krążki znajdują się na jednej wieży. Podzielmy sekwencję ruchów S na trzy części S = S1SiS2, gdzie
Si oznacza ruch i-ty, S1 oznacza prefiks S, składający się z wszystkich ruchów wykonanych przed ruchem i-tym
oraz S2 oznacza sufiks S, składający się z wszystkich ruchów wykonanych po ruchu i-tym.

W zależności od konfiguracji początkowej, przedostatni co do wielkości krążek nie musi zostać aktywowany
przed ruchem i-tym – jego pierwszy ruch może występować zarówno w S1 jak i S2. Bez straty ogólności
przyjmijmy, że przedostatni co do wielkości krążek aktywowany jest gdzieś w S2. Oznacza to, że sekwencja
ruchów S2 zawiera rozwiązanie dla problemu 3 wież Hanoi dla n− 2 najmniejszych krążków, czyli |S2| > 2n−2

(2n−2 − 1 ruchów to standardowe rozwiązanie problemu wież Hanoi dla n− 2 krążków, a +1 ponieważ jeszcze
ruszyliśmy przedostatni co do wielkości krążek).

Z tego wynika, że |S| > 2n−2 + 1 ponieważ S zawiera przynajmniej jeden ruch więcej, niż S2 – jest to ruch
i-ty. S1 może być puste.

Przykład. Dla każdego n istnieje konfiguracja trzecj wież, w której wystarczy 2n−2 + 1 ruchów do uaktyw-
nienia wszystkich krążków. Konfiguracja ta to n − 2 najmniejsze krążki na pierwszej wieży, pozostałe dwa
na drugiej wieży. Przekładamy krążek n − 1 na trzecią wieżę, potem n − 2 najmniejszych na trzecią wieżę,
a następnie krązek n na pierwszą wieżę.

Dla czterech wież Niech H ′k(n) będzie minimalną liczbą ruchów potrzebnych do aktywacji n krążków na k
wieżach, minimum bierzemy po wszystkich konfiguracjach. Wiemy że dla 3 wież zachodzi:

H ′3(n) = 2n−2 + 1

Fakt zachodzenia (∀x∈A, y∈B x < y) zapisujemy jako A < B.

Stwierdzenie 1. Jeśli mamy na 4 wieżach zbiór M1 składający się z m1 krążków i zbiór M2 składający się z
m2 krążków, wszystkie krążki z M2 na tej samej wieży oraz M1 < M2, to aktywacja wszystkich z M2 wymaga
min{H ′4(m1), 2m2−2} ruchów.

Dowód. Jeśli w czasie aktywacji M2 wszystkie krążki z M1 stają się aktywne to musimy wykonać co naj-
mniej H ′4(m1) ruchów, w przeciwnym przypadku jeden z krążków z M1 blokuje ciągle tę samą wieżę dla M2

i do aktywacji M2 musimy wykonać co najmniej H ′3(M − 2) 6 2m2−2 ruchów.

Zacznijmy od oczywistego faktu rachunkowego.

Stwierdzenie 2. Jeśli funkcja f spełnia

∀k>1 f(k) > min{2 · f(k − 1), ∆}, f(1) = c′ > 0

to zachodzi
f(k) > min{2k · c′, ∆}



2 WIĘCEJ NIŻ 3 WIEŻE 7

Twierdzenie 3. H ′4(n) > 2c·
√
n dla pewnej stałej c > 0

Dowód. Ustalmy n i niech α = 8 ·
√
n. Niech

f(k) = H ′4(k · α), ∆ = 2
√
n−2

Udowodnimy, że f, ∆ spełniają założenia stwierdzenia 2.

Na jednej z wież znajduje się zbiór Y co najmniej α
4 = 2 ·

√
n spośród α największych krążków. Poza tym

mamy zbiór M1 składający się z (k − 1)α najmniejszych krążków. Niech

M ′2 ∪M ′′2 = Y

gdzie M ′1 < M ′′2 będzie rozbiciem Y na dwie części. Musimy uaktywnić M ′1, a następnie M ′′1 . Za każdym
razem zgodnie ze stwierdzeniem 1 wykonujemy co najmniej min{f(k− 1), 2m2−2} ruchów. W sumie dwa razy
tyle. Teraz teza wynika ze stwierdzenia 2.

Oznaczmy w skrócie FS(n, 4) = FS4(n). Mamy z definicji

FS4(n) = min
j>1

2 · FS4(n− j) + 2j − 1.

Przyjmijmy FS4(0) = 0 oraz
przyrost(n) = FS4(n)− FS4(n− 1).

W poniższej tabelce kolejne liczby trójkątne są pogrubione:

n : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FS4(n) : 1 3 5 9 13 17 25 33 41 49 65 81 97 113 145
przyrost(n) : 1 2 2 4 4 4 8 8 8 8 16 16 16 16 16 32

Ciąg przyrost(n) jest bardzo regularny – mamy jedną jedynkę, dwie dwójki, trzy czwórki, cztery ósemki, pięć
szsnastek itd. Inaczej mówiąc, kolejny blok potęg dwójki to k + 1 potęg 2k, dla k = 0, 1, 2, 3, . . ..

Fakt. Załóżmy, że 0 6 r 6 k, wtedy:

(a) FS4(∆k + r) = (r + k − 1)2k + 1

(b) FS4(∆k + r) = 2 · FS4(∆k + r − k) + 2k − 1

(b) Optymalną waartościa ζn jest liczba k.

Dygresja. Dla 5 wież ciąg przyrostów liczb FS5(n) wygląda początkowo następująco.

n : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
przyrost(n) : 1 2 2 2 4 4 4 4 4 4 8 8 8 8 8

Mamy ∆1 razy 20, ∆2 razy 21, ∆3 razy 22, ∆4 razy 23 itd. Inaczej mówiąc, kolejny blok potęg dwójki to ∆k+1

potęg 2k, dla k = 0, 1, 2, 3, . . ..
Tak więc dla dowolnej ustaloneh liczby wież wyliczenie optymalnego parametru ζn dla podziału rekurencyjnego
w algorytmie klasy FS jest kwestią dosyć żmudnych rachunków, ale jest komputerowo szybko obliczalne.

Hipoteza Frame’a-Stewarta. Algorytm typu FS z optymalnym doborem parametru ζn daje minimalną
liczbe ruchów w problemie m wież Hanoi dla ustalonego m ≥ 4.
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2.2 Cykle Hamiltona w grafie 4 wież

Grafy dla 4 wież są skomplikowane i mają dużą liczbę cykli Hamiltona.

14

44

34 24

21

11

31 41

32

22

12 42

23

33

43 13

Graf dla 2 krążków i 4 wież, graf ten ma 6 · 34 = 486 cykli Hamiltona.

W każdym małym K4 (klika 4-wierzchołkowa jako podgraf indukowany) do cyklu Hamiltona możemy
wybrać 3 lub 2 krawędzie. Zacznijmy od przypadku, gdy w każdym K4 bierzemy po 2 krawędzie (przykład
na rysunku 2). Jest a = 6 takich cykli (przykładowy graf możemy odbić symetrycznie lewo-prawo, dodatkowo
na 3 sposoby możemy wybrać, które krawędzie wybierzemy z górnej K4). Teraz popatrzmy na dwie krawędzie
wychodzące z wierzchołka małego K4 (np. (42)− (41)− (43)). Możemy je ściągnąć do krawędzi (42)− (43),
natomiast opuszczony wierzchołek możemy odwiedzić wybierając 3 krawędzie w środkowym K4 (możemy to
zrobić na b = 2 sposoby). W grafie możemy ściągnąć i = 0 . . . 4 krawędzi, możemy je wybrać na

(
4
i

)
sposobów.

Zatem liczba cykli to
4∑
i=0

a ·
(

4

i

)
· bi = a · (1 + b)4 = 6 · 34 = 486

Pozostaje pokazać, że cykli nie ma więcej. Weźmy dowolny cykl (np. ten z rysunku 3) i rozważmy K4,
w którym wybrano 3 krawędzie (np. środkowe). Rozważmy wierzchołek (21), który nie łączy K4 z resztą grafu
(zatem krawędzie (21)− (24) i (21)− (23) nie są wybrane). Teraz pokażemy, że krawędź (24)− (23) musi być
wybrana do cyklu; z tego wynika, że możemy dokonać na niej operacji odwrotnej do ściągnięcia, zatem każdy
cykl powstaje za pomocą operacji ściągnięcia krawędzi.

Dla małego K4 jeden z jego nieśrodkowych wierzchołków nazwiemy typu A, jeśli prowadzi do niego krawędź
cyklu, która łączy K4 z resztą grafu. Jeśli (24)− (23) nie była wybrana, to wierzchołki (24) i (23) muszą mieć
po 2 wybrane krawędzie w swoich K4, zatem wierzchołki (34), (14), (43) i (13) są typu A. Ponieważ (41) jest
typu A, to albo (41)−(43) musi być wybrana, albo (41)−(42)−(43) muszą być wybrane. W obu przypadkach
(42) nie może być wierzchołkiem typu A. Analogicznie (32) nie może być typu A. Zatem lewy K4 ma co
najwyżej jeden wierzchołek typu A, a to jest niemożliwe.

3 Generowanie obiektów kombinatorycznych

W rozdziale tym pokażemy jak generować ciągi prostych obiektów kombinatorycznych w taki sposób, aby ko-
lejne dwa obiekty różniły się niewiele. Inaczej mówiąc szukamy teracyjnej metody generowania ścieżki/cyklu
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Rysunek 2: Przykład cyklu Hamiltona pierwszego typu.
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Rysunek 3: Cykl Hamiltona drugiego typu, który wchodząc do każdego K4 przechodzi go w całości.
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Rysunek 4: Przykład innego cyklu Hamiltona.
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Rysunek 5: Jeszcze inny cykl Hamiltona.
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Hamiltona w grafie, którego krawędzie odpowiadają bliskości obiektów, a obiektami są kombinacje, permutacje
itp. Charakterystyczne jest to, że nasze grafy są z reguły wykładniczej wielkości, a funkcja generacji kolejnego
obiektu ma złożoność relatywnie małą (stałą lub liniową)

W szczególności niech K(n, k) oznacza rodzinę podzbiorów k-elementowych zbioru n-elementowego. Jeśli
chcemy je generować np. leksykograficznie, tzn. jeśli zapiszemy wygenerowaną kombinację jako ciąg binarny,
gdzie bi = 0 oznacza nienależenie elementu i-tego do kombinacji, a bi = 1 jego należenie, to generujemy kolejno
wszystkie ciągi binarne n-elementowe o dokładnie k zapalonych jedynkach.

Najmniejsza odległość Hamminga pomiędzy tak wygenerowanymi kombinacjami wynosi 2. Jeśli stworzymy
graf taki, że każdy węzeł jest tożsamy z jedną kombinacją, a krawędzie przebiegają między wierzchołkami,
między którymi dla ich ciągów odległość Hamminga wynosi 2, to w takim grafie ścieżka Hamiltona wygeneruje
wszystkie kombinacje.

3.1 Ciągi Graya – ścieżki Hamiltona w kostce n-wymiarowej

Ciąg Graya rzędu n oznaczamy przezG(n) – lista wszystkich ciągów binarnych długości n, każdy ciąg występuje
dokładnie raz, odległość Hamminga między kolejnymi obiektami wynosi 1 (minimalna).

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Rysunek 6: Cykl Hamiltona w hiperkostce 4-wymiarowej. Dla czytelności pominięto krawędzie łączące dwa
sześciany (poza krawędziami należącymi do cyklu).

Algorytm rekurencyjny:
G(0) = ∅; G(n) = 0G(n− 1); 1G(n− 1)R

Ten algorytm rekurencyjnie znajduje ścieżki Hamiltona w hiperkostkach coraz mniejszych wymiarów.

Algorytm iteracyjny:

• co drugi krok (poczynając od pierwszego) zamieniamy ostatni bit,

• w pozostałych krokach zmieniamy bit przed ostatnią (na prawo) jedynką.

Algorytm za pomocą wzoru na k-ty element ciągu G(n) (konwertując liczby na zapisy binarne):

g(k) = k ⊕
⌊
k

2

⌋
3.2 Generacja kombinacji poprzez wymiany dwóch bitów

Kolejne ciągi w kodzie Graya z k jedynkami dają generację k-podzbiorów z minimalnymi zmianami.

G(n, k) = 0G(n− 1, k); 1G(n− 1, k − 1)R
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Jak z tego zrobić algorytm, w którym jedna iteracja jest w pamięci O(n) i czasie O(1)? Opiszemy zupełnie
inny algorytm. Niech π będzie ciągiem zerojedynkowym reprezentującym k-kombinacje n elementów.

Wprowadzamy wektor aktywności A[1..n]: A[i] = 1 gdy pozycja i aktywna. Oznaczmy przez last(A)
ostatnią (najbardziej na prawo) pozycję aktywną. Jeśli takiej pozycji nie ma, to last(A) = ∅. Niech operacja
UaktywnijPo(k) oznacza uaktywnienie wszystkich pozycji większych od k.
Algorytm 1: Kombinacje przez zamiany
1 π := jakakolwiek kombinacja n po k;
2 UaktywnijPo(0);
3 repeat
4 wypisz kombinację π;
5 k := last(A);
6 if k = ∅ then
7 STOP;
8 W ciągu π wymień π[k] z przeciwnym bitem na jakiejkolwiek pozycji na prawo;
9 A[k] := 0;

10 UaktywnijPo(k);
11 until forever ;

Rozważmy inny algorytm, w którym wykonujemy jedną zamianę bitów, a między zamienianymi pozycjami
są same zera. Chcemy mieć taką sztywniejszą wersję poprzedniego algorytmu, w której pozycja na prawo od k,
z którą jest wymieniany bit jest jak najwężej wyspecyfikowana.

Niech PierwJed(k) oznacza pozycję pierwszej jedynki w π na prawo od k; jeśli na prawo nie ma jedynki
to PierwJed(k) = n + 1. Żądamy, aby algorytm spełniał ponadto następujący niezmiennik: na prawo od k
jest co najwyżej jeden blok jedynek, algorytm zaczyna i kończy się w sytuacji z jednym blokiem jedynek.
Algorytm 2: Kombinacje przez ścisłe zamiany
1 π := [1k0n−k];
2 UaktywnijPo(0);
3 repeat
4 wypisz kombinację π;
5 k := last(A);
6 if k = ∅ then
7 STOP;
8 if π[k] = 1 then
9 Wymień π[k] z bitem na pozycji PierwJed(k)− 1;

10 else
11 Wymień π[k] z bitem na pozycji PierwJed(k);
12 end
13 A[k] := 0;
14 UaktywnijPo(k);
15 until forever ;

Ponieważ algorytm jest dość „sztywny” można go zaimplementować tak, aby jedna iteracja była w czasie
O(1) (pamięć liniowa – wektor A).

3.3 Generacje prefiksowe

Oznaczmy przez shiftk operację cyklicznego przesunięcia k-tego prefiksu, polega ona na przesunięciu elementu
k-tego na początek ciągu.

Opiszemy kilka algorytmow generacji – permutacji, kombinacji, permutacji multizbiorów, ciągów repre-
zentujących drzewa binarne. W tych algorytmach istotne będzie jaki jest pierwszy obiekt (start), a czasami
również jaki ostatni (finish).
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Generacja permutacji

Oznaczmy permutacje przez π (tablica od 1 do n). W tym przypadku start = [1, 2, . . . , n].
Algorytm 3: Prefiksowe generowanie permutacji
1 π := [1, 2, . . . , n];
2 k := n+ 1;
3 repeat
4 if (k 6 n) ∧ (π[k] = k) then
5 k := k − 1;
6 else
7 Wypisz permutację π;
8 k := n;
9 end

10 if k = 1 then
11 STOP;
12 π := shiftk(π);
13 until forever ;

Dla n = 4 algorytm wygeneruje kolejno:
1234 4123 3412 2341 3124 4312 2431 1243 2314 4231 1423 3142
2134 4213 3421 1342 3214 4321 1432 2143 1324 4132 2413 3241

Generacja kombinacji

Oznaczmy kombinację typu n, k również przez π (tablica od 1 do n). Jest to ciąg zerojedynkowy mający
k jedynek i n − k zer. W tym przypadku start = 1k0n−k, finish = 1k−10n−k1. Potrzebna nam funkcja
pierwszego skoku w ciągu, oznaczmy ją przez

PozSkoku(π) = min{k : (π[k] > π[k − 1]) ∨ (k = |π|+ 1)}

gdzie |π| oznacza długość ciągu. Na przykład PozSkoku([1, 1, 0, 0, 1, 0, 0]) = 5

Algorytm 4: Prefiksowe generowanie kombinacji
1 π := [1k0n−k];
2 repeat
3 Wypisz kombinację π;
4 k := PozSkoku(π);
5 if k = n then
6 STOP;
7 j := min{k + 1, n};
8 π = shiftj(π);
9 until forever ;

Dla k = 3, n = 6 algorytm wygeneruje:
111000 011100 101100 110100 011010 101010 010110 001110 100110 110010
011001 101001 010101 001101 100101 010011 001011 000111 100011 110001

Zauważmy, że w pierwszym wierszu mamy sufiks 0, w drugim sufiks 1. Jeśli obetniemy ostatnie zero to
otrzymamy ciąg dla n = 5, k = 3; jeśli obetniemy ostatnie 1 to otrzymamy ciąg dla n = 5, k = 2, ale
zaczynający się w generacji w drugiej kombinacji.

Inaczej mówiąc w obu przypadkach mamy rekurencję, z tym że w przypadku ciągów z sufiksem 1 mamy
rekurencyjny ciąg, ale cyklicznie przesunięty. Zauważmy, że w jednej iteracji zmieniamy co najwyżej 4 bity.
Można jedną iterację zaimplementować tak, by działała w czasie O(1) i pamięci O(1).

Niech
−→
A oznacza ciąg, w którym, pierwszy element staje się ostatnim, tzn. przykładowo:

A
−→
A

0011 0101
0101 0110
0110 1001
1001 0011
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Ten algorytm rekurencyjnie generuje ciąg binarny wszystkich kombinacji według schematuRt, s = Rt, s−10;
−−−−→
Rt−1, s1.

Podobne do generacji koleksykograficznej (leksykograficznej patrząc od końca ciągu)

colexk, t = colexk, t−1 0; colexk−1, t 1

3.4 Generacja ciągów zrównoważonych, korzystając z shift

Tak naprawdę generacja pewnych kształtów drzew binarnych. Będzie to generacja analogiczna w pewnym
sensie do kodów Graya – w drzewach binarnych będziemy zmieniać tylko stałą liczbę wskaźników generując
kolejny element ciągu. Drzewa zwykle zapisuje się w postaci ciągu nawiasowego, tutaj zmieniamy ( na 1 i )
na 0. Sposób reprezentacji drzewa za pomocą takiego ciągu:

1

1 1

1 0 0

0 0

0

Przejście w porządku preorder daje ciąg 111000100 – zawsze jest jedno zero więcej. Zwykle będziemy z tego
zapisu odcinać pierwszą cyfrę (jedynkę – korzeń) i ostatnią (zero – skrajnie prawy liść), nie tracąc żadnej
informacji. Będziemy generować ciągi o takiej własności, że dowolny prefiks ciągu ma co najwyżej o jedno zero
więcej niż jedynek.
Algorytm 5: Prefiksowe generowanie ciągów zrównoważonych
1 π := [01n−10n−1];
2 repeat
3 Wypisz ciąg π;
4 k := PozSkoku(π);
5 if k = |π|+ 1 then
6 STOP;
7 if shiftk+1(π) poprawny then
8 π := shiftk+1(π);
9 else

10 π = shiftk(π);
11 end
12 until forever ;

Dla n = 4 algorytm wygeneruje:

0111000 1011000 1101000
0110100 1010100 0101100 1001100 1100100
0110010 1010010 0101010 1001010 0101010 1001010 1100010
1110000

W kolejnych wierszach (pomijając ostatni) mamy sufiksy 1000, 100, 10.
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1 011 1000

2 101 1000

3 110 1000

4 0110 100

5 1010 100

6 0101 100

7 1001 100

8 1100 100

9 01100 10

10 10100 10

11 01010 10

12 10010 10

13 11000 10

Zauważmy, że w jednej iteracji zmieniamy O(1) bitów. Można jedną iterację zaimplementować tak, żeby
działała w czasie O(1) i pamięci O(1).

Algorytm generuje kształty drzew binarnych, dla każdego drzewa binarnego dołączamy do każdego liścia
dwóch synów — sztuczne dwa liście, oraz do każdego węzła z jednym synem dodatkowego sztucznego syna.
Przechodzimy drzewo preorder i wypisujemy 1 gdy mamy oryginalny węzeł albo 0 gdy sztuczny. Pierwszą
jedynkę i ostatnie zero obcinamy. W ten sposób mamy odpowiedniość między zrównoważonymi ciągami i drze-
wami binarnymi. Operacja przesunięcia prefiskowego zmienia w drzewie O(1) wskaźników typu ojciec↔ syn.

3.5 Generacja anagramów – permutacje multizbiorów

Mamy alfabet składający się zm liter {1, 2, . . . , m}. Przypuśćmy, że mamy fi kopii litery i dla 1 6 i 6 m. Taki
zbiór liter nazywamy multizbiorem M . Anagramem dla M jest dowolny ciąg (słowo) zawierające fi razy literę
i dla każdego i. Oznaczmy przz Anag(M) zbiór wszystkich anagramów. Chcemy wygenerować wszystkie
anagramy z Anag(M) poprzez cyklicznie przesuwanie prefiksów. Niech max(M) oznacza leksykograficznie
maksymalny anagram, tzn.

max(M) = mfm(m− 1)fm−1 . . . 2f21f1

Na przykład dla M = {1, 1, 2, 3, 3, 4, 4, 4} mamy max(M) = 4 4 4 3 3 2 1 1. Niech n będzie długością ana-
gramu.
Algorytm 6: Prefiksowe generowanie anagramów
1 π := shiftn(max(M));
2 repeat
3 Wypisz anagram π;
4 k := PozSkoku(π);
5 if k = |π|+ 1 then
6 STOP;
7 if (k = n) ∨ (π[k − 1] < π[k + 1]) then
8 π := shiftk(π);
9 else

10 π = shiftk+1(π);
11 end
12 until forever ;

Przykład: przypuśćmy, żeM = {1, 1, 2, 2, 3}. Wtedy max(M) = 3 2 2 1 1 i algorytm wygeneruje następujący
ciąg anagramów:

13221 31221 23121 12321 21321 32121 13212 31212 13122 11322
31122 23112 12312 21312 12132 21132 32112 23211 22311 12231
21231 22131 12213 21213 21213 12123 11223 21123 22113 32211
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4 Gwiazdowe generowanie permutacji

Rozważamy tylko transpozycje pewnego elementu z pierwszym, graf takich transpozycji jest gwiazdą. Załóżmy,
że numerujemy pozycje permutacji π od zera. Interesuje nas generacja ciągu pozycji, które wymieniamy kolejno
z elementem na pozycji 0. Niech En będzie ciągiem dla wygenerowania wszystkich permutacji n-elementowych.
Chcemy, żeby En był prefiksem En+1, czyli otrzymujemy nieskończony ciąg E∞.

Poniżej wypisujemy ciąg E5 generujący wszystkie permutacje zbioru 5-elementowego. Pozycje permutacji
numerujemy od zera. W i-tym kroku zamieniamy π[E5[i]] z π[0].

1 2 1 2 1 3 2 1 2 1 2 3 1 2 1 2 1 3 2 1 2 1 2 4
3 1 3 1 3 2 1 3 1 3 1 2 3 1 3 1 3 2 1 3 1 3 1 4
1 2 1 2 1 3 2 1 2 1 2 3 1 2 1 2 1 3 2 1 2 1 2 4
3 1 3 1 3 2 1 3 1 3 1 2 3 1 3 1 3 2 1 3 1 3 1 4
1 2 1 2 1 3 2 1 2 1 2 3 1 2 1 2 1 3 2 1 2 1 2

Opiszemy jak gwiazdowo generować permutacje zbioru {1, 2, . . . , n}, ciąg E wymienianych pozycji w trakcie
algorytmu jest generowany. Oznaczmy

ρ!(k) = max{j : j! | k}

Na przykład ρ!(12) = 3, ρ!(44) = 2, ρ!(13) = 1. Wykorzystamy tablicę (ciąg kontrolny) B[1..n], początkowo
będący identycznością.
Algorytm 7: Gwiazdowe generowanie permutacji
1 ∀i∈{1, 2,..., n} B[i] := 1;
2 π := [1, 2, . . . , n];
3 Wypisz permutację π;
4 for i := 1 to n!− 1 do
5 k := ρ!(i);
6 Zamień π[0] z π[B[k]];
7 Wypisz permutację π;
8 En[i] := B[k];
9 Odwróć kolejność elementów B[1..k − 1];

10 end

4.1 Generowanie podzbiorów k-elementowych przez sąsiednie wymiany

Chcemy wygenerować wszystkie zbiory z K(n, k) tak, że dla kolejnych dwóch zbiorów w ciągach je reprezen-
tujących zamieniają się tylko sąsiednie bity. Np. dla K(4, 2):

1100 1010

0110

1001

0101 0011

Jak widać w takim grafie nie ma cyklu Hamiltona, bo istnieją węzły o stopniu 1. Możemy więc szukać
ścieżki Hamiltona, ale okazuje się, że ona też istnieje tylko w niektórych grafach.

Lemat 1. Graf K(n, k) jest dwudzielny.

Dowód. Graf dwudzielny nie ma cykli o nieparzystej długości. Aby wychodząc z jakiegoś wierzchołka v można
było do niego wrócić, należy wykonać parzystą liczbę zamian (czyli przejść po krawędziach), ponieważ każda
zamiana zmienia o 2 odległość Hamminga.

Twierdzenie 4. Istnieje ścieżka Hamiltona w grafie K(n, k) wtedy i tylko wtedy, gdy n jest parzyste i k jest
nieparzyste (oprócz specjalnego przypadku k = 1 ∨ k = n− 1).
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Dowód. Poniższy dowód obejmuje konstrukcję ścieżki Hamiltona dla grafów z podanej klasy, ale nie obejmuje
pokazania, że w grafach dla pozostałych wartości n i k cykl Hamiltona nie istnieje.

Graf K(n, k) = G(V, E) jest dwudzielny: V = V1 ∪ V2. Dla takich grafów |V1| − |V2| ∈ {−1, 1}. Niech
K(n, k) = A(n, k) ∪B(n, k) ∪ C(n, k) ∪D(n, k), gdzie:

• A(n, k) indukowany przez 11(0 + 1)∗, A(n, k) ≡ G(n− 2, k − 2)

• B(n, k) indukowany przez 00(0 + 1)∗, B(n, k) ≡ G(n− 2, k)

• C(n, k) indukowany przez 10(0 + 1)∗, C(n, k) ≡ G(n− 2, k − 1)

• D(n, k) indukowany przez 01(0 + 1)∗, D(n, k) ≡ G(n− 2, k − 1)

Ścieżka Hamiltona ma postać 1+0+
∗→ 0+1+. Graf K(n, k) ma dwa wierzchołki o stopniu 1, które będą

punktami początkowymi/końcowymi ścieżki Hamiltona.
Ponieważ podgrafy A i B są izomorficzne z mniejszymi grafami K, to przez indukcję istnieje w nich ścieżka

Hamiltona. Przejście z podgrafu A do B będzie przebiegać przez ścieżkę Hamiltona podgrafu C ∪D. Ścieżka
Hamiltona przebiegająca przez A ma postać 111∗0+ i kończy się na 110+1∗, czyli zaczynamy z wszystkimi
jedynkami po lewej stronie, a kończymy z wszystkimi poza dwoma ostatnimi po prawej. W ten sposób możemy
przejść do podgrafu C ∪D. Analogicznie wychodzimy z C ∪D do B (rysunek 7).

Grzebień to drzewo o maksymalnym stopniu wierzchołka co najwyżej 3 z dodatkową własnością – wszystkie
wierzchołki stopnia 3 leżą na jednej ścieżce (ścieżka główna). Jeśli v jest wierzchołkiem na ścieżce głównej, to
zębem grzebienia nazywamy najdłuższą ścieżkę, która przecina ścieżkę główną tylko raz i dokładnie w węźle
v. Jeśli stopień deg(v) < 3, to ząb składa się z pojedynczego wierzchołka v (jest trywialny), w przeciwnym
przypadku ma przynajmniej dwa wierzchołki.

Obserwacja 2. Podgrafy C(n, k) i D(n, k) są rozpinane przez grzebienie.

Ponieważ węzły z podgrafu C reprezentują ciągi 10w, a węzły z podgrafu D reprezentują ciągu 01w dla od-
powiednich w ∈ (0 + 1)∗, to możemy zbudować graf z grzebieni rozpinających C i D w taki sposób, że ist-
nieje krawędź 10w ←→ 01w dla odpowiednich w i nie naruszy to własności mówiącej o odległości Hamminga
równej 2 pomiędzy ciągami binarnymi reprezentowanymi przez sąsiadujące wierzchołki.

Pozostaje zatem znalezienie ścieżki Hamiltona od 1010+1∗ do 0101+0∗ w grafie zbudowanym ze sklejonych
grzebieni rozpinających podgrafy C i D. Wierzchołki {01, 10}10+1∗ i {01, 10}01+0∗ są punktami końcowymi
grzebieni dla (odpowiednio) C i D. Algorytm generowania ścieżki Hamiltona zaczyna od pierwszego punktu
końcowego grzebienia rozpinającego C i kończy na drugim punkcie końcowym grzebienia D. Przechodzenie
odbywa się następująco: w danym węźle v będącym na ścieżce głównej grzebienia C zejdź w dół zęba, przejdź
do odpowiadającego zęba grzebienia dlaD, przejdź w górę zęba do ścieżki głównejD, przemieść się do kolejnego
węzła na ścieżce głównej itd., aż do wylądowania na punkcie końcowym ścieżki głównej grzebienia dla D.
Ponieważ mamy założenie, że zarówno n jak i k są parzyste w podgrafach C i D, a ścieżka główna grzebienia
ma długość 1+(n−2)·(k−1) [ćwiczenie: dlaczego?], czyli nieparzystą, to zawsze można taką ścieżkę wyznaczyć.

5 Liczenie podziałów liczby: algorytm Eulera

Podziały liczb są bardzo skomplikowanymi obiektami kombinatorycznymi. Przedstawimy dwa algorytmy li-
czenia takich oblektów. Pierwszy prosty algorytm będzie działał w czasie O(n2) i pamięci O(n2), natomiast
drugi, pochodzący od Eulera i oparty na tzw. liczbach pentagonalnych, w czasie O(n

√
n) i pamięci O(n).

Podział π = (λ1, λ2, . . . , λr) to przedstawienie liczby n = λ1 + λ2 + . . .+ λr w postaci

n = λ1 + λ2 + . . .+ λr, gdzie λ1 > λ2 > . . . λr > 0

Wszystkie podziały liczby n, w porządku antyleksykograficznym, można wygenerować iteracyjnie następująco:
szukamy pierwszego λi > 2 od prawej strony, zastępujemy λi przez λi− 1, a pozostałe części na prawo dajemy
tak, aby sufiks na prawo od λi był jak największy. Na przykład podziały n = 5 w porządku antyleksykogra-
ficznym to:

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.
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11 1∗0+

11 0+1∗

10 10+1∗

01 01+0∗

00 1+0∗

00 0∗1+

Cn, k ∪Dn, k

A

B

Rysunek 7: Schemat ścieżki Hamiltona w grafie K.

100111 101011

110011

101101

110101

111001

101110

110110

111010

111100

011110

011101

011011

010111

001111

Rysunek 8: Przykładowy grzebień rozpinający graf K(6, 4). Węzły ścieżki głównej zaznaczone są kolorem
niebieskim.
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Oznaczmy przez p(n) liczbę podziałów liczby n, mamy:

n : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p(n) : 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231

Dla n < 0 przyjmijmy czysto formalnie, że p(n) = 0, natomiast p(0) = 1. Oznaczmy przez p(n, k) liczbę po-
działów liczby n na k częsci (niezerowych). Algorytm o czasie kwadratowym liczenia p(n) polega na policzeniu
(kwadratowej liczby) wartości p(n, k) na podstawie rekurencji:

p(n, k) =

{
0 dla k < n ∨ k 6 0
p(n− 1, k − 1) + p(n− k, k) w p.p.

Rekurencja wynika stąd, że mamy dwa przypadki:

(λk = 1) Wtedy mamy p(n− 1, k − 1) podziałów pomijając λk.

(λk > 1) Wtedy możemy odjąć jeden od każdego λi otrzymując podział liczby n− k na k części.

W celu szybszego policzenia p(n) rozważymy podziały na różne części, tzn.

λ1 > λ2 > . . . > λ1.

Niech p̃(n) będzie liczbą takich podziałów. Przez peven, p̃even, podd, p̃odd oznaczmy liczbę podziałów na (odpo-
wiednio) parzystą i nieparzystą liczbę części (o różnych rozmiarach w przypadku p̃). Na przykład p̃(15) = 27,
p̃odd(15) = 14, p̃even(15) = 13, patrz rysunek 11. Zauważmy, że liczby p̃(n) są przeważnie znacznie mniejsze
od liczb p(n) (chociaż na początku niewiele się różnią).

Możemy rónież zdefiniować p̃(n, k) – liczbę podziałów n na różne części. Na przykład p̃(50, 7) = 522,
co Euler policzył prawie 300 lat temu bez komputera (ani kalkulatora) tę konkretną wartość odpwiadając
na pytanie matematyka Ph. Naude.

Dygresja.
Liczba p̃(n) jest równa liczbie podziałów n na nieparzyste części (nie mylić z nieparzystą liczbą części).

Kluczową wartością jest zdefiniowana poniżej funkcja:

∆(k) = p̃odd(k)− p̃even(k)

Funkcje p(n) i p̃(n) są bardzo skomplikowane, natomiast jest zadziwiające, że ∆ jest bardzo prosta. Początkowe
wartości to:

k : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
∆(k) : 1 1 0 0 -1 0 -1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 -1

Leonard Euler odkrył dwie istotne (dla liczenia p(n)) własności funkcji ∆:

Własność 1: p(n) spełnia rekurencję:

p(n) =
n∑
k=1

∆(k) · p(n− k) (2)

Własność 2.
p̃odd(k)− p̃even(k) = ∆(k) = e(k). (3)

Jak widać z początkowych wartości ∆(k) jest ciągiem bardzo rzadkim (prawie same zera). Jest on obliczalny
łatwo za pomocą tzw. liczb pentagonalnch. Wartości ciągu to zera, +1 lub −1. Z tego, że ciąg ∆(n) jest bardzo
rzadki wynika, że dla policzenia p(n) tylko O(

√
n) wartości k jest niezerowych. Zatem p(n) liczymy w czasie

O(
√
n) znając p(n − 1), p(n − 2) . . . , p(0). W sumie mamy algorytm działający w czasie O(n

√
n) i pamięci

O(n), o ile potrafimy łatwo wylistować niezerowe wartości ∆(k).
Leonard Euler najpierw odkrył własności ∆ heurystycznie, a dopiero po 10 latach znalazł dowód (być może
nie zajmował się przez ten czas tym zagadnieniem).
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n = (3k−1)k
2 = 7 + 6 + 5 + 4 n = (3k+1)k

2 = 8 + 7 + 6 + 5

k = 4

h = 4

k = 4

h = 5

Rysunek 9: Trapezy rzędu k, gdzie k = 4, pierwszego typu ma pen(k) elementów, a drugiego typu ma pen(k)+k
elementów. Podziały odpowiadające tego typu trapezom nazywamy podziałami trapezowymi.

Możemy teraz zapisać algorytm (jedną iterację) liczenia p(n) następująco:

p(n) =
∑
i>1

(−1)i+1 ·
(
p(n− pent(i)) + p(n− pent(i)− i)

)
W równaniu tym korzystamy jedynie z wartości i takich, że pent(i) 6 n, mamy jedynie O(

√
n) takich wartości.

Liczby pent(i) możemy łatwo policzyć.

Twierdzenie 5. Liczby p(1), p(2), . . . , p(n) możemy policzyć w czasie O(n
√
n) i pamięci O(n).

Dowód własności 1

Uzasadnienie jest sprytną manipulacją algebraiczną, korzystającą z tego, że dwa wielomiany będące tą samą
funkcją mają takie same współczynniki przy tych samych potęgach zmiennej. Sztuczka polega na tym, żeby
te same wielomiany przedstawić na dwa różne sposoby. Z jednego wymnożenia otrzymujemy wynik, który
przyrównujemy do wymnożenia w innej formie. Zdefiniujmy:

φ(x) = (1 + x+ x2 + . . .+ xn), ψ(x) = 1− x

W1(x) =
n∏
i=1

φ(xi), W2(x) =
n∏
i=1

ψ(xi)

Wprowadżmy notację n
= dla równości wielomianów z dokładnością do potęg wyższych niż n. Inaczej mówiąc

bierzemy resztę z dzielenia przez xn+1. Zauważmy, że zachodzi dosyć łatwe równanie:

W1(x) ·W2(x)
n
= 1. (4)

Powyższa równość trochę przypomina sytuację w równości (1+x)(1−x) = 1−x2. Przedstawimy teraz te same
wielomiany w innej formie.

W1(x)
n
= p(0)x0 + p(1)x1 + p(2)x2 + . . .+ p(n)xn, W2(x)

n
= 1−∆(1)x2 −∆(2)x2 − . . .−∆(n)xn (5)

Z równania (4) dla n > 1 wynika, że współczynnik przy xn w iloczynieW1(x) ·W2(x) wynosi zero. Korzystając
z równania (5) możemy ten współczynnik przedstawić jako kombinacje iloczynów p(i), ∆(j), gdzie i+ j = n,
w rezultacie otrzymujemy:

p(n) · 1− p(n− 1) ·∆(1)− p(n− 2) ·∆(2)− p(n− 3) ·∆(3) . . .−∆(n) · p(0) = 0

Stąd wynika bezpośrednio równanie (2).
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23 = 7 + 6 + 5 + 3 + 2
bijekcja

23 = 8 + 7 + 5 + 3

k = 3

h = 2

k = 2

h = 3

Rysunek 10: Działanie funkcji F .

Dowód własności 2

W części tej rozważamy tylko podziały o różnych częściach. Dowód wymaga rozważenia interpretacji geome-
trycznej podziałów.

Podział liczby może być przedstawiony w postaci diagramu zwanego diagramem Ferrersa – w kolejnym
wierszu liczba elementów odpowiada liczbie λj . Diagramy Ferrersa dla przykładowych podziałów liczb 22 i 26
są przedstawione na rysunku 9. Są to bardzo szczególne podziały, które będziemy nazywać trapezowymi.

Podział trapezowy rzędu k pierwszego typu jest postaci (k+ k− 1, k+ k− 2, k+ k− 3, . . . , k) a drugiego
typu postaci (k + k, k + k − 1, k + k − 2, . . . , k + 1).

Obserwacja: Podział trapezowy mający pen(k) lub pen(k) + k elementów składa się z k części.

Liczbę n nazywamy liczbą trapezową, gdy istnieje podział n będący trapezowym. Zawsze jest co najwyżej
jeden taki podział dla danego n.

Obserwacja: Liczby trapezowe są postaci pen(j) lub pen(j) + j.

Dla trapezu π przez k(π) oznaczmy liczbę elementów na prawej diagonali poczynając od górnej prawej strony.
Jeśli odpowiadającym podziałem jest (a1, a2, . . . , ar) to k(π) jest największą liczbą naturalną taką, że ai−1 =
ai+1 dla i = 1, 2, . . . , k(π) − 1. Przez h(π) = ar oznaczmy liczbę elementów w najmniejszej części. Jeśli
podział nie jest trapezowy oraz h(π) 6 k(π) to F (π) jest podziałem powstającym z π przez dodanie do każdej
z pierwszych k(π) części po jednym elemencie i usunięcie najmniejszej (dolnej) części, patrz rysunek 10.

Podziały o parzystej (nieparzystej) liczbie częsci nazywamy parzystymi (nieparzystymi). Zauważmy, że funk-
cja F zmienia parzystość podziału. Zachodzi następujący, dość oczywisty fakt.

Własność funkcji F : F jest bijekcją między nietrapezowymi podziałami n z h(p) 6 k(π) i nietrapezowymi
podziałami n z h(p) > k(π).

p̃odd(k)− p̃even(k) =


1 gdy n jest nieparzystą liczbą trapezową
−1 gdy n jest parzystą liczbą trapezową
0 w przeciwnym przypadku.

Z powyższej własności wynika:

p̃odd(k)− p̃even(k) = e(k) dla kazdego k.

Więcej informacji na temat liczenia podziałów można znależć w:

http://www.math.psu.edu/vstein/alg/antheory/preprint/andrews/chapter.pdf

http://www.rowan.edu/colleges/csm/departments/math/facultystaff/osler/
89%20Surprising%20Connection%20Between%20Partitions%20and%20Divisors.pdf.pdf
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14 + 1 ←→ 15
13 + 2 ←→ 12 + 2 + 1
12 + 3 ←→ 11 + 2 + 1
11 + 4 ←→ 10 + 4 + 1
10 + 5 ←→ 9 + 5 + 1
9 + 6 ←→ 8 + 6 + 1
8 + 7 ←→ 7 + 6 + 2

7 + 5 + 2 + 1 ←→ 8 + 5 + 2
7 + 4 + 3 + 1 ←→ 8 + 4 + 3
9 + 3 + 2 + 1 ←→ 10 + 3 + 2
8 + 4 + 2 + 1 ←→ 9 + 4 + 2
6 + 5 + 3 + 1 ←→ 7 + 5 + 3
6 + 4 + 3 + 2 ←→ 5 + 4 + 3 + 2 + 1

6 + 5 + 4 podział trapezowy

Rysunek 11: Zgrupowanie podziałów nietrapezowych liczby n = 15 korzystając z funkcji F .

http://hkumath.hku.hk/mks/EulerHeuristicReasoning.pdf

Jako ćwiczenie propnujemy dowód równości:

p(n, 2) = b(n+ 1)/2c, p(n, 3) = {(n+ 3)2/12},

where {x} means the integer closest to x.

Nieoczekiwana relacja między funkcjami p(n) i σ(n)

Jako ciekawostkę podamy (bez uzasadnienia) pewien związek dwóch pozornie odległych funkcji p(n) i σ(n),
gdzie σ(n) oznacza sumę dzielników liczby n (włącznie z n). Mamy

n : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
σ(n) : 0 1 3 4 7 6 12 8 15 13 18 12 28 14 24 24 31

Dla funkcji σ zachodzi prawie taka sama rekurencja jak dla p(n), jedyna różnica to zastąpienie p(0) przez n
we wzorze (2). Funkcja σ(n) spełnia rekurencję:

σ(n) =
n−1∑
k=1

∆(k) · σ(n− k) + ∆(n) · n. (6)

Przykład. Dla n = 15 mamy:

σ(15) = σ(15− 1) + σ(15− 2)− σ(15− 5)− σ(15− 7) + σ(15− 12) + 15

= 24 + 14− 18− 15 + 4 + 15 = 24.

p(15) = p(15− 1) + p(15− 2)− p(15− 5)− p(15− 7) + p(15− 12) + p(0)

= 135 + 101− 42− 22 + 3 + 1 = 176.

Ponieważ wartości ∆(k) są związane z liczbami pentagonalnymi tak jak poprzednio, to wszystkie wartości
σ(n), σ(n − 1), . . . , σ(1) można policzyć w czasie O(n

√
n) i pamięci O(n), tak jak poprzednio zrobiliśmy

to dla wartości p(n). Zachodzi również inny zadziwiający związek:

σ(n) =
n∑
k=1

k ·∆(k) · p(n− k).

Jeśli n =
∏
pmi
i gdzie pi liczby pierwsze to

σ(n) =

∏
(pmi+1
i − 1)∏
(pi − 1)

Wydaje się, że liczenie σ dla wszystkich liczb 1, 2,. . . , n jednak jest szybsze korzystając ze wzoru (6) i liczb
pentagonalnych niż korzystając z ostatnego wzoru.
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Dygresja. Liczby σ(n) są związane z tzw. liczbami doskonałymi tzn. takimi, że σ(n) = 2n. Wiadomo, że
n parzyste jest doskonałe wtedy i tylko wtedy, gdy n = 2p−1(2p − 1), gdzie p i 2p − 1 są pierwsze, np. dla
p = 11213, p = 30402456 (43. liczba doskonała). Pierwszych 7 liczb doskonałych to:

6, 28, 496, 8128, 33 550 336, 8 589 869 056, 137 438 691 328.

Pierwsze 4 liczby doskonałe policzył już Euklides. Kilka następnych Euler. Potem już był potrzebny komputer.
Nie wiadomo czy liczb parzystych doskonałych jest nieskończenie wiele, ani też czy istnieje choćby jedna
nieparzysta liczba doskonała.

Permutacje a liczby pentagonalne

Zdefiniujmy b(n, k) jako liczbę n-permutacji mających k inwersji, oraz c(n, j) =
(
n+j−1

j

)
, gdzie c(n, j) = 0

dla j < 0. Wtedy dla k ≤ n mamy:

b(n, k) = c(n, k) +
∑
i

(−1)i · (c(n, k − pent(i)) + c(n, k − pent(i)− i))

Otóż b(n, k) jest równe liczbie ciągów (a1, a2, . . . , an−1) takich, że 0 6 ai 6 i,
∑

i ai = k. Wynika to z analizy
algorytmu sortowania przez wstawianie (InsertionSort).

Przekładając to na język wielomianów b(n, k) jest współczynnikiem przy xk w wielomianie

W3(x) = (1 + x)(1 + x+ x2) . . . (1 + x+ x2 + . . .+ xn−1)

Ale możemy ten wielomian zapisać jakoW3(x) = W2(x)/(1−x)n, a wielomianW2(x) ma, jak to już widzieliśmy
przy liczeniu podziałów liczby, wiele wspólnego z liczbami pentagonalnymi, stąd zatem mamy relację między
permutacjami i liczbami pentagonalnymi.

Poniże pokazujemy tabelkę poczatkowych wartości b(n, k), kolumny odpowidają k = 0, 1, 2, . . ., a wiersze
kolejneym n ≥ 1.

1
1 1
1 2 2 1
1 3 5 6 5 3 1
1 4 9 15 20 22 20 15 9 4 1
1 5 14 29 49 71 90 101 101 90 71 49 29 14 5 1

Zauważmy, ze wiersze są symetryczne. Załóżmy, że jeśli k < 0 lub k >
(
n
2

)
to b(n, k) = 0.

Wtedy dla k ≥ 0 & k >
(
n
2

)
zachodzi równość:

b(n, k) = b(n, k − 1) + b(n− 1, k)− b(n− 1, k − n).

6 Pierwiastkowanie permutacji

Rozważymy pewien problem dotyczący permutacji, rozwiązywalny w czasie liniowym za pomocą rozkładu na
cykle. Dla zadanej permutacji π i liczby k określamy:

Pierwiastkowanie: znaleźć jakąkolwiek permutację γ taką, że γk = π (oznaczmy takie γ przez k
√
π), ewen-

tualnie stwierdzić, że nie ma pierwiastka. Może nie istnieć pierwiastek, np. dla π = (2, 1, 3, 4) nie ma
pierwiastka kwadratowego, a dla π = (1, 2, 3, 4) mamy aż 10 takich pierwiastków.
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Fakt. Rozkład permutacji na cykle można policzyć w czasie liniowym. Wystarczy reprezentować permutację
jako graf skierowany, w którym do każdego wierzchołka wchodzi i z którego wychodzi dokładnie jedna krawędź.
Następnie iterujemy przez wszystkie elementy permutacji szukając nieodwiedzonego wierzchołka. Dla każdego
takiego węzła przechodzimy przez wszystkie elementy cyklu, oznaczając je po drodze jako odwiedzone. Możemy
w ten sposób znaleźć wszystkie możliwe informacje dotyczące cykli w permutacji: ich liczbę i długość oraz który
element należy do której.
Algorytm 8: Rozkład permutacji na cykle
1 L := pusta lista cykli;
2 for i := 1 to n do
3 if visited[i] = false then
4 C := pusty cykl;
5 j := i;
6 repeat
7 dodaj j do C;
8 visited[j] := true;
9 j := π[j];

10 until i = j;
11 dodaj C do L;
12 end

Zacznijmy od pierwiastka kwadratowego. Niech #cykle(π, k) oznacza liczbę cykli długości k w rozkładzie
cyklowym permutacji π.

Fakt. π ma pierwiastek kwadratowy wtedy i tylko wtedy gdy dla każdego parzystego k liczba #cykle(π, k)
jest parzysta.

Potrzebna nam będzie kluczowa operacja interlace. Jeśli mamy kilka rozłącznych cykli C1, C2, . . . , Ct
tej samej długości to interlace(C1, C2, . . . , Ct) otrzymujemy wstawiając kolejne elementy C2 po elementach
C1, następnie kolejne elementy C3 po elementach C2 itd. Na przykład:

interlace((1, 2, 3), (4, 5, 6), (7, 8, 9)) = (1, 4, 7, 2, 5, 8, 3, 6, 9).

Jeśli mamy mamy cykl nieparzysty (i0, i1, . . . , ir−1), gdzie r = 2k + 1, to jego pierwiastkiem jest cykl
(j0, j1, . . . , jr−1), gdzie jp = ip·(k+1) mod r. Na przykład jeśli mamy cykl (1, 2, 3, 4, 5) to jego pierwiastkiem
jest (1, 4, 2, 5, 3).

Natomiast jeśli mamy dwa cykle parzyste C1 i C2 tej samej długości, to pierwiastkiem kombinacji tych
cykli jest interlace(C1, C2). Pierwiastek kwadratowy liczymy w ten sposób, że dla każdego nieparzystego cyklu
obliczamy jego cykl bedący pierwiastkiem, a dla każdej pary parzystych cykli tej samej długości zastepujemy
je przez jeden cykl za pomoca operacji interlace.

Przykład. Niech
π = (2, 3, 4, 5, 1, 7, 8, 9, 6, 11, 12, 13, 10)

Rozkład na cykle to
(1, 2, 3, 4, 5), (6, 7, 8, 9), (10, 11, 12, 13)

Pierwszy cykl pierwiastkujemy otrzymując (1, 4, 2, 5, 3). Do dwóch pozostałych cykli (tej samej parzystej
długosci) stosujemy interlace i otrzymujemy cykl (6, 10, 7, 11, 8, 12, 9, 13). Zatem wynikowa permutacja
ma rozkład na cykle

(1, 4, 2, 5, 3), (6, 10, 7, 11, 8, 12, 9, 13)

Ostatecznie
2
√
π = (4, 2, 5, 3, 1, 10, 7, 11, 8, 12, 9, 13, 6)

Systuacja jest podobna, choć bardziej skomplikowana, dla pierwiastka dowolnego stopnia m.

Systuacja jest podobna, choć bardziej skomplikowana, dla pierwiastka dowolnego stopnia m. Załóżmy, że
faktoryzacja m na potęgi liczb pierwszych wygląda nastepująco:

m = pα1
1 · p

α2
2 · . . . p

αs
s
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Rysunek 12: Ilustracja operacji interlace.

Definiujemy:
((k,m)) =

∏
pi | k

pαi .

Fact. π ma pierwiastek m-tego stopnia, gdzie m > 1, wtedy i tylko wtedy gdy dla każdego k liczba ((k,m))
jest dzielnikiem liczby cykli długości k.

Inaczej mówiąc jeśli pi dzieli nwd(k,m) to pαi
i jest dzielnikiem liczby cykli długości k.

Problem ten jest opisany dokładniej w książce ”Wyzwania algorytmiczne” z ICPC ACM, jako zadanie ”Taso-
wanie” autorstwa P. Parysa.

Problem. Oblicz liczbę pierwiastków kwadratowych permutacji identycznosciowej rzędu n.

7 Generacja liczb pierwszych

Liczby pierwsze są jednymi z najciekawszych obiektów kombinatorycznych. Powszechna metoda sita Erato-
stenesa przetwarza tablicę liczb z przedziału [2, n]: w pętli znajdujemy pierwszą niewykreśloną liczbę, którą
dodajemy do listy wynikowej, a następnie wykreślamy z tablicy wszystkie wielokrotności tej liczby. Łącz-
nie wykonywanych jest O(n log logn) wykreśleń – iterując przez wielokrotności kolejno znajdowanych liczb
pierwszych niektóre liczby wykreślimy wielokrotnie. Opiszemy algorytm z 1978 roku autorstwa Davida Griesa
i Jayadeva Misry, który generuje wszystkie liczby pierwsze z przedziału [2, n] wykonując jedynie liniową liczbę
wykreśleń.

Zdefiniujmy operację RemovePowers(p, q, L), która z listy liczb naturalnych L usuwa wszystkie liczby
postaci pi · q, dla i > 1. Chcemy, aby koszt tej operacji był proporcjonalny do liczby usuniętych elementów
plus pewna stała. O ile usuwanie elementów z listy dwukierunkowej jest łatwo wykonalne w czasie stałym,
o tyle trudne jest znalezienie elementu, który chcemy usunąć.

Na szczęście można skorzystać z dość prostego triku technicznego, pozwalającego szybko znajdować inte-
resujące nas elementy listy. Określimy tablicę Ptr, która dla każdej liczby x ∈ L zawiera wskaźnik do odpo-
wiadającego mu elementu w L. Tablicę Ptr inicjujemy podczas konstrukcji L. Jeśli usuniemy liczbę x z L,
to zapisujemy Ptr[x] = NULL, co pozwala rozpoznać liczby już usunięte i nie duplikować wykreśleń.

Operację RemovePowers(p, q, L) możemy zaimplementować w taki sposób, aby dla każdej wykreślonej
liczby x zapamiętać liczby pi. Wtedy możemy dokonać faktoryzacji dowolnej liczby z zakresu [2, n] w czasie



8 KILKA PROŚCIUTKICH PROBLEMÓW ALGORYTMICZNO-TEORIOLICZBOWYCH 26

liniowym względem liczby czynników pierwszych x drogą sukcesywnego dzielenia przez spamiętane wartości
pi.
Algorytm 9: Gries-Misra
1 L := [2, n];
2 Inicjuj tablicę Ptr;
3 p := L.begin(); // p wskazuje na liczbę 2
4 while p 6= NULL do
5 q := p;
6 while q 6= NULL do
7 RemovePowers(p, q, L);
8 q := next(q);
9 end

10 p := next(p);
11 end
12 return L;

Fakt. Algorytm Gries-Misra wykonuje O(n) wykreśleń liczb – każda liczba, która trafiła do L albo jest liczbą
pierwszą i nie zostaje wykreślona, albo zostaje wykreślona dokładnie raz i już do niej nie wracamy.

8 Kilka prościutkich problemów algorytmiczno-teorioliczbowych

Na cyfrach liczby zapisanej dziesiętnie można wykonywać proste operacje.

Możenie-Skreślanie. Dysponujemy operacjami skreślania zer i mnożenia przez dowolną liczbe naturalną.
Problem: Dla danej liczby n podać ciąg operacji n→∗ 9.

Posłużymy się rozwiązaniem pomocnieczego problemu: dla danej liczby n, (n, 10) = 1 można ją
przemnożtć przez pewną liczbę otrzymując liczbę złożoną z samych jedynek. Zapiszmy to n → m = 1k dla
pewnego k.

Teraz nasz cią operacji dla n→∗ 9 wygląda następująco:

1. n →∗ x, dla pewnego x takiego, że (x, 10) = 1, wykonując pewną liczbę mnożeń przez 2 lub 5, oraz
skreślen zer.

2. x→∗ m = 1k

3. m := m× 82 = 9111...02

4. skreślamy zero, mnożymy przez 9: m→∗ 8200..8

5. 482000...8→ 828, mnożymy przez 25, skreślmay zera, otrzymujemy 277.

6. mnożymy przez 4, skreślamy zera, otrzymujemy 18.

7. mnożymy przez 5, skreślamy zera. Otrzymujemy 9 !!!

Rozwiązanie problemu pomocniczego. Istnieją dwie liczby postaci 1p, 1q, gdzie p > q dające tę samą
reszte modulo n. Wtedy 1p−1q jest podzielne przez n, pomijając zera mamy liczbe postaci 1k podzialna przez
n.

Dopisywanie-dzielenie. Dysponujemy operacjami dopisywania na końcu zera lub czwórki, oraz dzielenia
liczby parzystej przez 2.
Problem: Dla danej liczby n podać ciąg operacji 4→∗ n.

Generacja liczb 1-10:

4→ 2→ 1, 2→ 24→ 12→ 6→ 3, 6→ 64→ 32→ 16→ 8,

2→ 20→ 10→ 5, 10→ 14→ 7.
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Pojedyńcze mnożenie. Dla danej liczby n zanaleźć n4 ≥ x ≥ 1 takie, że n × x ma w zapisie dziesiętnym
co najwyżej 4 różne cyfry.

Załóżmy, że 2k−1 ≤ n < 2k. Niech Sk będzie zbiorem liczb mających k cyfr - same zera/jedynki. Istnieją
dwie liczby a < b w zbiorze S mające tę sama resztę modulo n, liczba b − a jest podzielna przez n i ma w
zapisie tylko cyfry 0,1,8,9. Weźmy x = (b− a)/n.

Sumy-różnice kwadratów. Przedstawić liczbę n w postaci sumy typu

n = ±12 ± 22 ± 32 . . .±m2,

Można skorzystać z tożsamości:

k2 − (k + 1)2 − (k + 2)2 + (k + 3)2 = 4

gdzie m ≤ 4n.

Odejmowanie cykliczne. Dla ciągu liczb całkowitych γ = (a1, a2, . . . an), definiujemy operację

F (γ) = (a1 − a2, a2 − a3, . . . an−1 − an, an − a1)

( w operacji tej wykonujemy działania na poprzednich wartościach liczb.)
Zachodzi następująca ciekawa własność tej operacji.

Fakt.. Jeśli n jest potęgą dwójki to istnieje takie k, że

F k(γ) = (0, 0, 0, . . . , 0).

9 Kombinatoryczne własności ciągu Thue-Morse’a

Niech τn będzie ciągime binarnym długości 2n numerowanym od zera. Oznaczmy An, Bn pozycje zawierające
odpowidnio 0,1. Zedfniujmy ciąg τn rekurencyjnie:

A0 = {0}, An+1 = Bn + 2n, Bn+1 = An + 2n.

Problem Poucheta-Tarry’ego-Escota Następujący fakt dowodzimy indukcyjnie względem n:

Fakt.
(∀ 0 ≤ k < n)

∑
i∈Bn

ik =
∑
j∈An

jk.

Konstrukcja kwadratów magicznych rzędu 2n Ponumerujmy pola kwadratu N×N , dla N = 2n kolejno
wierszami idąc od lewej do prawej w każdym wierszu, pierwszy numer to zero. Pole o numerze i zawiera i+ 1
jeśli An+1 = 0, wpp. zawiera 2n+1 − i.

Fakt. Tak wypełniony kwadrat jest kwadratem magicznym.

Wystarczy zauważyć, że każde kolejne cztery elementy wiersza (poczynając od lewej strony) mają taką samą
sumę, podobnie każde kolejne cztery elementy kolumny mają tę samą sumę (poczynając od góry kwadratu).

Natomiast przekątne są jednorodne, ich wszystkie pozycje należą do An+1 albo do Bn+1.

10 DFS i BFS

Załóżmy (dla uproszczenia), że z wierzchołka zwanego root w danym grafie G można dojść do każdego innego
(w grafie skierowanym lub nieskierowanym). Ze ścieżek dojścia z root do wszystkich wierzchołków można
skonstruować drzewo (tak zwane drzewo DFS) będące rodzajem algorytmicznego „szkieletu” grafu.

DFS jest abstrakcją algorytmu przeszukującego graf „w głąb”, startując z jakiegoś węzła „odwiedzamy” wę-
zły, najpierw syna aktualnie odwiedzonego węzła. W każdym węźle odwiedzonym po raz pierwszy staramy się
pójść do jego kolejnego nieodwiedzonego syna. Jeśli takiego nie ma to wycofujemy się. W czasie chodzenia
po grafie otrzymujemy drzewo DFS, składające się z krawędzi pierwszego dojścia do węzłów. Niech parent(v)
oznacza poprzednik węzła v w drzewie. Mamy dwie podstawowe kolejności wierzchołków drzewa:
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• preorder : wypisujemy w momencie pierwszego odwiedzenia

• postorder : wypisujemy w momencie ostatniego odwiedzenia

• EulerTour : wypisujemy wierzchołki w momentach pierwszego i ostatniego odwiedzenia (wchodzenie do
i wychodzenie z wierzchołka). Kolejność ta jest złączeniem preorder i postorder.

9

5

1 4

3

2 7 8

6

Preorder 9, 5, 1, 4, 3, 2, 6, 7, 8

Postorder 1, 4, 5, 6, 2, 7, 8, 3, 9

EulerTour 9, 5, 1, 1’, 4, 4’, 5’, 3, 2, 6, 6’, 2’, 7, 7’, 8, 8’, 3’, 9’

Rysunek 13: Kolejności wierzchołków dla przykładowego drzewa

Graf nieskierowany jest 2-spójny gdy po usunięciu dowolnego wierzchołka jest spójny. Wierzchołki, które
rozspójniają graf nazywamy węzłami rozdzielającymi lub punktami artykulacji. Krawędź nazywamy mostem
(przewężeniem), gdy usunięcie tej krawędzi rozspójnia graf.

10.1 Zastosowanie DFS: silna orientacja grafu nieskierowanego

Graf jest silnie spójny jeśli istnieje skierowana ścieżka między każdymi dwoma węzłami. Wiadomo, że graf
nieskierowany G można zorientować tak, aby był silnie spójny wtedy i tylko wtedy, gdy jest spójny i nie ma
mostu. Następujący algorytm wykonuje orientację.
Algorytm 10: Silna orientacja grafu
wejście: G = (V, E) – graf nieskierowany bez mostów
wyjście: G = (V, E) – wejściowy graf po silnej orientacji

1 Policz preorder i DFS-drzewo T grafu G;
2 foreach e ∈ E do
3 if e ∈ T then
4 Zorientuj e w kierunku rosnącego preorder;
5 else
6 Zorientuj e w kierunku malejącego preorder;
7 end
8 end

10.2 Zastosowanie DFS: dwuspójność, węzły rozdzielające i mosty

Pokażemy jedynie jak obliczać węzły rozdzielające i mosty grafu nieskierowanego, wypisywanie dwuspójnych
składowych zostawiamy jako ćwiczenie.

Załóżmy, że obliczyliśmy DFS-drzewo T oraz postorder i preorder. Utożsamiamy węzły z ich numerami
w porządku preorder. Przechodzimy graf w porządku postorder i obliczamy:

low[v] := min({v} ∪ {w : (v, w) ∈ E − T} ∪ {low[w] : parent(w) = v})

Teraz v jest węzłem rozdzielającym jeśli dla pewnego syna w (tzn. parent(w) = v) zachodzi low[w] > v. Jeśli
low[w] = w to (v, w) jest mostem (krawędzią rozdzielającą).
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10.3 “Ear-decomposition” grafu dwuspójnego

Pokażemy konstruktywnie następujący fakt:
każdy nieskierowany graf dwuspójny G możemy wygenerować startując z cyklu prostego, a następnie do-

klejając do grafu "uszy"(ścieżki mające tylko końcowe węzły w grafie).

Początkowo graf G′ jest jakimkolwiek cyklem prostym w G.
while G′ 6= G do
wybieramy (v, w) /∈ G′, v ∈ G′;
if w ∈ G then doklejamy krawędź (v, w) do G′

else
usuwamy v, bierzemy ścieżkę od w do pewnego w′ ∈ G′
na której pośrednie węzły nie są w G′; doklejamy tę ścieżkę do G′;

10.4 Silnie spójne składowe grafu skierowanego - algorytm Tarjana

Tym razem graf jest skierowany, zatem DFS-drzewo składa się z zadanym oryginalnie skierowaniem krawędzi.
Opiszemy algorytm Tarjana dzielącego graf wejściowy na podgrafy. Zaskakujące jest jego podobieństwo do al-
gorytmu związanego z dwuspójnością. Teraz też zakładamy, że obliczyliśmy DFS-drzewo T oraz postorder
i preorder.

Utożsamiamy węzły z ich numerami w porządku preorder. Dla każdego węzła v obliczamy predykat repr[v]
czy jest on najmniejszym węzłem w swojej silnie spójnej składowej (reprezentantem tej składowej). Początkowo
repr zawiera same zera.
Algorytm 11: Tarjan
1 foreach v ∈ V w kolejności postorder do
2 low[v] := min({v} ∪ {w : (v, w) ∈ E − T} ∪ {low[w] : parent(w) = v});
3 if low[v] = v then
4 repr[v] := true;
5 U := zbiór węzłów w poddrzewie Tv;
6 V := V − U ;
7 end

Teraz już łatwo możemy wypisać składowe silnie spójne:
Algorytm 12: Tarjan
1 SCC := ∅;
2 foreach v ∈ V , w kolejności postorder do
3 insert(v, SCC);
4 if repr[v] = true then
5 Wypisz składową SCC;
6 SCC := ∅;
7 end

W algorytmie Tarjana trzeba tak zaimplementować instrukcję V := V −U , aby nie usuwać tego samego węzła
dwa razy. Wtedy algorytm działa w czasie liniowym.
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Rysunek 14: Graf skierowany z pokolorowanymi silnie spójnymi składowymi, oznaczonymi kolejnymi literami
od A do D. Po prawej graf silnie spójnych składowych. Jak widać pojedynczy wierzchołek także może być
silnie spójną składową.

10.5 Silnie spójne składowe grafu skierowanego - algorytm Kosaraju

A teraz podamy inny algorytm, historycznie późniejszy i prostszy niż algorytm Tarjana.
Algorytm 13: Kosaraju
1 Przechodzimy graf DFSem i numerujemy w postorder;
2 odwracamy zorientowanie krawędzi grafu, otrzymując graf GR;
3 foreach v ∈ V , w kolejności malejącego postorder do
4 if v nie jest usunięty then
5 Wypisz jako kolejną składową zbiór
6 wierzchołków osiągalnych z v w grafie GR;
7 usuń wypisane wierzchołki i krawędzie prowadzące do nich;
8 end

Uzasadnienie poprawności:
Wystarczy udowodnić, że jeśli v →∗ x w grafie GR to v →∗ x w grafie G. Rozważamy dwa przypadki,

niech preorder będzie kolejnością odwiedzania w czasie pierwszego przechodzenia DFSem. Dowód przez za-
przeczenie, przypuśćmy, że nie zachodzi v →∗ x w grafie G

Przypadek 1: preorder(v) < preorder(x). Wtedy zakończymy v przed x, zatem postorder(v) < x, nie
zaczniemy wykonywać szukania wierzchołków osiągalnych w grafie GR z v. Sprzeczość.

Przypadek 2: preorder(v) < preorder(x). Dowód podobny.

10.6 Zastosowanie DFS: przydział krawędzi incydentnych

Chcemy znaleźć funkcję różnowartościową P (przydział) ze zbioru wierzchołków w krawędzie, aby P (v) było
zawsze krawędzią incydentną. Załóżmy, że graf nie jest drzewem. Wybierzmy jako root wierzchołek na jakim-
kolwiek cyklu, stwórzmy drzewo DFS o korzeniu root. Wtedy P [v] = (v, parent(v)), dla v 6= root. Natomiast
P (root) to jakakolwiek krawędź incydentna z root jeszcze nie wybrana.
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10.7 Zastosowanie postorder do najliczniejszego zbioru f-niezależnego

Niech f : [n] −→ [n]. Zbiór X ⊆ [n] jest f -niezależny gdy f(X) ∩X = ∅. Mamy znaleźć najliczniejszy zbiór
f -niezależny. Funkcja f może być traktowana jako zbiór pseudo-drzew skierowanych (od syna do ojca) —
drzewa, w których korzeń ma swojego „ojca” w drzewie. Graf taki nazywamy grafem funkcyjnym.

Załóżmy, że naszej funkcji odpowiada jedno pseudo-drzewo (jeśli nie to wszelkie obliczenia są niezależne
w rozłącznych pseudodrzewach). Dla ustalonej permutacji π zbioru [n] definiujemy zbiór X(π) jako wynik
algorytmu:

1 DEAD := ∅;
2 for i := 1 to n do
3 if π[i] 6∈ DEAD then
4 Insert(f(π[i]), DEAD);
5 end
6 end
7 return {1, 2, .., n} −DEAD.

Niech π będzie porządkiem postorder drzewa DFS dla grafu funkcji f oraz niech π′ będzie cyklicznym prze-
sunięciem π (ostatni element na początek). Wtedy najliczniejszym (jednym z wielu) jest większy ze zbiorów
X(π), X(π′).

Zastanówmy się teraz nad permutacją π, która minimalizuje X(π). Załóżmy, że pseudodrzewo nie jest
jedynie cyklem. Wybierzmy jako korzeń węzeł root taki, że istnieje j 6= f(root), f(j) = f(f(root)). Wtedy
porządkiem π minimalizującym X(π) jest preorder w pseudodrzewie zakorzenionym w root.

10.8 Zastosowanie postorder do problemu najkrótszej ścieżki

Załóżmy, ze skierowany graf acykliczny G ma jedno źródło s (od słowa ”source”) i ujście t (od słowa ”terminal”),
oraz krawędzie grafu mają wagi liczbowe.
Naszym problemem jest znalezienie najkrótszej scieżki s −→∗ t.

Niech π będzie porządkiem postorder drzewa DFS dla grafu G w którym s jest ostatnim węzłem a t pierwszym.
Niech dist(t) = 0. Następnie dla węzłów v 6= t grafu G w porządku malejących wartości π wykonujemy:

dist(v) := min { waga(v, w) + dist(w) : (v, w) ∈ E}

Pokażemy teraz zastosowanie do (pozornie niezwiązanego) problemu liczenia najkrótszego bitonicznego cy-
klu Hamiltona w grafie skierowanym G, niekoniecznie acyklicznym. Dla uproszczenia załóżmy, że jakiś cykl
Hamiltona w grafie G istnieje (chociaż nasz algorytm przy okazji to sprawdzi).
Definicja. Cykl Hamiltona jest bitoniczny jeśli startując od węzłą o numerze 1 najpierw numery węzłów
rosną (do numeru n) a potem maleją do 1. Z punktu widzenia węzła 1 cykl ten składa isę z dwóch rozłącznych
rosnących ścieżek od 1 do n Nasz algorytm będzie polegał na tym, że będziemy sie posuwać naraz na tych
scieżkach w kierunku n, koncentrując sie na tzw. konfiguracjach specjalnych. Zaczniemy w węźle 1 i będziemy
inkrematalnie budować te scieżki. Oznaczmy przez j konfigurację specjalną, która odpowiada sytuacji gdy
jedna ze ścieżek kończy sie na węźle j, druga na j − 1 oraz zawierają (do tego momentu) wszystkie węzły od
1 do j. Istotne jest to, że porządek ścieżek jest pomijany, tzn. nie jestotne która jest pierwsza a która duga.

W następnym kroku na jednej ze scieżek idziemy długą krawędzią i dochodzimy do j′. Wtedy na druguej
ścieżce musimy za pomocą krótkich krawędzi dojść do j′ − 1.

Utworzymy graf acykliczny G′ sładający się z przejść miedzy konfiguracjami specjalnymi. Koszt krawędzi
to koszt długiej krawędzi w G plus sumaryczny koszt krótkich krawędzi, co możemy wstępnie policzyć dla
każdej długiej krawędzi. Pozostawimay szczegóły konstrukcji grafu G′ czytelnikowi.

Graf G′ ma tego samego rzędu liczbę węzłów i krawędzi co graf G. Ważna jego własnościa jest acykliczność.
Teraz stosujemy algorytm dla grafów acyklicznych i liczymy minimalny koszt ścieżki z konfiguracji począt-

kowej do końcowej. Sytuacja początkowa odpowiada gdy obie ścieżki kończą sie (i zaczynają) w 1, nie jest ona
specjalna ale nastepna po niej już jest.

Tak więc otrzymujemy algorytm o złożoności liniowej liczący minimalny bitoniczny cykl Hamiltona w
dowolnym grafie. 1

1Przydalby sie przyklad graficzny ilustrujacy algorytm i graf G’.
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Opisany algorytm jest przedstawiony bardzo przystępnie w artykule J. Radoszewskiego w czasopośmie Delta
(Październik 2012).

10.9 Zastosowanie DFS do iteracji funkcji

Niech f : [n] −→ [n]. Chcemy policzyć w czasie liniowym fm dla zadanego m. Algorytm w czasie O(n logm)
jest oczywisty. Załóżmy dalej, że naszej funkcji odpowiada jedno pseudo-drzewo. Składa się ono z cyklu
(v[0], v[1] . . . , v[k − 1]) oraz podwieszonych drzew. Niech T będzie drzewem podwieszonym w root = v0.
Najpierw liczymy odległość D[v] od każdego wierzchołka v do root, jednocześnie pamiętając w tablicy POM
ścieżkę do v.

1 D[root] := 0;
2 POM [0] := root;
3 foreach v 6= root in preorder do
4 D[v] := D[f(v)] + 1;
5 POM [D[v]] := v;
6 if D[v] > m then
7 fm(v) := POM [D[v]−m];
8 else
9 fm(v) := v[(m−D[v]) mod k];

10 end
11 end

10.10 Obchodzenie drzewa 3-skokami

3-ścieżka (3-cykl) jest to taka permutacja węzłów, że każdy następny węzeł jest odległy od poprzeniego co naj-
wyżej o 3 krawędzie.

Konstrukcja 3-cyklu Hamiltona w drzewie. Węzeł jest parzysty jeśli jego odległość (liczba krawę-
dzi) od korzenia jest parzysta. Listujemy EulerTour, jeśli węzeł parzysty, to usuwamy jego wersję drugą
(postorder), w przeciwnym razie pierwszą (preorder). Rozważmy drzewo z rysunku 13. Węzły na parzystych
odległościach od korzenia to 9, 1, 4, 2, 7, 8. Mamy:

EulerTour = 9, 5, 1, 1′, 4, 4′, 5′, 3, 2, 6, 6′, 2′, 7, 7′, 8, 8′, 3′, 9′.

Dla węzłów parzystych wyrzucamy drugą kopię, dla nieparzystych pierwszą kopię. Zatem otrzymany 3-cykl
Hamiltona to:

9, 1, 4, 5′, 2, 6′, 7, 8, 3′

Trzeba jeszcze usunąć oznaczenia kopii węzła, tzn. każde v′ przepisujemy jako v. Dostajemy ostatecznie:

9, 1, 4, 5, 2, 6, 7, 8, 3.

Inna konstrukcja 3-cyklu Hamiltona. Kostruujemy cykl mający dodatkową własność: odległość między
korzeniem i jednym (lub dwoma) sąsiednimi węzłami na cyklu wynosi dokładnie 1. Krawędź realizującą tę od-
ległość nazwijmy specjalną. Wtedy rekurencyjnie konstruujemy cykle dla poddrzew zawieszonych w synach
danego węzła v. Potem odpowiednio podłączmy cykle nawzajem do siebie używając jedynie v i krawędzi
specjalnych, tak aby nowy cykl dla poddrzew z korzeniem w v miał dodatkową własność.

10.11 Obchodzenie drzewa 2-skokami

Przypuśćmy że chcemy przejść od wierzchołka u do v, gdzie u 6= v 2-skokami realizując pewną ścieżkę Hamil-
tona. Algorytm jest bardzo prosty w działaniu, ale nietrywialny ”dlaczego działa". Nie zawsze taka ścieżka
istnieje.
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Algorytm.
Zaczynamy w u i za każdym razem idziemy do jeszcze nie odwiedzonego węzła jak najbardziej odległego od v.
W przypadku remisu preferujemy liść drzewa.

10.12 BFS

Podobny algorytm, w którym najpierw staramy się odwiedzić wszystkich synów danego wierzchołka nazywa się
szukaniem wszerz (BFS). Tutaj również otrzymujemy drzewo zwane drzewem BFS, składające się z krawędzi
pierwszego dojścia do węzłów.

10.13 Odległości od ustalonego wierzchołka w grafie nieskierowanym

Pierwszym naturalnym zastosowaniem jest liczenie odległości D[v, ·] najkrótszych ścieżek w grafie nieskiero-
wanym od wierzchołka v do każdego innego. Mając drzewo BFS startujące w v odległość od v jest numerem
kolejnej warstwy, w której jest dany element.

10.14 Obliczanie średnicy w grafie nieskierowanym

Dla dowolnego węzła znajdujemy najbardziej oddalony od niego węzeł v, następnie najbardziej oddalony od v
węzeł w, najkrótsza ścieżka między v i w jest (być może jedną z wielu) średnicą grafu.

10.15 Dla każdego wierzchołka odległość do najdalszego wierzchołka

W dalszym ciągu graf jest nieskierowanym drzewem. Wystarczy znaleźć średnicę i dla każdego wierzchołka
policzyć maksimum z odległości do końców średnicy.

10.16 Sumy odległości w drzewie

W problemie tym dla każdego wierzchołka v danego drzewa chcemy policzyć wartość suma(v) równą sumie
odległości v do wszystkich innych wierzchołków. Można to łatwo policzyć w czasie liniowym przechodząc
drzewo DFS najpierw po poziomach od dołu do góry a potem w przeciwnym kierunku.

10.17 Rozcyklanie grafu

Chcemy obliczyć minimalną moc zbioru X ⊆ E krawędzi grafu nieskierowanego G = (V,E) tak aby nie było
cykli po susnięciu X. Załóżmy, że graf jest spójny. Znajdujemy drzewo DFS (lub BFS), pozostałe krawędzie
tworzą zbiór X. Wynikiem jest moc tego zbioru.

Jest to bardzo proste. Nazwijmy ten algorytm Algorytmem A.

Sytuacja robi sie bardziej skomplikwana gdy wyróżnimy pewien zbiór wierzchołków N , nazwijmy je czerwo-
nymi. oraz gdy zaążdamy jedynie żeby nie było cyklu przechodzącego przez wierzchołek czerwony. Krawędź
której co najmniej jeden z końców jest czerwony nazwijmy czerwoną.

Mżna udwodnić, że najmniej liczny zbiór X krawędzi, którego usunięcie rozcykla graf w sensie czerwonym
zawiera tylko czerwone krawędzi.

Algorytm teraz polega na tym, że końce nieczerwonych krawędzi sklejamy d tej pory aż pozostana tylko
czerwone. Otrzymamy mniejszy graf G′. Teraz stosujemy algorytm A do grafu G′. Wynikiem jest minimlana
moc zbioru X dla grafu G′.

Sprawdzanie sekwencji stopni węzłów

Ciąg niemalejący (d1, d2, . . . dn) liczb naturalnych dodatnich jest sekwencją grafową gdy istnieje graf mający
taki ciąg stopni węzłów (po posortowaniu).

Fakt. Załóżmy, że
∑

i di jest liczba parzysta. Wtedy ciag (d1, d2, . . . dn) jest grafowy wtedy i tylko wtedy gdy
ciąg (d1, d2, ..dn−k − 1, dn−k+1 − 1, . . . dn−1 − 1) po posortowaniu jest grafowy.
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Daje to rekonstrukcję grafu (jedengo z wielu) z ciągu grafowego w czasie linowym ze względu na rozmiar grafu.

Istnieje inne kryterium sprawdzania, czy ciąg jest grafowy,

Fakt. [Erd¨s-Gallai]
Załóżmy, że

∑
i di jest liczba parzysta oraz ciąg stopni jest posortowany nierosnąco. Wtedy ciag (d1, d2, . . . dn)

jest grafowy wtedy i tylko wtedy gdy

∀ k
k∑
i=1

≤ k(k − 1) +
n∑

i=k+1

min(di, k).

Kryterium to daje łatwo algorytm liniowy sprawdzania czy ciąg jest grafowy.

Uzasadnienie. Weżmy k minimalne takie, że dk > dk+1 lub k = n−1. Zmniejszamy dk, dn. Nowy ciąg spełnia
warunki, indukcyjnie istnieje graf. Potem przełączamy odpowiednio krawędzie dodajac po jednej krawędzi do
k i n.

Kilka problemów związanych ze stpniami węzłów.

• Dla jakich n istnieje ciąg grafowy w którym wszystkie elementy są parami różne.

• Każdy graf o parzystej liczbie węzłów ma dwa węzły o parzystej liczbie wszystkich wsplnyc sąsiadów.

• Jesli graf jest spójny oraz liczba wspólnych sąsiadów dla każdej pary różnych węzłów wynosi 0 lub 5 to
graf jest k-regularny dla pewnego k.

10.18 Dwuspójność grafu nieskierowanego

Operacja dzielenia krawędzi polega na wstawieniu nowego węzła w środek tej krawędzi, a operacja dodawania
krawędzi plega na połączeniu krawędzią węzłów, które jeszcze nie są połączne krawędzią.

Fakt. Każdy graf dwuspójny mający n > 2 węzłów można otrzymac z trójkąta stosujac operacje dzielenia i
tworzenia krawędzi.
Uzasadnienie. Zaczynamy od jakiegokolwiek cyklu prostego. Potem znajdujemy nieutworzony węzeł v do
którego jest krawędź z węzła już utworzonego u. Usuwamy u, znajdujemy ścieżkę z v do jakiegoś węzła v′ już
utworzonego, pozostałe węzły tej ścieżki jeszcze nieutworzone. Dołączamy do grafu ścieżkę (ucho) od u do v
a nastepnie do v′. Jak otrzymamy już wszystkie węzły to dołączamy pojedyncze orginalne krawędzie.

Fakt. Graf jest 2-spójny wtw każde dwa różne węzły leżą na pewnym cyklu prostym.

Kilka problemów związanych.

• Stopień spójności grafu Hk (hypercube k-wymiarowy) wynosi k.

• Każdy graf 14-wierzchołkowy spójny i bez cykli o długości co najwyżej 5 jest izomorficzny z grafem
Heawooda. Węzły to 0..13. Węzły o numerach parzystych i łaczymy z i+ 5 modulo 14.

11 Algorytmiczne tajemnice hiperkostki

11.1 Ścieżka na hiperkostce

Niech nasz graf G = (V,E) będzie hiperkostką n-wymiarową z usuniętym k-elementowym zbiorem N wierz-
chołków. Chcemy sprwdzić, czy istnieje ścieżka z x y, gdzie x, y /∈ N .

NiechK = n·k+1 oraz niechOgrDFS(x, y,K) będzie (ograniczonym) DFS, które sprawdza czy y jest osiagalne
z x. Ograniczony DFS działa tak jak DFS, z tą różnicą, że jeśli odwiedzimy już K węzłów to zatrzymujemy się
i zwracamy TRUE. Inaczej mówiąc: jeśli przejrzymy mniej niż K węzłów startując z x i DFS się zakończy bez
znalezienia y (nie ma więcej wezlow do odwiedzenia) to OgrDFS zwraca FALSE, natomiast jeśli znajdziemy y
lub odwiedzimy już K węzłów to OgrDFS się zatrzymuje i zwraca TRUE.
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ALGORYTM
k:= n k + 1;
z1:= OgrDFS(x,y,K); z2:=OgrDFS(y,x,K)
return (z1 and z2)

Dlaczego to dziala. Poprawność wynika z pewnej ciekawej i dosyc prostej własności grafu hiperkostki Qn,
którą nazwiemy własnością podziałową:

| {(a, b) ∈ Qn : a ∈ S, b ∈ V − S} | ≥ min(|S|, |V − S|).

Przypuśćmy teraz że OgrDFS(x, y,K) oraz OgrDFS(y, x,K) nie wykryły ścieżki od x do y ale każde z nich
odwiedziło co najmniej K węzłow. Wystarczy udowodnić, że w tej sytuacji x i y są w tej samej spójnej
składowej w Qn −N .

Dowód przez zaprzeczenie. Załóżmy, że x, y są w różnych składowych grafu Qn − N . Bez straty
ogólności niech S będzie mniejszą z tych dwóch składowych (być może jest więcej składowych). Rozważmy
podział (S, V −S) kostki Qn. Zgodnie z własnością podziałową z S wychodzi na zewnątrz co najmniej n ·k+ 1
krawędzi. Do zbioruN może wejśc co najwyżej n·k krawędzi, tak więc jest jakaś krawędź między S i V −(S∪N),
przeczy to temu że S jest składową spójna Qn−N , gdyż z definicji składowa jest maksymalną częścia spójną.

Udowodnimy teraz własność podziałową. Zamieńmy nasze krawędzie na krawędzie skierowane (każdą nieskie-
rowaną zamieniamy na dwie skierowane). Ścieżki staną się skierowane. Dla każdych dwóch wezłów u, v przez
ścieżkę standardową z u do v rozumiemy taką, ktora jest najkrótszej długości i odpowiada zmienianiu kolejnych
niezgodnych bitów od lewej do prawej tak aby zamienić x na y. Na przykład dla x = 0101, y = 0010 ścieżka
standardowa odpowiada zmienianiu kolejno bitów 2-gi, 3-ci, 4-ty.

0101→ 0001→ 0011→ 0010

Zachodzi następujący fakt (własność scieżek standardowych):
Przez zadaną skierowaną krawędź przechodzi dokładnie 2n−1 ścieżek standardowych.
Dowód tej własnosci: Rozważmy krawędź na standardowej scieżce od u do v. Jesli krawędź dotyczy zmiany
na i-tym bicie, to ostatnie n − i bitów u, oraz pierwsze i − 1 bitów węzła-napisu v są zdeterminowane przez
tę krawędź. Poza tym krawędź determinuje i-ty bit węzłów u, v. Zatem pozostaje n− 1 możliwości na wybór
niezdeterminowanych bitów węzłów u, v, co daje 2n−1 możliwości.

Dowód własności podziałowej. Załóżmy, że |S| ≤ |V − S|. Niech m = |S|. Mamy m · (2n −m), ścieżek
standardowych z węzłow S do węzłów V −S. Każda z nich przechodzi przez dokładnie jedną krawędż między
S i V − S. Przez jedną taką krawędź przechodzi co najwyżej 2n−1 ścieżek. Mamy m ≤ 2n−1. Zatem liczba
krawędzi między S i V − S jest co najmniej

m · (2n −m)/2n−1 ≥ m · 2n−1/2n−1 = m = |S|

Koniec dowodu.

11.2 Przesuwanie żetonów na hiperkostce

In this problem we have token in vertices of the hypercube. We can take 2 tokens from one vertex and put one
token on its neighbor. The goal is to put a token on a specified vertex. No moves are required if this specified
vertex already has at least one token.

Define the operation moves(u, v,W ) which moves W from the vertex u to v, removing 2W tokens from u and
more massive operation MOV E(A,B,W ), which for two disjoint subsets of the same size of the hypercube
removes 2W tokens from A and places W tokens in vertices of B.

For a subset A define odd(A) the number of vertices containing odd number of tokens and by tokens(A)
the total number of tokens in A.

Obserwacja 3.
The operation MOV E(A,B,W ) is possible if there is a perfect matching between A and B in the hypercube
and tokens(A) ≥ 2W + odd(A).
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We describe 2 functions, the first of them is placing (after some number of moves) a token on a vertex v, the
second one places two tokens. Let X be a subhypercube and Split(X, v) be the partition of X into 2 disjoint
subhypercubes, v belongs to the first one.

function PlaceSingleToken(X,v)
k := dim(X); // Assume tokens(X) ≥ 2k

if k = 1 or v already has a token then trivial solution and return;
(A,B) := Split(X);
v′ := neighbor of v in B;
if tokens(A) ≥ 2k−1 then PlaceSingleToken(A,v)
else if odd(B) > tokens(A) then

PlaceTwoTokens(B,v’); move(v’,v,1)
else

MOV E(B,A, 2k−1 − tokens(A)); PlaceSingleToken(A,v);

function PlaceTwoTokens(X,v)
k := dim(X); // Assume tokens(X) ≥ 2k+1 − odd(X)
if k = 1 or v already has a token then trivial solution and return;
(A,B) := Split(X);
v′ := neighbor of v in B;
if tokens(A) ≥ 2k − odd(A) then PlaceTwoTokens(A,v)
else

if tokens(A) < 2k−1 then MOV E(B,A, 2k−1 − tokens(A))
PlaceSingleToken(A,v); PlaceTwoTokens(B,v’); move(v’,v,1)

The proof of the following theorem is by induction on the dimension of the hypercube together with Observa-
tion 3.

Twierdzenie
(a) If tokens(Qn) ≥ 2n then we can place a token on any specified vertex v.
(b) If tokens(Qn) > 2n+1 − odd(Qn) then we can place 2 tokens on any specified vertex.

11.3 Dopełnianie skojarzenia do cyklu Hamiltona na hiperkostce

Rozważamy następujący problem.
Wejście: skojarzenie pełne X hiperkostki Cuben;
Wyjście: cykl C Hamiltona hiperkostki Cuben taki, że X ⊆ C.

Niech K(n) będzie grafem pełnym o tym samym zbiorze węzłów co Cuben, każde dwa różne węzły są połączone
krawędzią.
Wzmocnijmy nasz problem następująco.

Wejście: pełne skojarzenie X grafu K(n);
Wyjście: cykl C Hamiltona grafu K(n) taki, że C −X jest pełnym
skojarzeniem grafu Cuben.

Inaczej mówiąc mając pełne skojarzenie w grafie pełnym chcemy je dopełnić krawędziami z hiperkostki do cyklu
Hamiltona. Dla innych grafów może to być niewykonalne. Znacznie wzmocniliśmy nasz problem, dopuszczając
na wejściu dowolny zbiór rozłącznych par wierzchołków.

Jeśli C jest cyklem Hamiltona oraz Z jest podzbiorem krawędzi cyklu i jednocześnie skojarzeniem (nieko-
niecznie pełnym) to przez SEKW (C,Z) oznaczmy listę [(x1, y1), (x2, y2) . . . , xk, yk)] krawędzi skojarzenia Z
w kolejności i skierowaniu tak jak na cyklu (w czasie tej operacji chwilowo zamieniamy nieskierowany cykl na
skierowany).

Przykład. Jeśli C = (1, 2, 4, 3, 6, 5, 1), Z = {(5, 6), (2, 4)}) to
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SEKW (C,Z) = [(2, 4), (6, 5)].
Głównym trikiem jest sprytne dołożenie pomocniczych krawędzi w pohiperkostkach (zbioryM1,M2), policzenie
rekurencyjnie cykli w pod-hiperkostkach, następnie usunięcie pomocniczych krawędzi i dołożenie krawędzi ze
zbioru Z ⊆ X łączących pod-hiperkostki.

Algorytm Oblicz-Cykl(X,H); (H jest hiperkostką n-wymiarową)

Jeśli n = 2 to oblicz wynik naiwnie i zatrzymaj się;

podziel hiperkostkę H na dwie hiperkostki H1, H2 (o wymiarach n− 1)
między którymi jest jakakolwiek krawędź ze zbioru X;

X1 := X ∩H1; X2 := X ∩H2; Z := X −X1 −X2;
(Z jest łącznikiem między H1 i H2);

D := zbiór wierzchołków w H1 będących końcami krawędzi z Z;

M1 := dowolne pełne skojarzenie podgrafu K(n) ograniczonego
do zbioru D (X1 ∪M1 jest pełnym skojarzeniem w H1);

Rekursja: C1 := Oblicz-Cykl(X1 ∪M1, H1);

[(x1, y1), (x2, y2) . . . , xk, yk)] := SEKW (C1,M1);

niech x′i, y
′
i ∈ H2 będą partnerami xi, odpowiednio yi, w łączniku Z;

M2 := {(y′1, x′2), (y′2, x
′
3), (y′3, x

′
4), ...(y

′
k, x
′
1) };

Rekursja: C2 := Oblicz-Cykl(X2 ∪M2, H2);

return cykl Hamiltona (C1 −M1) ∪ (C2 −M2) ∪ Z.

M1

M1

M1

M2

M2

M2

Z

Z

Z

Z

Z

Rysunek 15: Podział hiperkostki Hn na dwie hiperkostki H1, H2 o mniejszym wymiarze. Interpretacja
graficzna częściowych sztucznie dodanych skojarzeń M1,M2 oraz łącznika Z: podzbioru X krawędzi pomiędzy
H1, H2. Zauważmy że liczba tych krawędzi jest dodatnią liczbą parzystą. Algorytm znajduje rekurencyjnie
dwa cykle w grafachH1, H2. Końcowy cykl powstaje przez usunięcie sztucznie dodanych krawędzi oraz dodanie
krawędzi z łącznika.

Algorytm ma charakter rekurencyjny i korzysta z prostych rekurencyjnych własności hiperkostki n-wymiarowej,
głownie z łatwego podziału kostki na dwie o mniejszym wymiarze. Złożoność czasowa algorytmu jestO(n log n),
co wynika z rekurencji

T (n) = 2 · T (n/2) +O(n).

Z rekurencją tego typu można się spotkać w klasycznym problemie sortowania przez scalanie (ang. mergesort).
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Poprawność algorytmu jest dosyć oczywista (wystarczy sobie rozrysować schematycznie cykle generowane przez
algorytm w pod-hiperkostkach.)

12 Uspójnianie grafu skierowanego

Na wejściu mamy graf skierowany G = (V, E). Chcemy w czasie liniowym dodać minimalną liczbę krawędzi
skierowanych tak, aby G był silnie spójny. W rozwiązaniu zredukujemy problem kolejno do grafu acyklicznego,
potem do dwudzielnego, a potem do gwiazdy. Skierowany graf dwudzielny to taki, w którym V jest sumą
rozłączną V = A∪B, oraz E ⊆ A×B. Gwiazda to graf, w którym jest jeden wierzchołek należący do wszystkich
krawędzi, natomiast pozostałe końce krawędzi są parami różne. Zaczniemy opis algorytmu od końca:

1. Jeśli graf jest pojedynczą gwiazdą to rozwiązanie jest proste. Niech v0 będzie środkiem gwiazdy. Wtedy

E = E1 ∪ E2, gdzie E1 ⊆ {v0} × (V − {v0}), E2 ⊆ (V − {v0})× {v0})

(E1 i E2 to zbiory krawędzi wychodzących i wchodzących do v0).

Bez straty ogólności przyjmijmy, że |E1| 6 |E2|. Wtedy każdej krawędzi z (v0, a) ∈ E1 przyporząd-
kowujemy krawędź (b, v0) ∈ E2 (zawsze inną) i dodajemy krawędź (a, b), tworząc w ten sposób cykl
v0 → a → b → v0. Dla krawędzi, których nie pogrupowaliśmy w pary dodajemy krawędzie odwrotne,
tworząc cykle długości 2. W ten sposób robimy z gwiazdy graf silnie spójny za pomocą minimalnej liczby
dodatkowych krawędzi.

v0

v1

v2 v3

v4

v5

v6

v7v8

v9

v0

v1

v2 v3

v4

v5

v6

v7v8

v9

v0

v1

v2 v3

v4

v5

v6

v7v8

v9

2. Rozpatrujemy teraz grafy dwudzielne. Dla uproszczenia załóżmy w tej części, że graf nie ma odizolowa-
nych węzłów, tzn. takich, że nie są początkiem ani końcem żadnej krawędzi. W trakcie algorytmu bę-
dziemy utrzymywać pewien roboczy zbiór wybranych krawędzi, krawędzie wolne to takie, które nie mają
wspólnego węzła z żadną z wybranych krawędzi.

Tworzymy duży cykl C w sposób zachłanny: dopóki istnieje jakakolwiek krawędź wolna, to dodajemy
dowolną z nich do zbioru roboczego. W ten sposób otrzymujemy zbiór {(u1, v1), (u2, v2) . . . , (uk, vk)}.
Teraz dodajemy k nowych krawędzi (v1, u2), (v2, u3), . . . , (vk, u1) tworząc cykl C. Następnie ściągamy
C do jednego węzła v0 i otrzymujemy gwiazdę.
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3. Jeśli G jest dowolnym grafem to znajdujemy silnie spójne składowe i każdą z nich ściągamy do poje-
dynczego węzła, otrzymując graf acykliczny (rys. 14). Niech A będzie zbiorem węzłów, do których nie
wchodzi żadna krawędź. Analogicznie niech B oznacza zbiór węzłów, z których nie wychodzi żadna
krawędź. Tworzymy nowy graf dwudzielny G′ = (A ∪ B, E′), gdzie (u, v) ∈ E′ gdy istnieje ścieżka
skierowana od u do v w grafie acyklicznym.

Fakt. Problem minimalnego uspójnienia grafu skierowanego można rozwiązać w czasie liniowym. Wynika
to z rozwiązywalności problemu podziału grafu na silnie spójne składowe w czasie liniowym (rozdział ??).

Problem ten razem z rozwiązaniem został też przystępnie (choć trochę inaczej) opisany w artykule J.Radoszewskiego
w numerze 09/2012 czasopisma Delta.

Minimalne drzewo skierowane.

Załóżmy, że mamy nieujemne wagi (koszty) waga(i, j) potencjalnych skierowanych krawędzi i → j drzewa i
chcemy skonstruowac drzewo ukorzenione o najmniejszej sumarycznej wadze. Zbiorem wierzchołów drzewa
jest V = {1, 2, ..n}, oraz r ∈ V jest ustalonym korzeniem. Formalne pisząc, chcemy zminimalizować wartość

MIN(v) =
∑
i 6=r

waga(i, Parent(i)),

gdzie Parent to poprzednik (ojciec) wierzchołka.

Zaczynamy of prostego podejścia zachłannego:

dla każdego i ∈ V, i 6= r wybieramy najlżejszą krawędź wychodzącą z i.
Jeśli nie wygenerowaliśmy cyklu to orzymaliśmy minimalne drzewo skierowane.

Co się dzieje gdy wygenerowaliśmy cykl (Parent generuje cykl, dla pewnego elementu Parentk(i) = i, k > 0),
którego zbiorem elementów jest zbiór C ⊆ V − {r} ? Pozornie wydaje się, że nasze zachłanne podejście nie
ma sensu. Zauważmy jednak (dowód w ćwiczeniach), że zbiór C ma bardzo pożyteczną własność:

(∗) Istnieje optymalne drzewo w ktorym z C wychodzi tylko jedna krawędź.
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Możemy zatem potraktować zbiór C jako jeden superwierzchołek. Definiujemy:

MinOut(i) := min {waga(i, j) : j ∈ V }.

Teraz możemy napisać co robimy gdy jest cykl C.
Uruchamiamy funkcję CONTRACT która zamienia cykl na superwierzchołek. Funkcja ta działa następu-

jąco:

funkcja CONTRACT(C):
v∗ := nowy element; V := V − C ∪ {v∗};
for each k ∈ V, k 6= v∗ do

waga(k, v∗) := min {waga(k, j) : j ∈ C};
waga(v∗, k) := min {waga(i, k)−MinOut(i) : i ∈ C}

Krawędzie cyklu C będa użyte w optymalnym drzewie poza dokładnie jedną krawędzią. Jeśli tą krawędzią
jest i → k to wymieniając krawędź wychodzącą z i do elementu w cyklu (o wadze MinOut(i)) na krawędź
i→ zwiększamy całkowity koszt o wartość waga(i, k)−MinOut(i). Stąd się bierze operacja definiująca wagi
krawędzi wychodzących z superwierzchołka v∗.

Zdefiniujmy jeszcze waga(C) jako sumę wag krawędzi skierowanych w cyklu C. Cały algorytm ma charakter
rekurencyjny:

Funkcja Min-Greedy(V )

for each i 6= r do
Parent(i) := j, gdzie waga(i, j) = MinOut(i);

if funkcja Parent nie generuje cyklu then
return

∑
i 6=r waga(i, Parent(i))

else
C := jakiś cykl generowany przez Parent;
CONTRACT (C);
return waga(C) + Min-Greedy(V )

Zauważmy, że policzyliśmy tylko minimalny koszt, tablicę Parent można wyłuskać z algorytmu, wymaga to
nieznacznej komplikacji. W tej wersji funkcja Parent jest liczona lokalnie w każdej instancji i nie jest poprawna
globalnie.

13 Generacja ciągów Lyndona i ciągów de Bruijna

Uwaga: dla uproszczenia rozważamy tylko teksty binarne.

Słowem (ciągiem) de Bruijna rzędu n jest ciąg binarny o długości 2n, w którym (traktowanym jako ciąg
cykliczny) każdy ciąg binarny długości n występuje dokładnie raz.

Słowa Lyndona są zwartymi reprezentacjami liniowymi słów cyklicznych. Dla słowa x niech y będzie
minimalnym cyklicznym przesunięciem x. Wtedy pierwiastek pierwotny z słowa y jest słowem Lyndona. Słowo
jest ciągiem Lyndona wtedy i tylko wtedy, gdy może powstać w ten sposób. Przypomnienie: pierwiastek
pierwotny y to najkrótszy prefiks z słowa y taki, że y jest naturalną potęgą z.

Definicja równoważna Słowo jest Lyndona jeśli jest leksykograficznie najmniejsze ze swoich przesunięć
cyklicznych (równoważnie, najmniejsze ze swoich sufiksów).

Dla danego n przez ext(x, n) oznaczmy rozszerzenie okresowe słowa x do długości n, oraz przez LastZero(x)
oznaczamy najdłuższy prefiks słowa x kończący się zerem. Na przykład:

ext(00111, 13) = 00111 00111 001, LastZero(0010111) = 0010.
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Następujący algorytm generuje wszytkie słowa Lyndona o długości co najwyżej n:
Algorytm 14: Fredricksen-Maiorana
1 x := ”0”;
2 Wypisz słowo Lyndona x;
3 while x 6= ”1” do
4 x := LastZero(ext(x, n));
5 Zamień ostatni symbol x na jedynkę;
6 Wypisz słowo Lyndona x;
7 end

Niech L0 < L1 < L2 < . . . < Ls będzie leksykograficznie posortowaną sekwencją wszystkich binarnych słów
Lyndona o długości będącej dzielnikiem n. Niech Ln oznacza konkatenację

Ln = L0 · L1 · L2 · L3 · . . . · Ls

Przykład Dla n = 4 algorytm FM wygeneruje:

0 0001 001 0011 01 011 0111 1

L4 = 0 0001 0011 01 0111 1

Powiemy, że Lk jest „małe” gdy |Lk| < n, w przeciwnym przypadku jest „duże”. Z poprawności algorytmu FM
(Fredricksena-Maiorany) wynikają własności:

1. L0 = 0, L1 = 0n−11, Ls−1 = 01n−1, Ls = 1;

2. jeśli Lk = βα oraz α zawiera zero, to β jest prefiksem Lk+1

3. Jeśli Lk jest małe i k > 0 to

• Lk−1 jest duże;
• Lk−1 kończy się co najmniej n− |Lk| jedynkami;
• Lk−1 jest bezpośrednio wygenerowane przed Lk w algorytmie FM.

Twierdzenie 6 (Fredricksen-Maiorana). Przypadek szczególny – rozgrzewka: jeśli n jest liczbą pierwszą, to
Ln zawiera (cyklicznie) każde binarne słowo x długości n.

Dowód. Przeprowadźmy dowód rozpatrując kilka przypadków.

Przypadek 1. Niech x ∈ 1∗0∗. Wtedy x jest podsłowem Ls−1LsL0L1 = 01n0n1. Załóżmy zatem (do końca
dowodu), że nie zachodzi przypadek 1. Słowo x jest cyklicznie równoważne pewnemu słowu Lr (równemu
minimalnemu cyklicznemu przesunięciu x). Wtedy dla pewnych α, β

x = αβ, Lr = βα

Ustalmy do końca dowodu α i β.

Przypadek 2. α zawiera zero. Wtedy β jest prefiksem Lr+1, zatem x jest podsłowem LrLr+1, którego
prefiksem jest βαβ.

Przypadek 3. α ∈ 1+. Załóżmy, że nie zachodzi przypadek 2. Wtedy β /∈ 0+. Istnieje zatem taki indeks k,
że β jest prefiksem Lk, ale β nie jest prefiksem Lk−1. Niech γ będzie prefiksem Lk−1 o długości β. Zapiszmy
Lk−1 = γδ. Udowodnimy:

Fakt. δ ∈ 1+. Dowód nie wprost. Przypuśćmy, że δ zawiera 0, wtedy zgodnie z algorytmem Fredricksena-
Maiorany następne leksykograficznie słowo Lyndona ma prefiks γ. Wiemy, że β 6= γ. Natomiast następnym
słowem z definicji jest Lk, które ma prefiks β 6= γ, o tej samej długości co γ. Sprzeczność.

Z powyższego faktu wynika, że δ = α, ponieważ są to słowa tej samej długości składające się z samych jedynek.
Zatem x jest podsłowem Lk−1Lk jako δβ, w konsekwencji x jest podsłowem całego słowa Ln.
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Twierdzenie 7 (Fredricksen-Maiorana). Przypadek ogólny, dowolne n. Ln zawiera (jako słowo cykliczne)
każde binarne słowo x długości n.

Dowód. Ponownie rozpatrujemy przypadki.

Przypadek 1: x ∈ 1∗0∗. Dowód bez zmian (w stosunku do dowodu przypadku szczególnego). Załóżmy,
zatem (do końca dowodu), że nie zachodzi przypadek 1. W przypadkach 2-4 zakładamy, że słowo x
jest pierwotne. Zakładamy również, że x nie jest równe żadnemu Lr. Wtedy x jest cyklicznie równoważne
pewnemu słowu Lr (równemu minimalnemu cyklicznemu przesunięciu x). Wtedy dla pewnych niepustych α, β

x = αβ, Lr = βα

Niech Lk będzie leksykograficznie pierwszym dużym słowem o prefiksie β.

Przypadek 2: α /∈ 1+. Dowód bez zmian.

Przypadek 3: α ∈ 1+, Lk−1 jest duże. Dowód bez zmian.

Przypadek 4: α ∈ 1+, Lk−1 jest małe.

Rozważamy podprzypadki A-C:

(A) |β| < |Lk−1|. Wtedy Lk−2 jest dużym słowem o prefiksie β co przeczy temu, że Lk jest najwcześniejsze.
Zatem przypadek niemożliwy.

(B) Lk−1 kończy się co najmniej |α| jedynkami i αβ = x jest podsłowem Lk−1Lk.

(C) Lk−1 kończy się mniej niż |α| jedynkami. Z definicji operacji okresowego rozszerzania wynika, że Lk−1
jest okresem β. Jednocześnie Lk−2 (duże słowo) kończy się co najmniej n−|Lk−1| > |α| jedynkami (gdyż
|β| > |Lk−1| oraz |α| = n− |β|). Zatem αβ = x jest podsłowem Lk−2Lk−1Lk.

Przypadek 5: Słowo x nie jest pierwotne. Wtedy dla pewnych k > 1 oraz r, α, β mamy x = (αβ)k,
Lr = βα. Jeśli α /∈ 1+, to ponieważ słowo Lr jest małe i rozszerzenie okresowe zostaje zaburzone dopiero
w ostatnim α to Lr+1 jest duże i ma prefiks (βα)k−1β. Zatem x jest podsłowem LrLr+1.

Jeśli α ∈ 1+ to Lr−1 kończy się na α (ma dostatecznie dużo jedynek), a ponieważ (z rozszerzenia okreso-
wego) Lr+1 ma prefiks (βα)k−1 to x jest podsłowem Lr−1LrLr+1.

Kilka wzorów. Niech zapisy Lyn(n), P ierw(n) oznaczają liczbę binarnych słów Lyndona oraz liczbę słów
pierwotnych (nierozkładalnych) długości n. Niech µ będzie funkcją Möbiusa; spełnia ona wzór rekurencyjny:∑

d|n

µ(d) = [n = 1].

Niech φ będzie funkcją Eulera (ile jest liczb mniejszych od n względnie pierwszych z n). Przyjmujemy φ(1) = 1.
Użytecznym narzędziem kombinatorycznym jest formuła Möbiusa:

∀n f(n) =
∑
d|n

g(d)⇒ ∀n g(n) =
∑
d|n

µ
(n
d

)
f(d)

Mamy też wzory:
2n =

∑
d|n

Pierw(d), n =
∑
d|n

φ(d).

Z formuły inwersyjnej Möbiusa i powyższego wzoru wynikają wzory:

Pierw(n) =
∑
d|n

µ
(n
d

)
2d, Lyn(n) =

1

n

∑
d|n

µ
(n
d

)
2d
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Jeśli Ln = L0·L1·L2·L3 . . . Ls jest rozkładem na słowa Lyndona o długości dzielącej n to oznaczmy ‖Ln‖ = s+1.
Inaczej mówiąc ‖Ln‖ jest liczbą słów długości n cyklicznie nierównoważnych (liczba naszyjników binarnych
z dokładnością do obrotu). Korzystając z poprzednich wzorów można udowodnić, że:

‖Ln‖ =
1

n

∑
d|n

φ
(n
d

)
2d.

Na przykład:

Lyn(6) = 9, Lyn(3) = 2, Lyn(2) = 1, Lyn(1) = 2 (7)
|L6| = Lyn(1) + Lyn(2) + Lyn(3) + Lyn(6) = 14 (8)

|L6| =
1

6

(
φ(1) · 26 + φ(2) · 23 + φ(3) · 22 + φ(6) · 21

)
=

1

6

(
1 · 26 + 1 · 23 + 2 · 22 + 2 · 21

)
(9)

(10)

Słuszność tych wzorów można prześledzić na przykładzie:

L6 = 0 000001 000011 000101 000111 001 001011 (11)
001101 001111 01 010111 011 011111 1 (12)

14 Grafy de Bruijna

Ciąg de Bruijna rzędu n nad alfabetem binarnym (dla uproszczenia) można też wygenerować korzystając z pew-
nej klasy grafów. Zbudujmy graf (tzw. graf de Bruijna rzędu n), którego wierzchołki etykietujemy wszystkimi
możliwymi słowami binarnymi długości n. Krawędzie etykietujemy symbolami z alfabetu i prowadzimy je
według następującej reguły:

• Weź wierzchołek opisany n-znakową etykietą α1α2 . . . αn.

• Poprowadź krawędź etykietowaną 0 do wierzchołka α2 . . . αn0.

• Poprowadź krawędź etykietowaną 1 do wierzchołka α2 . . . αn1.

Innymi słowy symbol na krawędzi jest dodawany od prawej strony do słowa reprezentowanego przez bieżący
wierzchołek, spychając jednocześnie skrajnie lewy znak.

Zatem przejście pewną sekwencją krawędzi

v1
c1→ v2

c2→ v3 . . . vk

możemy utożsamić z wygenerowaniem ciągu znaków α1α2 . . . αnc1c2c3 . . . ck−1, gdzie oczywiście słowo α1 . . . αn
stanowi etykietę wierzchołka v1.

Takie rozumowanie prowadzi wprost do rozwiązania problemu: w zbudowanym grafie odnajdujemy cykl
Hamiltona, z którego bezpośrednio otrzymujemy ciąg de Bruijna. Ponieważ przejście cyklem Hamiltona od-
wiedzi każdy wierzchołek grafu, więc wygenerowany w ten sposób ciąg będzie zawierał jako podsłowo każde
binarne słowo długości n. Co prawda nie interesuje nas zawieranie każdego podsłowa w sensie dosłownym, lecz
w sensie cykliczności ciągów de Bruijna, ale oznacza to, że w wynikowym ciągu wystarczy wyciąć n pierwszych
albo ostatnich znaków. Przykład dla n = 3 można zobaczyć na rysunku 16.

Niestety problem znajdowania cyklu Hamiltona jest NP-zupełny. Zauważmy jednak dwie istotne własności
grafów de Bruijna:

1. Grafy de Bruijna posiadają cykl Eulera – do każdego wierzchołka wchodzi tyle samo krawędzi ile wychodzi
z niego.

2. Weźmy graf de Bruijna rzędu n− 1 i skonstruujmy dla niego tzw. graf krawędziowy (szczegóły poniżej).
Otrzymamy w ten sposób graf de Bruijna rzędu n.

Graf krawędziowy dowolnego grafu G, to taki graf G′, w którym wierzchołkami są krawędzie grafu G, natomiast
krawędziami jest relacja sąsiedztwa krawędzi w grafie G. Tzn. jeśli dwie krawędzie w grafie G mają wspólny
wierzchołek, to odpowiadające tym krawędziom wierzchołki w grafie G′ połączone są krawędzią.

Można łatwo pokazać, że cykl Eulera w pewnym grafie G ma jednoznaczne przełożenie na cykl Hamiltona
w jego grafie krawędziowym G′. Z tego wynika, że możemy odnaleźć ciąg de Bruijna używając liniowego
algorytmu znajdującego cykl Eulera w grafie rzędu mniejszego o jeden. Zatem dla n = 3 operujemy na grafie
de Bruijna rzędu 2. Przykłady kilku kolejnych grafów podajemy poniżej.
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14.1 Zastosowanie ciągów de Bruijna do konstrukcji słów o dużej liczbie podsłów.

Niech MaxSub(n) oznacza maksymalną liczbę różnych podsłów w słowie binarnym długości n. Zachodzi:

Fakt.
∀16j6n MaxSub(n) 6 2j+1 − 1 +

(
n− j + 1

2

)
Dowód. Mamy co nawyżej 2j+1−1 podsłów binarnych długości co najwyżej j oraz co najwyżej

(
n−j+1

2

)
podsłów

długości co najmniej j + 1.

Wystarczy teraz znaleźć takie j dla którego zachodzi równość. Oznaczmy γk = 2k+k−1. Zachodzi następujący
fakt:

Fakt. Jeśli γk < n 6 γk+1 to MaxSub(n) > 2k+1− 1 +
(
n−k+1

2

)
. Słowo osiągające maksymalną liczbę podsłów

można skonstruować w czasie liniowym.

Dowód. Skonstruujemy słowo spełniające warunki:

• wszystkie podsłowa długości k + 1 w π są parami różne (w konsekwencji wszystkie podsłowa o większej
lub równej długości też są różne, jest ich

(
n−k+1

2

)
),

• π zawiera wszystkie (czyli 2k) podsłowa binarne długości k (w konsekwencji wszystkie krótsze lub o tej
samej długości słowa binarne, jest ich w sumie 2k+1 − 1).

Wtedy słowo π jest słowem długości n o maksymalnej liczbie podsłów, wynika to z poprzedniego faktu.

Słowa spełniające powyższe warunki warunki nazywamy gęstymi.

Konstrukcja słowa gęstego Weźmy graf de Bruijna G rzędu k – wierzchołkami są wszystkie słowa binarne
długości k. Znajdujemy w nim ciąg

π = a1a2 . . . an−k

będący ciągiem etykiet krawędzi pewnego cyklu spełniającego warunki:

(A) cykl ten ma dokładnie n− k krawędzi w G,

(B) przechodzi przez każdą krawędź co najwyżej raz,

(C) przechodzi przez każdy wierzchołek G co namniej jeden raz.

Fakt (Ciekawy fakt teoriografowy). Graf de Bruijna rzędu k posiada cykl π spełniający warunki (A-C) dla każ-
dego γk < n 6 γk+1.

Uzasadnienie. Pokrycie cyklami prostymi to zbiór rozłącznych cykli prostych zawierających wszystkie węzły
grafu.

Pokażemy najpierw że jeśli C jest cyklem w grafie Gn to istnieje pokrycie cyklami zawierające C które można
skonstruować w czasie liniwym.

W grafie Gn−1 jest częściowym cyklem Eulera C ′, Węzły C odpowiadają krawędziom C ′. Usuwamy w
Gn−1 krawęzie C ′. Otzrymany graf będzie pewną liczbą składowych Eulerowskich silnie spójnych.
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Grafy de Bruijna rzędu 1, 2, 3, 4, 5
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Rysunek 16: Graf de Bruijna dla n = 3 nad alfabetem binarnym. Zaznaczono czerwonym kolorem cykl
Hamiltona, który (rozpoczęty od wierzchołka o etykiecie 000) generuje ciąg 00010111000. Po odcięciu n
ostatnich znaków mamy 00010111.

Weżmy cykle Eulera w każdej z nich. Te cykle, po przetłumaczeniu krawędzi na węzły w grafie Gn razem
z C dają szukane pokrycie.

Pokażemy teraz jak mając pokrycie C znależć pokrycie rozłączne krawędziow z C. Zanjdujemy pokrycie P ′

zawierające C. Potem usuwamy krawędzie P ′ i znajdujem pokrycie P które jest automatycznie rozłączne
krawędziowo z C. Po usnięciu krawędzi C każdy węzeł sspełnia indeg(v) = oudeg(v) > 0. Pokrycie P
znajdujemy zachłannie.

Teraz bierzemy graf złożony z cyklu C i jego krawędzi oraz z krawędzi pokrycia P . Zamieniamy graf P ∪ C
na częściowy cykl Eulera spełniający warunki (A-C).

Wprowadzamy operację scalania cykli, jeśli z jakiegoś wierzchołka u cyklu C1 jest krawędź do wierzchołka
v innego cyklu C2 te cykle można polączyć w jeden cykl o tym samym zbiorze węzłów stosując przekierowanie
krawędzi. Pozostawiamy to jako ćwiczenie.

W ten sposób scalamy cykle po kolei otrzymując jeden częściowy cykl Eulera spełniający warunki (A-C).

Mając częsciowy cykl Eulera niech π będzie ciągiem etykiet jego krawędzi. Uliniawiamy π dodając na końcu
k początkowych liter π, czyli słowo a1a2 . . . ak. Słowo π ma teraz własności (A-B) i jest binarnym słowem
długości n maksymalizującym liczbę podsłów.

Przykład. Dla n = 14 mamy k = 3, zaczynamy w wierzchołku (000) w grafie rzędu 3, a następnie konstru-
ujemy cykl spełniający warunki (A-C) o długości n− k = 11. Ciąg etykiet krawędzi cyklu to (patrz rysunek
grafu):

π = 1 0 0 1 1 1 1 0 1 0 0 0 0

Dodajemy na końcu 3 początkowe litery i otrzymujemy wynik:

π = 1 0 0 1 1 1 1 0 1 0 0 0 0 000

Ciąg ten jest binarnym słowem długości 14 o maksymalnej liczbie podsłów wynoszącej

2k+1 − 1 +

(
n− k + 1

2

)
= 24 − 1 +

(
12

2

)
= 15 + 6 · 11 = 81.

Słowa, których każdy prefiks jest gęsty w danym alfabecie nazywamy super-gęstymi. Zachodzi ciekawy fakt.

(a) Najdłuższym binarnym słowem super-gęstym jest słowo o długości 9.

(b) Jeśli dany alfabet ma więcej niż dwie litery to istnieje nieskończnoe słowo super-gęste. Dla danego n
możemy skonstruować słowo super-gęste długości n w czasie O(n).
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Rysunek 17: Graf de Bruijna rzędu 2. Cyklowi Hamiltona z poprzedniego rysunku odpowiada cykl Eulera
(00)− (00)− (01)− (10)− (01)− (11)− (11)− (10)− (00).

Przykład. W alfabecie 3 literowym słowem super-gęstym jest liniowe słowo de Bruijna 012, rozszerazmy
je do słowa de Bruijna 012200211 0. Możemy to słowo rozszerzyć do liniowego słowa de Bruijna 012200211
000101112022212102 01 itd. Ponieważ poprzednie słowa są super-gęste to z własności ciągu de Bruijna wynika,
że nastepne też są. Nie jest oczywistym, że zawsze tak możemy roszerać, ale jest to prawdziwe (korzystamy z
kryteriów istnienia cyklu Eulera).

Redukcja problemu rzędu n do problemu rzędu n− 1

Pokażemy na przykładzie obliczania ciągów de Bruijna w jaki sposób skomplikowany problem sprowadzamy
do jednej instancji tego samego problemu dla danych mniejszego rozmiaru.

Niech SubC(x), SubCk(x) oznaczają odpowiednio wszystkie podsłowa (wszystkie długości k) słowa xx.
Inaczej mówiąc słowo x traktujemy jako ciąg cykliczny oraz podsłowa jako fragmenty cyklu.

Obserwacja 4. Słowo binarne x jest (cyklicznym) ciągiem de Bruijna rzędu n gdy

|x| = 2n & |SubCn(x)| = 2n.

Oznaczmy przez DB(n) zbiór słow cyklicznych de Bruijna rzędu n. Oznaczmy jeszcze przez Sync(x, γ)
przesunięcie cykliczne ciągu x tak, aby na końcu było słowo γ, o ile γ ∈ SubC(x).

Przykład. Sync(001011101, 011) = 101001011.

Dla dwóch słów binarnych u, v wprowadzamy operację zsynchronizowanego scalania tych słów za pomocą
dodatkowego synchronizującego słowa γ ∈ SubC(u) ∩ SubC(v):

SyncMerge(u, v, γ) = Sync(u, γ) · Sync(v, γ).

Rysunek 18: Graficzna ilutracja synchronicznego scalania SyncMerge(u, v, 0101) dla słów cyklicznych u =
00011010, v = 11110010. Słowem sychronizującym jest γ = 010 (oba slowa kończą się na γ, tak więc są od
razu zsynchronizowane). Wynikiem jest słowo cykliczne 0001101011110010. Każde słowo binarne długości
4 występowało (cyklicznie) dokładnie raz w rozłącznym zestawie słów cyklicznych u, v. Teraz występuje
dokładnie raz w ich scaleniu.

Nastepna obserwacja wynika bezpośrednio z definicji operacji SyncMerge), patrz Rysunek 18.
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Obserwacja 5. Niech n ≥ 2. Załóżmy, że dla słów binarnych u, v długości 2n i słowa γ długości n zachodzi
warunek:

(∗) |SubCn+1(u) ∪ SubCn+1(v)| = 2n+1 & γ ∈ SubCn(u) ∩ SubCn(v).
Wtedy w = SyncMerge(u, v, γ) ∈ DB(n+ 1), inaczej mówiąc w jest słowem de Bruijna rzędu n+ 1.

Dla ciągu binarnego w zdefiniujmy dziwną operację, której wynikiem jest następujący ciąg Ψ(w) tej samej
długości:

(∀ 1 ≤ i ≤ |w| ) Ψ(w)[i] = (
i∑

j=1

w[j] ) mod 2.

Przykład. Ψ(11100101) = 10111001.

Obserwacja. Możliwa jest sytuacja neg(Ψ(x)) 6= Ψ(neg(x)).

Niech αn będzie słowem binarnym długości n zaczynającym się od zera i nie mających dwóch takich samych
kolejnych liter. Dla ciągu binarnego z operacja neg(z) polega na zanegowaniu kolejnych liter. Następna
obserwacja wynika z definicji operacji Ψ:

Obserwacja 6.
Niech x ∈ DB(n), n ≥ 2. Wtedy warunek (∗) jest spełniony dla X = Ψ(x) oraz Y = neg(Ψ(x)) i dowolnego
γ ∈ SubCn(X) ∩ SubCn(Y ). W szczególności mozna wziąć γ = αn

Powyższy fakt jest podstawą następującego algorytmu typu redukcja problemu konstrukcji ciągów de Bru-
ijna (pewnego typu, jest wiele innych ciągów de Bruijna). Konstrukcję problemu dla n redukujemy do jednej
instancji problemu rzędu n− 1.

Algorytm DeBruijn(n) {Zakładamy, że n ≥ 2}
if n = 2 return 0011;
X := Ψ(DeBruijn(n− 1)); Y := neg(X);
wybierz dowolne słowo γ ∈ SubCn(X) ∩ SubCn(Y ).;
{ γ jest słowem synchronizującym długości n }
return SyncMerge(X,Y, γ)

Algorytm ten działa w czasie liniowym ze względu na rozmiar wyjścia.

14.2 Generowanie on-line binarnego słowa de Bruijna

Pokażemy jeszcze jedno zastosowanie porządku w alfabecie. Następujący algorytm generuje kolejne fragmenty
n-elementowe ciągu liniowego de Bruijna rzędu n, jest to algorytm który, w odróżnieniu od algorytmu reku-
rencyjnego używa pamięcie O(n), generując on-line symbole ciągu o długości 2n.

Zakładamy, że alfanetem jest {0, 1}, oraz b̄ oznacza negację bitu.
Jeśli b1b2..bn jest aktualnym fragmentem to następny fragment otrzymujemy obcinając pierwszą literę b1 i

dopisując na końcu literę b. Litera b zależy od aktualnego ciągu w sposób następujący.

Algorytm On-Line generacji ciągu de Bruijna
przejście do kolejnej n-krotki: b1b2 . . . bn → b2b3 . . . bnb

if b2b3 . . . bn1 jest ciągiem minimalnym w swojej klasie cykliczności then b := b1
else b := b1;

Aby udowodnić poprawność wystarczy zinterpretować ten algorytm jako algorytm przechodzenia drzewa
cykli rotacyjnych, patrz rysunek 2. Cykle połączone są dwukierunkowymi mostami.

Drzewo cykli rotacyjnych jest podgrafem grafu de Bruijna Gn = (V,E), gdzie V = {0, 1}n oraz mamy
krawędź aα→ αb dla każdego

a, b ∈ {0, 1}, α ∈ {0, 1}n−1

Zachodzi następujący oczywisty fakt:
2Rysunek wykonany przez Bartosza Łukasiewicza
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Obserwacja 7.
(1) Każde słowo cykliczne w de Bruijna rzędu n odpowiada ciągowi etykiet krawędzi w cyklu Hamiltona grafu
Gn, startując z sufiksu słowa w długości n.
(2) Każde słowo cykliczne w de Bruijna rzędu n odpowiada ciągowi etykiet krawędzi w cyklu Eulera grafu Gn−1,
startując z sufiksu słowa w długości n− 1.
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Rysunek 19: Graficzna ilustracja algorytmu generacji kolejnych n-krotek w ciągu de Bruijna wygenerowanym
algorytmem on-line. Algorytm dopowiada obejściu drzewa cykli rotacyjnych. Cykle połączone są dwukierun-
kowymi mostami.

Alternatywny algorytm generacji ciągu de Bruijna. Rozważmy następującą wersję generacji on-line
ciągu de Bruijna.

Algorytm On-Line generacji ciągu de Bruijna
przejście do kolejnej n-krotki: b1b2 . . . bn → b2b3 . . . bnb

0b2b3 . . . bn jest ciągiem minimalnym w swojej klasie cykliczności



15 ZASTOSOWANIE WYZNACZNIKA 51

wtedy i tylko wtedy gdy b = b1.

Podobnie jak w poprzednim algorytmie można zinterpretować algorytm jako obchodzenie drzewa cykli
rotacyjnych, patrz rysunek 3.

Rysunek 20: Graficzna ilustracja alternatywnego algorytmu generacji kolejnych n-krotek w ciągu de Bruijna
wygenerowanym algorytmem on-line

15 Zastosowanie wyznacznika

Wyznacznik det(A) macierzy kwadratowej jest funkcją (od macierzy) o następujących własnościach.

• det(In) = 1, gdzie In jest jednostkową n× n macierzą.

• Jeśli pomnożymy wiersz lub kolumnę przez stałą to wyznacznik też się pomnoży przez tę samą stałą.

• Przestawienie dwóch kolumn/wierszy zmienia znak wyznacznika.

• Dodanie do danej kolumny/wiersza innej kolumny/wiersza pomnożonej przez stałą nie zmienia znaku
wyznacznika.

• Wyznacznik macierzy transponowanej jest taki sam.
3Rysunek wykonany przez Aleksandrę Jarmolińską
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Tablica 1: Ilustracja trzech redukcji zastosowanych do macierzy dla grafu de Bruijna, początkowo mamy
macierz Ln dla n = 3, po 3 redukcjach prawą dolną macierzą jest Ln−1.

15.1 Twierdzenie Matrix-Tree i wyznaczniki

Dla grafu skierowanego G o macierzy sąsiedztwa A przez L(G) oznaczmy macierz D(G)−A, gdzie D(G) jest
macierzą, w której na przekątnej są wartości D(G)i, i = indegree(i). Dla i 6= j mamy: L(G)i, j = −1 wtedy
i tylko wtedy gdy jest krawędź od i do j.

Twierdzenie 8 (Matrix-Tree Theorem). Załóżmy, że G jest grafem skierowanym, spójnym i Eulerowskim
oraz stopień wejściowy/wyjściowy każdego węzła jest co najwyżej 2. Wtedy liczba cykli Eulera jest równa liczbie
drzew rozpinających skierowanych o (dowolnym) ustalonym korzeniu, oraz jest równa wyznacznikowi macierzy
L(G) z usuniętym pierwszym wierszem i pierwszą kolumną.

15.2 Zastosowanie wyznacznika do liczenia ciągów de Bruijna

Pokażemy, jak policzyć liczbę wszystkich ciągów i cykli de Bruijna stosując wyznaczniki. Niech Gn = (V, E)
będzie grafem de Bruijna rzędu n:

V = (0 + 1)n−1, E = {aα→ αb : α ∈ (0 + 1)n−2, a, b ∈ {0, 1}}

Bn =



1 −1
2 −1 −1

2 −1 −1
2 −1 −1

2 −1 −1
2 −1 −1

2 −1 −1
2 −1 −1

−1 −1 2
−1 −1 2

−1 −1 2
−1 −1 2

−1 −1 2
−1 −1 2

−1 −1 2
−1 1



Redukcja macierzy

1. X1 := X1−X2;

2. Y 2 := Y 2 + Y 1;

3. Dodajemy do środkowego wiersza wszystkie wiersze X2.

Po redukcji dostajemy, że wartością wyznacznika jest
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Rysunek 21: Podział macierzy. Z macierzy usuwamy pierwszy wiersz i kolumnę, uzyskując macierz Ln o kształ-
cie (2n−1 − 1)× (2n−1 − 1). Po pominięciu środkowego „krzyża” mamy cztery ćwiartki A, B, C, D.
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det(Ln) = 2k · det(Ln−1), gdzie k = 2n−2 − 1

Stąd mamy wzór na liczbę wszystkich cykli de Bruijna:

det(Ln) = 22
n−1−n

Wzór na liczbę wszystkich ciagów de Bruijna jest prostszy:
√

22n .

15.3 Inne grafy.

Oznaczmy przez Qn graf będący kostką n-wymiarową. Stosując wyznaczniki podobnie jak poprzednio można
pokazać następujący fakt.

Fakt. Liczba drzew rozpinających w grafie Qn wynosi:∏
S⊆[n], |S|>2 2 · |S| =

∏n
k=2 (2k)(

n
k)

Dla grafu pełnego Kn otrzymujemy:

Fakt. Liczba drzew rozpinających w grafie Qn wynosi nn−2.

Podobnie prosty wzór można otrzymać dla grafu pełnego dwudzielnego Km,n.

Fakt. Liczba drzew rozpinających w grafie Kmn wynosi nm−2mn−2

16 Dwa liniowe algorytmy konstrukcji binarnych drzew

W sekcji tej opiszemy dwa bardzo ładne i bardzo proste algorytmy działające w czasie liniowym, które dla
zadanego ciągu a1, a2, . . . , an różnych liczb konstruują dwa typy drzew.

• Drzewo Kartezjańskie K(a1, a2, . . . an): korzeniem jest najmniejszy element ak, jego lewe poddrzewo jest
drzewem Kartezjańskim dla ciągu a1, a2, . . . , ak−1, a prawe dla ciągu ak+1 . . . an.

• Drzewo wyszukiwań binarnych BST (a1, a2, . . . , an). Zakładamy tutaj, że elementy ciągu można po-
sortować w czasie liniowym. Tak więc bez straty ogólności dla konstrukcji BST przyjmijmy, że ciąg
jest permutacją. Korzeniem jest a1, lewe poddrzewo jest BST dla podciągu elementów mniejszych od
a1, prawym poddrzewem dla podciągu elementów większych od a1 (w kolejności tak jak w początkowej
permutacji).

Skonstruowanie tych drzew bezpośrednio z definicji daje naturalne algorytmy, które nie działają w czasie
liniowym.
Algorytm 15: Algorytm konstrukcji K(a1, . . . , an) (ciąg różnych elementów)
1 początkowo drzewo składa się z korzenia o wartości a1;
2 for i = 2 to n do
3 v := pierwszy od dołu węzeł na prawostronnej gałęzi taki, że v > ai;
4 leftson(ai) := rightson(v); rightson(v) := ai;
5 end

Algorytm 16: Algorytm konstrukcji BST (a1, . . . , an) (ciąg jest permutacją)
1 rank(i) jest pozycją i w permutacji (a1, a2, . . . , an);
2 lista L := (1, 2, . . . , n);
3 for i = n downto 1 do
4 if |L| > 1 then
5 v := sąsiad ai w liście L z większym rank;
6 if v < ai then rightson(v) := ai;
7 else leftson(v) := ai;
8 ;
9 usuń ai z listy L;

10 end
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17 Kilka prostych gier kombinatorycznych.

Na początku pokażemy użyteczność operacji bitowej xor w grach kombinatorycznych. W grach tych chodzi
przede wszystkim o to, żeby znaleźć algorytmicznie prostą funkcję odpowiadającą na pytania: czy zadana
konfiguracja jest wygrywająca (zakładając perfekcyjną grę obu graczy). W bardziej skomplikowanych grach
(szachy, wacaby, go) takiej prostej funkcji raczej nie ma. Skoncentrujemy się na bardzo prostych grach,
w których funkcja konfiguracji wygrywającej związana jest z operacjami bitowymi na liczbach opisujących
konfigurację.

Operacja ⊕, nazywana xorem jest użyteczna w wielu prostych grach kombinatorycznych w opisie tzw.
funkcji Grundy’ego Gr.

Inną operacją jest operacjaMEX (minimal excludant). Niech N będzie zbiorem liczb naturalnych z zerem.

MEX(X) = min(N −X)

W szczególności
MEX(∅) = 0

Załóżmy, że grze odpowiada acykliczny, z reguły bardzo duży, graf konfiguracji. Niech x → y będzie
przejściem od konfiguracji x do konfiguracji y. W to zbiór konfiguracji wygrywających, P to zbiór konfiguracji
przegrywających.
Funkcja całkowitoliczbowa Gr na zbiorze konfiguracji jest funkcją Grundy’ego gdy

g(x) = MEX ({g(y) : x→ y})

Funkcja ta może istnieć nawet dla grafów z cyklami, tym niemniej zakładamy dalej w tej sekcji acykliczność.
Funkcja g spełnia:

1. x ∈W ⇔ Gr(x) 6= 0,

2. x ∈ P ∧ x→ y ⇒ Gr(y) 6= 0,

3. x ∈W ⇒ ∃x, y x→ y,Gr(y) = 0.

17.1 Gra NIM

Zbiorem konfiguracji jest zbiór wektorów k-wymiarowych o współczynnikach naturalnych, ruch polega na
zmniejszeniu co najmniej o jeden którejś współrzędnej. Konfiguracja zerowa jest przegrana. W tym przypadku

Gr(x1, x2, . . . , xk) = x1 ⊕ x2 ⊕ x3 . . .⊕ xk

17.2 Staircase (schodkowy) NIM

Gra ta jest wersją gry NIM, jest opisana jako zadanie „Gra” na XI OI. W tej grze możemy zmniejszyć (co naj-
mniej o jeden) pierwszą współrzędną, lub wykonać dla i > 1:

if xi > ∆ > 0 then
xi := xi −∆; xi−1 := xi−1 + ∆

Inaczej mówiąc możemy przesuwać elementy ze schodka wyższego na bezpośrednio niższy lub usuwać
z pierwszego schodka. W tym przypadku

Gr(x1, x2, . . . , xk) = x1 ⊕ x3 ⊕ x5 . . .⊕ . . .

17.3 Monotoniczny NIM

Gra ta jest opisana jako zadanie „Kamyki” na XVI OI. Gra jest podobna do NIM z dodatkowym wymaganiem
aby współrzędne wektora konfiguracji były zawsze niemalejące. W przypadku tej gry załóżmy, że k jest
parzyste, ewentualnie dodając z przodu (gdy k nieparzyste) jedną „sztuczną” współrzędną zawsze zerową. W
tym przypadku zachodzi:

Gr(x1, x2, . . . , xk) = (x2 − x1)⊕ (x4 − x3)⊕ . . . (xk − xk−1).
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17.4 Ograniczony NIM

Z dowolnego dokładnie jednego stosu możemy wziąć niezerową liczbę ale ograniczoną przez 4.

17.5 Twierdzenie Sprague-Grundy’ego

Grą jest graf acykliczny w którym każda ścieżka się gdzieś kończy. Jeśli mamy gry G1, . . . , Gk to ich sumą
G1 +G2 +Gk jest gra, w której gracze kolejno wybierają jedną z Gi i wykonują w niej ruch. Konfiguracja gry
to ciąg (u1, u2, . . . , uk) konfiguracji w grach Gi.

Twierdzenie Sprague-Grundy’ego
Funkcja Grundy’ego konfiguracji sumy gier jest xor-sumą funkcji Grundy’ego dla poszczególnych komponentów.

Twierdzenie Boutona jest szczególnym przypadkiem. Dla komponentów mamy tutaj funkcję: g(k) = k.

17.6 Gry typu NIM i mocne twierdzenie Sprague-Grundy’ego

Zdefiniujmy teraz grę w inny sposób. W grze tej konfiguracjami będą multizbiory pewnego zbioru V .
Załóżmy, że mamy częściowo uporządkowany zbiór elementów V w którym nie ma nieskończonego ściśle

malejącego ciągu, schodzenie do poprzednich wierzchołków kiedyś się kończy. Inaczej mówiąc mamy pewien
graf acykliczny G z korzeniem. Korzeń to jest utożsamienie wszystkich elemenów minimalnych.

Mamy funkcję PRED taką, że PRED(v) jest skończonym zbiorem skończonych podzbiorów V . Jeśli
X ∈ PRED(V ) to wszystkie elementy z X są mniejsze, w sensie częściowego porządku, od v (muszą być
bezpośrednimi poprzednikami v w grafie G).

Obserwacja. Graf G jest tu właściwie nieistotny, ale wygodny.

W związanej z tym grze konfiguracjami K są skończone multizbiory V . Gracz wybiera v ∈ K, usuwa v i
wstawia do multizbioru K jeden ze zbiorów X ∈ PRED(v). Gracz, który nie ma ruchu przegrywa. Tak
zdefiniowaną grę na multizbiorach nazywamy grą typu NIM (zadaną przez funkcję PRED). Inaczej mówiąc
mamy grę w której gracz może zainicjować kilka wierzchołków, np. rozbić stos na dwie części o ustalonej relacji
między nimi (np. różne rozmiary, lub rozmiar jednej 5 razy większy od rozmiaru drugiej części). Dodajemy
graczowi dużo możliwości. Konfiguracja jest tak naprawdę uogólnioną sumą gier.

Oznaczmy przez multK(u) wielokrotność (multiplicity) element u w konfiguracji K. Niech ⊗ oznacza ope-
racje mnożenia niezależnie po bitach modulo 2 (bierzemy xor wiele razy).

Mocne twierdzenie Sprague-Grundy’ego
W grze typu NIM dla konfiguracji (multizbioru) K mamy

g(K) = XORu∈K ; multK(u)⊗ g(u)

Wniosek.
Funkcja Grundy’ego dla gry typu NIM dla v ∈ V (dla singletonów) spełnia:

g(v) = MEX({XORu∈X ; g(u) : X ∈ PRED(v)})

Daje to z reguły wielomianowy algorytm liczenia funkcji Grundy’ego dla singletonów. Zauważmy, że
potencjalnych konfiguracji generowanych z singletona może być z reguły wykładniczo wiele.
Poprzednie (standardowe) twierdzenie Sprague-Grundy’ego wynika stąd, jeśli założymy, że V jest rozłączną
sumą V1 ∪ V2 . . . ] Vk, gdzie Vi jest zbiorem lokalnych konfiguracji w grze Gi, oraz dla każdego elementu v
funkcja PRED(v) daje zbiór singletonów (poprzedników v) w grze Gi, gdzie v ∈ Vi.

17.7 Gra Grundy’ego

Kolejno gracze dzielą jeden ze stosów (rozmiaru n) na dwie nierówne i niepuste części o rozmiarach i, j. Liczba
stosów może rosnąć. Gracz który nie ma ruchu przegrywa.

g(n) = MEX({g(i)⊕ g(j) : i 6= j, i+ j = n, 0 < i, j < n})
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Początkowe wyrazy tego ciągu dla n = 0..20 to:

0 0 0 1 0 2 1 0 2 1 0 2 1 3 2 1 3 2 4 3 0

Otwarty problem i hipoteza. Ciąg Grundy’ego jest od pewnego miejsca okresowy (w każdym razie przy-
najmniej zbiór możliwych wartości jest O(1)).

17.8 Gra PASKI

Mamy paski (prostokąty o kształcie 1 × ci) długości c1, c2, c3, jako narzędzia do wycinania. Na początku
w grze mamy planszę o kształcie 1× n długości n, w trakcie gry mamy pewną liczbę plansz być może różnej
długości. Jeden ruch polega na wybraniu jednej planszy i wycięciu z niej paska (podplanszy) długości ci, gdzie
1 6 i 6 3.
Liczymy funkcję Grundy’ego g(n) dla każdej (spójnej) planszy bez dziur długości n.
W tym przypadku PRED(n) jest rodziną zbiorów składających się z pary elementów (i, j), 0 6 i, j < n,
takich, że po włożeniu ustalonego paska rozbijamy n na plansze spójne rozmiarów i, j (mogą być zerowe).

17.9 Gra „Obcinanie drzewa”

Artykuł Kulczyńskiego z Delty.
?????

17.10 Kayles

????????

0+ 0 1 2 3 1 4 3 2
1 4 2 6

12+ 4 1 2 7 1 4 3 2
1 4 6 7

24+ 4 1 2 8 5 4 7 2
1 8 6 7

36+ 4 1 2 3 1 4 7 2
1 8 2 7

48+ 4 1 2 8 1 4 7 2
1 4 2 7

60+ 4 1 2 8 1 4 7 2
1 8 6 7

72+ 4 1 2 8 1 4 7 2
1 8 2 7

17.11 Gra NIMK i Twierdzenie Moore’a

Ta gra jest tym samym co standardowy NIM, z tą różnicą, że gracz w jednym ruchu może zmniejszyć rozmiar
co najwyżej K > 1 stosów jednocześnie, przy czym co najmniej jeden ze stosów musi się zmniejszyć.
Oznaczamy tę grę przez NIMK .
Zdefiniujmy ⊕K jako operację dodawania modulo K + 1.

Twierdzenie Moore’a.(Eliakim Hastings Moore, 1909)
(E.H. Moore, ”A Generalization of the Game Called Nim” Ann. Math. Princeton, Series 2, Vol. 11, pp. 93-94
(1909-1910) )
W grze NIMK z m stosami zachodzi:

g(x1, x2, . . . , xm) = x1 ⊕K x2 ⊕k x3 . . .⊕K xm

Pozycje przegrane to te z wartością g(x1, x2, . . . , xm) = 0.
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17.12 Gra Wythoffa

17.13 Problem Josephusa: eliminacja cykliczna

Problem ten nie jest grą w dosłownym znaczeniu, ale można go tak potraktować. W tej grze mamy liczby od
1 do n umieszczone na okręgu, począwszy od liczby 1 usuwamy co drugi element aż zostaje jeden. Niech J(n)
będzie numerem tego elementu. Problem polega na szybkim policzeniu J(n). Element o numerze J(n) wygrywa
(przeżywa), a pozostałe przegrywają (giną). Niech shift(n) będzie liczbą powstałą z n przez przesunięcie
pierwszego bitu na koniec. Na przykład

shift(12) = shift([1100]2) = [1001]2 = 9

Można pokazać, że J(n) = shift(n).

17.14 Gra „kompletowanie zbioru”

Mamy m zbiorów n elementowych X1, X2, . . . , Xm. Pierwszy gracz (wybieracz) wybiera pewien element,
drugi gracz (usuwacz) usuwa jeden element dotychczas nie wybrany, i tak na przemian. Usuniety element jest
usuwany ze wszystkich zbiorów do których należy. Pierwszy gracz wygrywa gdy skompletuje jeden ze zbiorów.

Przykład. Weźmy m = 2n−1. Każdy ze zbiorów zawiera ten sam element a, oraz dokładnie jeden spośród
ai, bi dla i = 1, . . . , n−1. Mamy zatem 2n−1 podzbiorów, każdy mocy n. W takim zestawie 1-szy gracz zawsze
wygrywa. Wybiera najpierw a a potem ai gdy usuwacz wybierze bi, lub bi gdy usuwacz wybierze ai.

Twierdzenie (Erdos-Selfridge 1973)
jeśli m < 2n−1 to, zakładając, że usuwacz działa optymalnie, 1-szy gracz nie wygrywa.

Uzasadnienie. Załóżmy, że wybieracz wybrał już zbiór elementów Y . Potencjałem elementu x /∈ Y jest

Φ(x) =
∑
x∈Xi

2|Xi∩Y |

W każdym kroku wybieracz usuwa element o maksymalnym potencjale. Wtedy wartość
∑

i 2|Xi∩Y | po wyko-
naniu 2 kolejnych ruchów: (usuwacz; wybieracz) się nie zwiększa. Zatem wybieracz nigdy nie osiągnie żadnego
kompletnego zbioru Xi (tzn. nigdy nie będzie Xi ⊆ Y ), gdyż gdyby tak się stało to ta suma byłaby nie
mniejsza niż 2n, a jest ona mniejsza od 2n po pierwszym ruchu wybieracza.

Rozważmy podobną grę. W tej grze wybieracz wybiera krawędzie z grafu pełnego Kn, a usuwacz usuwa
te jeszcze nie wybrane. Wybieracz wygrywa gdy z wybranych krawędzi można utworzyć pełny graf Kr. Z
Twierdzenia Erdosa-Selfridge’a wynika

Fakt. Jeśli
(
n
k

)
< 2(r2)−1 to wybieracz nie wygra (nie utworzy podgrafu Kr) przy optymalnej strategii

usuwacza.

18 Sortowanie Berge’a

Mamy ciąg n-elementowy αn = 10101010 . . ., ostatnim elementem jest 1 wtedy i tylko wtedy gdy n nieparzyste.
Zakładamy n > 5.

Operacja elementarna to przeniesienie 2 sąsiednich elementów na dwa wolne sąsiadujące pola, wszystkie
(nieskończenie wiele) pola na lewo i na prawo ciągu α są początkowo wolne. Celem jest posortowanie ciągu w
optymalnym czasie, oznaczmy przez α̃n ciąg posortowany.

Na przykład dla n = 5 optymalnym sortowaniem (w dn2 e = 3 ruchach) jest

α5 = 1 0 1 0 1 → 1 t t0 1 0 1 → 1 1 0 0 t t1 → 0 0 1 1 1 = α̃5

Fakt. Optymalny czas > dn2 e.



18 SORTOWANIE BERGE’A 59

Dowód metodą zmniejszania potencjału - liczby elementów niepustych za którymi bezpośrednio na prawo
jest wolne pole lub element innego koloru.

Sortowanie jest silne, gdy ciąg do posortowania używa tylko pól na których jest ciąg plus dwóch pustych
pól na prawo, po posortowaniu ciąg przesuwa się o dwa pola na prawo.

Sortowanie Berge’a - schemat algorytmu
(1) Znajdujemy ręcznie w czasie O(1) silne sortowanie dla n ∈ {8, 10, 12, 14, 16}
oraz (niekoniecznie silne) sortowanie dla nieparzystych 5 6 n < 17.
(2) (rekurencja) Dla parzystych n > 16, sprowadzamy silne sortowanie αn do
silnego sortowania αn−8 korzystając z 4 ruchów.
(3) Sprowadzamy sortowanie (tym razem nie silne) dla nieparzystych n > 17 w 5
krokach do silnego sortowania αn−9 (mamy n− 9 parzyste).

Opiszemy teraz dokładniej kroki (2), (3).

Rekurencyjny algorytm n > 16 parzyste.

1 0 1 0αn−8 1 0 1 0 → 1 t t 0αn−8 1 0 1 0 0 1 → 1 1 0 0αn−8 t t 1 0 0 1

→ 1 1 0 0αn−8 t t 1 0 0 1 →rekursja 1 1 0 0 t tα̃n−8 1 0 0 1 →

1 1 0 0 0 0 α̃n−8 1 t t 1 → 0 0 0 0 α̃n−8 1 1 1 1 = α̃n

Sprowadzenie przypadku nieparzystego do parzystego
Zakładamy, że n > 17 nieparzyste (wtedy n− 9 jest parzyste).

αn = 1 0 1 0 1 0αn−9 1 0 1 → 1 0 1 0αn−9 1 0 1 1 0 →

1 t t0αn−9 1 0 1 1 0 0 1→ 1 1 0 0αn−9 t t1 1 0 0 1

(sortowanie dla przypadku parzystego) →∗ 1 1 0 0 t tα̃n−91 1 0 0 1→

1 1 0 0 0 0 α̃n−91 1 t t1→ 0 0 0 0 α̃n−91 1 1 1 1 = α̃n

Sortowania Berge’a dla n = 6, 8, 10, 12, 14
n = 6

• ◦ • ◦ • ◦
• ◦ • ◦ ◦ •

• • ◦ ◦ ◦ •
◦ ◦ ◦ • • •

n = 8
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• ◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ ◦ •
• • ◦ ◦ • ◦ ◦ •
• • ◦ ◦ ◦ ◦ • •

◦ ◦ ◦ ◦ • • • •
n = 10

• ◦ • ◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ • ◦ ◦ •
• • ◦ ◦ • ◦ • ◦ ◦ •
• • ◦ ◦ ◦ • • ◦ ◦ •
• • ◦ ◦ ◦ ◦ ◦ • • •

◦ ◦ ◦ ◦ ◦ • • • • •
n = 12

• ◦ • ◦ • ◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ • ◦ • ◦ ◦ •
• • ◦ ◦ • ◦ • ◦ • ◦ ◦ •
• • ◦ ◦ ◦ • • ◦ • ◦ ◦ •
• • ◦ ◦ ◦ ◦ • • • ◦ ◦ •
• • ◦ ◦ ◦ ◦ ◦ ◦ • • • •

◦ ◦ ◦ ◦ ◦ ◦ • • • • • •
n = 14

• ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ • ◦ • ◦ • ◦ ◦ •
• • ◦ ◦ • ◦ • ◦ • ◦ • ◦ ◦ •
• • ◦ ◦ • ◦ ◦ • • ◦ • ◦ ◦ •
• • ◦ ◦ • • ◦ ◦ ◦ • • ◦ ◦ •
• • ◦ ◦ ◦ ◦ ◦ • • • • ◦ ◦ •
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • •

◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • •

19 Grafy szachowe

Rozważamy grafy pięciu figur szachowych: S – skoczek, K – Król, H – hetman, W – Wieża, G – goniec. Przez
Fn,m oznaczmy graf figury F na szachownicy n×m. Jeśli n = m, to będziemy pisać Fn. Zajmiemy się (między
innymi) liczeniem następujących parametrów dla grafów szachowych:

• γ(G) – liczba dominacji grafu G, minimalna liczba figur które biją wszystkie pola;

• α(G) – liczba niezależności, maksymalna liczba figur które się nawzajem nie biją;

• ω(G) – liczba klikowa (rozmiar najliczniejszej kliki);

• χ(G) – liczba chromatyczna grafu G.

Poza tym zajmiemy się istnieniem cyklu (ścieżki) Hamiltona.

19.1 Graf hetmana

Mamy 92 zbiory niezależne rozmiaru 8 w grafie hetmana H8. Nie ma ogólnego wzoru na liczbę zbiorów
niezależnych w Hn, natomiast ogólnie zachodzi:

α(Hn) = n dla n > 5

Uzasadnienie Poniższe rysunki pokazują, że możemy dla n > 6 rozmieścić n hetmanów nawzajem nieza-
leżnych. Następnie zauważmy, że przekątne są wolne, zatem można rozszerzyć na szachownicę o boku o jeden
większym.
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Rysunek 22: Schemat ustawienia n niezależnych hetmanów dla szachownicy o boku 6k lub 6k + 4.

Rysunek 23: Schemat dla szachownicy o boku 6k + 2.

Wariacje problemu niebijących się hetmanów

• Szachownica cylindryczna. Na cylindrycznej szachownicy 8×8 ośmiu niezależnych hetmanów się nie ustawi.

• Niech HS będzie skrzyżowaniem skoczka z hetmanem, wtedy na szachownicy 8×8 nie ma 8 niezależnych
figur HS, natomiast na szachownicy 10× 10 można ustawić 10 takich niezależnych (niebijących się) figur
HS.

Zajmiemy się teraz liczbą dominacji γ(n) = γ(Hn). Dla małych wartości mamy

γ[2..13] = [1, 1, 2, 3, 3, . . .]

Niech diag(n) będzie minimalną liczbą hetmanów, które dominują szachownicę n×n i które są tylko na głównej
przekątnej. Mówimy że zbiór liczb naturalnych X jest jedno-parzysty, gdy elementy X są tej samej parzystości.
X jest bezśrodkowy jeśli

∀a, b∈X a 6= b⇒ a+ b

2
/∈ X

Niech mid(n) będzie mocą maksymalnego jednoparzystego i bezśrodkowego podzbioru [n]. Zachodzi następu-
jący fakt:

diag(n) = n−mid(n)
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Zauważmy, że γ(n) = diag(n) dla n 6 9, natomiast diag(10) > γ(n). Nie potrafimy policzyć szybko wartości
γ(n), natomiast mamy konstrukcję, która przybliża dobrze wartość γ.

1

2
(n− 1) 6 γ(n) 6

⌊
2

3
n

⌋
+ n mod 3

Uzasadnienie

• Górna granica: możemy założyć, że n podzielne przez 3. Dzielimy planszę na 9 takich samych części,
w lewej dolnej części umieszczamy n

3 hetmanów następująco: jeden w dolnym lewym rogu, pozostałe
na głównej odwrotnej przekątnej przesuniętej o jeden w górę. W prawej górnej części umieszczamy
hetmany na głównej odwrotej przekątnej.

• Dolna granica: argument kombinatoryczny, rachunki.

Liczba chromatyczna Wiadomo, że 8 6 χ(H9) 6 9, tzn. istnieje kolorowanie za pomocą 9 kolorów,
patrz rysunek. Czy istnieje za pomocą 8? Oczywiście 8 to dolna granica. Prawdopodobnie (ale nie wiadomo
na pewno)

χ(Hn) ∈ {n, n+ 1, n+ 2}

6 3 7 3 1 5 9 4
9 1 5 8 4 7 3 2
5 4 9 7 3 2 6 8
2 7 3 4 6 1 5 9
3 6 2 5 7 9 4 1
7 5 1 9 2 3 8 6
1 9 4 7 8 6 2 3
8 3 6 2 9 4 1 5

Rysunek 24: Kolorowanie grafu hetmana na szachownicy 8× 8 za pomocą 9 kolorów.

Dwa niezależne hetmany Ustawiamy dwa hetmany losowo na szachownicy n × n. Niech pn oznacza
prawdopododobieństwo, że się nie atakują. Wtedy lim pn = 1

3 . A co z trzema hetmanami?

19.2 Graf skoczka

Mamy α(Sn, n) =
⌈
n
2

⌉
. Natomiast nie ma sensownego wzoru na γ(Sn, n).

S
S S S S

S

S S S
S S S

Rysunek 25: γ(S8) = 12

Zajmiemy się istnieniem i konstrukcją cyklu Hamiltona w Sn,m.

Twierdzenie 9 (Schwenk). Załóżmy m 6 n. Istnieje cykl Hamiltona na Sn,m wtedy i tylko wtedy, gdy
nie zachodzi żaden z następujących warunków.

1. n 6 2 lub m 6 2;
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2. n, m obie nieparzyste;

3. m = 3, n < 10;

4. m = 4.

Dowód. Jeśli m 6 2, to szachownica nie jest dość „szeroka” na istnienie cyklu — z niektórych wierzchołków
grafu skoczka wychodzi tylko jedna krawędź. Punkt (2) jest oczywisty — jeśli obie współrzędne szachownicy są
nieparzyste, to łączne pole też jest nieparzyste. A ponieważ graf skoczka jest dwudzielny (przeskoki pomiędzy
czarnymi i białymi polami), to nie może istnieć cykl o długości nieparzystej.

Udowodnienie nieistnienia cyklu Hamiltona dla pozostałych z wyżej wymienionych przypadków jest nie-
trywialne.

Reszta dowodu jest konstruktywna – polega na konstrukcji cyklu w czasie liniowym jeśli istnieje. Jeden
dowód Parberry’ego (ale tylko dla parzystych n, m) poprzez dzielenie na cztery (prawie) ćwiartki. Drugi dowód
z oryginalnej pracy Schwenka przez dodawania 4 kolumn lub czterech wierszy. Mamy 9862 cykli na S6 oraz
13 267 364 410 532 cykli na S8.

Twierdzenie 10. Na szachownicy skoczka m× n będącej torusem zawsze jest cykl Hamiltona.

Twierdzenie 11. Na szachownicy skoczka m × n (n kolumn) będącej cylindrem (ostatnia kolumna sąsiaduje
z pierwszą) jest cykl Hamiltona wtw. gdy nie zachodzi zaden z warunków:

1. m = 1 oraz n > 1

2. m ∈ {2, 4} oraz n parzyste

19.3 Graf króla

Mamy

γ(Kn, n) =

⌈
n+ 2

3

⌉
W szczególności

γ(K7) = γ(K8) = γ(K9) = 0

Również łatwo się liczy α(Kn, n) i χ(Kn, n).

20 Relokacja (przesuwanie) na grafie – uogólnienie gry Piętnastka

Mamy planszę n × n, oznaczamy ją przez Gn. Graf Gn jest gridem rzędu n. W prawym dolnym rogu jest
puste pole, pozostałe zawierają liczby od 1 do n2 − 1. Konfiguracja jest permutacją π tych liczb. Z jednej
konfiguracji możemy przejść do innej przesuwając liczbą na sąsiednie wolne pole.

Twierdzenie 12. Z konfiguracji π możemy otrzymać konfigurację identycznościową wtedy i tylko wtedy, gdy
π ma znak dodatni (parzysta liczba transpozycji, permutacja parzysta). Jeśli można otrzymać, to wystarczy i
czasami trzeba Θ(n3) ruchów.

Są dwa dowody tego faktu, oba konstruktywne. Jeden Aarona Archera, drugi Parberry’ego, z tym że ten
drugi sprowadza problem do n = 3 i wtedy korzysta z dowodu Aarona Archera. R.M. Wilson uogólnił ten
probem na dowolne grafy nieskierowane. W dowodzie Aarona Archera korzystamy z następującego faktu
kombinatorycznego.

Twierdzenie 13. Zbiór wszystkich permutacji cyklicznych postaci (k, k + 1, k + 2) generuje dokładnie zbiór
wszystkich permutacji parzystych zbioru [n].
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20.1 Algorytm rozwiązywania „piętnastki” rozmiaru 3× 3

Idea algorytmu opiera się na zdefiniowaniu 5 operacji, będących ciągami elementarnych ruchów, jakie można
wykonywać przesuwając sąsiedni element na puste pole. Z operacji tych zostanie zbudowane rozwiązanie
postawionego problemu. Poniższy diagram przedstawia jak poszczególne operacje zmieniają stan łamigłówki:

1. operacja A1
a b c
d e f
g h 0

⇒
a e f
d b c
g h 0

2. operacja B1
a b c
d e f
g h 0

⇒
a c b
d f e
g h 0

3. operacja A2
a b c
d e f
g h 0

⇒
a b c
g h f
d e 0

4. operacja B2
a b c
d e f
g h 0

⇒
a b c
e d f
h g 0

5. operacja C
a b c
d e f
g h 0

⇒
a c b
d e f
h g 0

Operacje A2 i B1 są symetryczne do (odpowiedno) A1 i B1. Zauważmy, że za pomocą operacji A1, B1,
A2 i B2 możemy przesunąć dowolny klocek z prawego górnego kwadratu 2 × 2 do lewego dolnego kwadratu
2 × 2 i odwrotnie. Jest tak, ponieważ złożenie operacji A1 i B1 powoduje cykliczne obracanie elementów
w prawym górnym kwadracie 2× 2, a złożenie operacji A2 i B2 powoduje analogiczny skutek w lewym dolnym
kwadracie 2 × 2. W takim razie, dowolny element z prawego górnego kwadratu 2 × 2 możemy przenieść
w miejsce o współrzędnych (2, 2) za pomocą ciągu operacji A1 i B1. Analogicznie możemy robić z lewym
dolnym kwadratem 2× 2 i operacjami A2 i B2. Algorytm składa się z następujących kroków:

1. Przesuwamy klocek z numerem jeden w lewy górny róg i wracamy pustym miejscem w prawy dolny róg.

2. Mamy następującą sytuację:
1 b c
d e f
g h 0

Korzystając z operacji A1, B1, A2 i B2 „przerzucamy” elementy

z prawego górnego kwadratu 2 × 2 do lewego dolnego kwadratu 2 × 2 i odwrotnie, tak aby uzyskać
w prawym górnym kwadracie 2× 2 elementy ze zbioru {2, 3, 5, 6}, a w lewym dolnym kwadracie 2× 2
elementy ze zbioru {4, 5, 7, 8}. Zauważmy, że w takim układzie elementów na pozycji o współrzędnych
(2, 2) musi znajdować się element o wartości 5.

3. Zauważmy, że prawy górny kwadrat 2× 2 może mieć jedną z sześciu postaci:

2 3
5 6

6 2
5 3

3 6
5 2

2 6
5 3

3 2
5 6

6 3
5 2

Trzy górne możliwości wymagają parzystej liczby zamian elementów, a trzy dolne wymagają nieparzystej
liczby zamian do osiągnięcia porządku (2, 3, 5, 6). Zauważmy, że możemy przechodzić cyklicznie między
trzema górnymi stanami stosując kilkakrotnie poniższe ruchy (nazwijmy je operacją D):
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1 2 3
d 5 6
g h 0

⇒
1 2 3
d 5 6
g 0 h

⇒
1 2 3
d 0 6
g 5 h
⇓

1 3 6
d 2 0
g 5 h

⇐
1 3 0
d 2 6
g 5 h

⇐
1 0 3
d 2 6
g 5 h

⇓
1 3 6
d 0 2
g 5 h

⇒
1 3 6
d 5 2
g 0 h

⇒
1 3 6
d 5 2
g h 0

Analogicznie można przechodzić między dolnymi stanami. Symetryczna sytuacja ma miejsce w lewym
dolnym kwadracie 2× 2. Zauważmy, że mamy cztery możliwe przypadki:

I. W prawym górnym kwadracie 2 × 2 jest parzysta permutacja i w lewym dolnym kwadracie 2 × 2
jest parzysta permutacja.

II. W prawym górnym kwadracie 2 × 2 jest parzysta permutacja i w lewym dolnym kwadracie 2 × 2
jest nieparzysta permutacja.

III. W prawym górnym kwadracie 2× 2 jest nieparzysta permutacja i w lewym dolnym kwadracie 2× 2
jest parzysta permutacja.

IV. W prawym górnym kwadracie 2× 2 jest nieparzysta permutacja i w lewym dolnym kwadracie 2× 2
jest nieparzysta permutacja.

W takim razie w przypadkach II i III układanka nie ma rozwiązania, ponieważ permutacja dla całego
kwadratu 3 × 3 jest nieparzysta. W przypadku I możemy doprowadzić prawy górny kwadrat 2 × 2
do porządku (2, 3, 5, 6) za pomocą operacji D i lewy dolny kwadrat do porządku (4, 5, 7, 8) za pomocą
operacji symetrycznej do D. W przypadku IV stosujemy operację C, która zmienia parzystość permutacji
w prawym górnym kwadracie 2 × 2 i w lewym dolnym kwadracie 2 × 2, dając w efekcie przypadek I.
Ostatecznie osiągamy układankę ułożoną w porządku (1, 2, 3, 4, 5, 6, 7, 8).

20.2 Uogólnienie „piętnastki” na dowolne grafy dwuspójne

Twierdzenie 14 (Wilson). Jeśli G jest prostym grafem dwuspójnym, różnym od cyklu oraz różnym od grafu
Θ0:

to każdą permutację parzystą da się osiągnąć. Gdy graf jest niedwudzielny, to można wszystkie permutacje.

Mamy graf G (różny od cyklu i różny od Θ0) etykietowany {1, . . . , n− 1} ∪ {∅}. Γ(x) – zbiór permutacji
powstałych z marszrut z x do x. Zbiór ten stanowi pewną podgrupę grupy permutacji:

• łączność – złożenie marszrut (P1 ◦ P2) ◦ P3 = P1 ◦ (P2 ◦ P3),

• element odwrotny: marszruta odwrotna (zapuszczona do tyłu).

• element neutralny: pusta marszruta.

Pojęcia

• G – graf dwuspójny. Niech β(G) = m − n + 1. Jeśli β(G) = 1, to graf jest cyklem. Jeśli β(G) = 2,
to graf jest Θ-grafem. Dla β(G) > 3 krok indukcyjny.
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• Ściągnięcie (zwinięcie łańcuchów krawędzi w pojedyncze krawędzie) grafu G w graf G′ (potencjalnie
dostaniemy multigraf):

przed po

Ściągnięcie Θ-grafu to

Ściągnięcie grafu dla β = 3:

Lemat 2. Niech G′ ściągnięty dwuspójny graf o β(G) > 3. Istnieje krawędź w G′, po usunięciu której graf
pozostaje dwuspójny oraz jest różny od Θ0 po rozciągnięciu.

Grupa H działająca na zbiorze X jest tranzytywna, jeśli potrafi przeprowadzić każdy element na każdy
element. Grupa Γ(x) działająca na V \{x} jest tranzytywna, jeśli umiemy wstawić każdy element V \{x}
pojedynczo wszędzie.

Twierdzenie 15. Γ(x) jest tranzytywna ⇔ gdy graf G jest dwuspójny.

Grupa H działająca na zbiorze X jest 2-tranzytywna, jeśli potrafi przeprowadzić dowolną parę różnych
elementów z X na dowolną parę różnych elementów z X.

Lemat 3. Rozważmy zbiór X, |X| > 3; weźmy dowolne u, v ∈ X. Zbiór 3-cykli postaci (uvx) dla x ∈ X\{u, v}
generuje alt(X) – permutacje parzyste.

Lemat 4. Niech Σ będzie zbiorem 3-cykli na zbiorze X |X| > 3. Oznaczmy przez Σ∗ grupę generowaną przez
Σ. Nastepujące warunki są równoważne:

1. Σ∗ = alt(X)

2. Σ∗ jest tranzytywna

Lemat 5. Niech H będzie 2-tranzytywną grupą permutacji (niekoniecznie wszystkich permutacji! może być
podzbiór permutacji, które stanowią grupę), która zawiera co najmniej jeden 3-cykl. Wtedy alt(X) ⊆ H.

Z powrotem do kroku indukcyjnego twierdzenia początkowego Mamy graf G, dwuspójny, β(G) >
3. Z któregoś lematu dostajemy „ucho” do usunięcia (łańcuch pomiędzy dwoma wierzchołkami x, y ∈ V ),
otrzymując graf H. Wiemy, że graf H jest dwuspójny, β(H) > 2, H jest różny od Θ0 (z założenia), zatem
możemy skorzystać z założenia indukcyjnego: mamy permutacje parzyste w H, czyli mamy 3-cykl.

Nasza para (y, z), gdzie z to dowolny wierzchołek w H różny od x i y. Bierzemy (a, b):

• b wsadzamy na z,

• jeśli a jest na uchu, to kręcimy cyklem, a trafia do y

• w p.p. a jest wG, to umiemy przełożyć (z, a) na (z, y), bo z założenia indukcyjnegoH jest 2-tranzytywna
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21 Problemy wagowe

Zajmiemy sie następującym problemem, dany jest zbiór Z odważników. Chcemy obliczyć minimalną liczbę
odważników do zważenia zadaenj liczby x. Mamy dowolnie wiele odważników każdego typu.

21.1 Waga trójkowa

Niech Z będzie multizbiorem potęg trójki. Problem można zinterpretować jako zapis liczby naturalnej m w
specjalnej reprezentacji trójkowej: w postaci tej bazą jest liczba 3 a cyfry są ze zbioru {-1, 0, 1}. Oznaczmy
tę reprezentację przez repr(m).

Mamy repr(m) = (a0, a1, a2, . . . , ak), gdzie ai ∈ {−1, 0, +1}, ak 6= 0 oraz

m =

k∑
i=0

ai · 3i

Mając obliczoną reprezentację na prawej szalce kladziemy odważniki 3i dla których ai = 1, natomiast na lewej
szalce kładziemy obiekt o masie m i odważniki 3i dla ai = −1.

Oznaczmy przez [m]3 normalną reprezentację trójkową liczby ma

W algorytmie mamy do czynienia z bardzo dużymi liczbami, tak że dodtakowym utrudnieniem jest implem-
natcja arytmetyki na reprezentacjach dziesiętnych i trójkowych dużych liczb.

Obserwacja. Rozwiązanie opiera się na następującym spostrzeżeniu. Załóżmy, że mamy liczby naturalne
m > 0 i liczbę x taką, że [x]3 składa się z samych k+ 1 jedynek oraz x ≥ m. Jeśli [x+m]3 = (b0, b1, b2, . . . , bk)
to repr(x) = (b0 − 1, b1 − 1, b2 − 1, . . . bk − 1), z dokładnością do pominięcia nieznaczących ostatnich zer.

Opis algorytmu.

Obliczmy najmniejszą liczbę x, taką że [x]3 składa się z samych jedynek oraz x ≥ m.
Niech y = m+ x.
Obliczmy [y]3 = (b0, b1, b2, . . . , bk).
return repr(m) = (b0 − 1, b1 − 1, b2 − 1, . . . bk − 1)

Przykład.
Niech m = 42. Mamy [42]3 = (0, 2, 1, 1), oraz x = 121, [x]3 = (1, 1, 1, 1, 1),
y = m+ x = 42 + 121 = 163, gdzie y = (1, 0, 0, 0, 2).
Tak więc repr(42) = (0,−1,−1,−1, 1).

A więc na prawej szalce kładziemy 24 a na lewej obiekt o masie 42 i odważniki 21, 22, 23.

21.2 Waga czwórkowa

W tym przypadku zbiorem odważników jest zbiór potęg czwórki.
Skoncentrujmy się najpierw na opracowaniu metody wyznaczenia minimalnej liczby odważników, jaka jest

potrzebna do zważenia przedmiotu o zadanej wadze n. Oznaczmy tę liczbę M(n).

Ponadto niech n1...i oznacza liczbę ułożoną z pierwszych (najbardziej znaczących) i cyfr liczby n w zapisie
czwórkowym. Konkretnie n1...i = bn·4−(|n|−i)c, gdzie |n| to ilość cyfr liczby n zapisanej w systemie czwórkowym.

Kluczową obserwacją prowadzącą do rozwiązania tego zadania jest to, że na podstawie M(n1...i) (ozn. xi)
oraz M(n1...i + 1) (ozn. yi) możemy w prosty sposób obliczyć M(n1...i+1) (czyli xi+1) oraz M(n1...i+1 + 1)
(czyli yi+1). Jeśli przez ni oznaczymy i-tą najbardziej znaczącą cyfrę liczby n, to sposób obliczania wygląda
następująco:

ni+1 = 0 =⇒ (xi+1, yi+1) = (xi, xi + 1)
ni+1 = 1 =⇒ (xi+1, yi+1) = (xi + 1,min(xi + 2, yi + 2))
ni+1 = 2 =⇒ (xi+1, yi+1) = (min(xi + 2, yi + 2), yi + 1)
ni+1 = 3 =⇒ (xi+1, yi+1) = (yi + 1, yi)
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Pierwszy przypadek dla xi+1 mówi m.in. tyle, że jeśli do dotychczas rozpatrywanej wartości dopisujemy
zero, to optymalny sposób jej zważenia polega na zastąpieniu wszystkich odważników czterokrotnie cięższymi.
Gdyby bowiem istniała lepsza strategia, wówczas i liczbę n1...i dałoby się odważyć przy pomocy mniej niż xi
odważników, gdyż moglibyśmy wszystkie odważniki tej strategii dla n1...i+1 zastąpić czterokrotnie lżejszymi,
gdyż nie ma w niej ani jednego odważnika o wadze 1.

Drugi przypadek mówi, że przy dopisaniu jedynki zamieniamy wszystkie odważniki na cięższe oraz dokładamy
jeden o wadze 1 na szalkę przeciwną do tej, na której leży sztabka.

Trzeci przypadek jest nieco bardziej skompilowany. Jeśli dopisujemy dwójkę, to sytuację możemy rozwiązać na
dwa sposoby: albo zamieniamy wszystkie odważniki na cięższe i dokładamy dwie jedynki, albo też bierzemy
optymalną konfigurację odważającą (n1...i + 1), mnożymy wszystkie wagi przez 4, i dokładamy dwie jedynki
na tą samą szalkę, na której leży sztabka.

Czwarty przypadek – gdy dopisujemy 3, mówi, że najpierw należy w sposób optymalny odważyć (n1...i + 1),
następnie zamienić odważniki na cięższe, a następnie na szalce ze sztabką położyć odważnik jednostkowy.

Aktualizacja zmiennych yi przebiega analogicznie. U podstaw przedstawionej metody leży obserwacja, iż
jeśli ostatnią cyfrą rozpatrywanej liczby jest 0, to w optymalnej sytuacji zawsze użyjemy dokładnie 0 odważni-
ków jednostkowych. Podobnie, jeśli liczba kończy się na 1 lub 3, to użyjemy jednego odważnika jednostkowego.
Jeśli za to kończy się na 2, to trzeba zawsze użyć dwóch odważników jednostkowych.

Pozostaje jeszcze policzyć, na ile sposobów można uzyskać optymalne konfiguracje. Ale to robimy w podobny
sposób. Niech Xi oznacza liczbę optymalnych sposobów zważenia liczby n1...i, a Yi liczbę optymalnych spo-
sobów dla (n1...i + 1). Wówczas wykorzystujemy następujące zależności, wynikające z powyższego opisu i
wcześniejszych wzorów dla xi oraz yi.

ni+1 = 0 =⇒ (Xi+1, Yi+1) = (Xi, Xi)
ni+1 = 1, xi < yi =⇒ (Xi+1, Yi+1) = (Xi, Xi)
ni+1 = 1, xi = yi =⇒ (Xi+1, Yi+1) = (Xi, Xi + Yi)
ni+1 = 1, xi > yi =⇒ (Xi+1, Yi+1) = (Xi, Yi)
ni+1 = 2, xi < yi =⇒ (Xi+1, Yi+1) = (Xi, Yi)
ni+1 = 2, xi = yi =⇒ (Xi+1, Yi+1) = (Xi + Yi, Yi)
ni+1 = 2, xi > yi =⇒ (Xi+1, Yi+1) = (Yi, Yi)

ni+1 = 3 =⇒ (Xi+1, Yi+1) = (Yi, Yi)

Warto również wspomnieć o warunkach początkowych:
x0 = 0, y0 = 1, X0 = 1, Y0 = 1.
Jeżeli pominąć koszt implementacji własnej arytmetyki dużych liczb, to powyższe rozwiązanie ma złożoność

czasową O(log n).

21.3 Waga Fibonacciego

W tym przypadku zbiorem odważników jest zbiór liczb Fibonacciego { 1, 2, 3, 5, 8, 13, . . .}.
Algorytm działa w sposób zachłanny, w każdej iteracji bierzemy odważnik będący najbliższą liczbą Fibo-

nacciego Fibi względem danego przedmiotu o aktualnej wadze n. Inaczej mówiąc wykonujemy:

wynik := 0;
while n 6= 0 do

wybierz i minimalizujące |n− Fibi|
n := |n− Fibi|;
wynik := wynik + 1

21.4 Identyfikacja fałszywej monety za pomocą ważeń

Mamy n = (3n − 3)/2 monet, są jednakowe poza jedną, za pomocą n ważeń na wadze szalkowejz znajdujemy
te monetę i stwierdzamy czy jest lżejsza, czy tez cięższa od normalnych.
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Niech Sn bedzie zbiorem ciągów n cyfr trójkowych typu 1+2..., 2+0.. lub 0+1.. (kropki oznaczaja dowolny
ciąg, ale razem ma być n cyfr).

Niech Sn(k, 0), Sn(k, 2) będzie zbiorem ciągów mających na k-tej pozycji 0 lub odpowiednio 2. Identyfi-
kujemy monety z elementami zbioru Sn.

Algorytm ważenia
for k = 1 to n do

Wykonujemy ważenia zbioru Sn(k, 0) (lewa szalka) kontra Sn(k, 2) (prawa szalka).
Tworzymy ciąg cyfr trójkowych W o długości n.
Gdy lewa szalka cięższa zapisujemy na k-tej pozycji 0, jeśli prawa to 2, a jeśli wagi równe to 1.

JeśliW jest identyfikatorem pewnej monety to jest to fałszywa mneta, wagę ma lżejszą, w przeciwnym wypadku
jest to moneta o identyfikatorze W̄ , wage ma większą niz normalna.
W̄ oznacza zamiane 2↔ 0 na każdej pozycji ciągu W .

21.5 Problemy wagowe Munchausena

W XVIII wieku żył baron Hieronymus Carl Friedrich von Münchhausen (znany też jako Munchausen), który
wsławił się opowiadaniem różnych bardzo dziwnych opowieści. Między innymi znany jest z wprowdzenia
następującego problemu typu wagowego.

Mamy wagę szalkową i n elementów o wagach 1, 2, . . . , n. Baron Munchausen wie który element jest który
i chce udowodnić widowni za pomocą jedynie wagi szalkowej, jaka jest waga pewnego pojedynczego elementu,
który może sobie dowlnie wybrać. Minimalną liczbę potrzebnych ważeń oznaczmy przez b(n).

Munchausen podał rozwiązanie dla n = 8 – wystarczy jedno nastepujące ważenie:

1 + 2 + 3 + 4 + 5 = 7 + 8

W ten sposób zidentyfikujemy element o wadze 6. Mamy więc b(8) = 1.

W ogólnym przypadku działa następujące twierdzenie:

Twierdzenie 16. 1 6 b(n) 6 2.

Problem można skomplikować następująco. Niech a(n) będzie minimalną liczbą ważeń pozwalającą na identy-
fikację wszytkich elementów. Dalej zakładamy, że mają one wagi 1, 2, . . . , n. Na przykład a(6) = 2 ponieważ
możemy wykonać dwa ważenia, jedno po drugim:

1 + 2 + 5 < 3 + 6 1 + 3 < 5.

lub dwa ważenia:
1 + 2 + 3 = 6 1 + 6 < 3 + 5

Zachodzi ogólne nietrywialne twierdzenie.

Twierdzenie 17. a(n) 6 2dlog ne.

22 Skojarzenia i systemy różnych reprezentantów

G = (V, E) – graf. M ⊆ V to skojarzenie, jeśli żadne dwie krawędzie w M nie mają wspólnego końca. Zwykle
szukamy największego skojarzenia. Skojarzenie, które pokrywa wszystkie wierzchołki to skojarzenie doskonałe.

22.1 System Różnych Reprezentantów

I = 〈S1, S2, . . . , Sm〉 – rodzina niepustych skończonych zbiorów. Niech I ′ ⊆ I, oznaczmy przez SI′ podsystem
〈Si : i ∈ I ′〉. Przez SI′ ∪ SI′′ oznaczmy podsystem 〈Si : i ∈ I ′ ∪ I ′′〉. Podsystem SI′ jest krytyczny gdy
|
∑

i∈I′ Si| = |I ′|. Czy istnieje taki wektor 〈a1, . . . , am〉 parami różnych elementów, że ai ∈ Si dla i =
1, . . . , m?
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Twierdzenie 18 (Hall). Rodzina zbiorów I posiada SRR gdy spełniony jest tzw. warunek Halla:

(∀I′⊆I)

∣∣∣∣∣∑
i∈I′

Si

∣∣∣∣∣ > ∣∣I ′∣∣ .
Fakt.

1. Jeśli dwa podsystemy są krytyczne, to ich suma też.

2. Jeśli system spełnia warunek Halla oraz krotność każdego elementu jest 1, to wybierając dowolny element
z każdego zbioru otrzymujemy SRR (system różnych reprezententów).

Dowód. Udowodnimy, że jeśli system 〈S1, S2, . . . Sn〉 spełnia warunek Halla, oraz a ∈ S1∩S2, to system spełnia
warunek Halla po usunięciu a z S1 lub a z S2. Przypuśćmy, że tak nie jest. Przykładowo, niech

|S1 − a, S3, S4, S5, S6| < 5, |S1 − a, S3, S4, S7, S8| < 5

Wtedy podsystemy 〈S3, S4, S5, S6〉, 〈S3, S4, S7, S8〉 są krytyczne oraz

S1 − a ⊆ S3 ∪ S4 ∪ . . . ∪ S8

No ale na mocy wcześniejszego faktu mamy, że moc sumy podsystemów 〈S3, S4, S5, S6〉, 〈S3, S4, S7, S8〉 jest
mniejsza równa 6 (suma indeksów), nawet jak dodamy element a to |S1 ∪ S2 . . . S8| 6 6 + 1 = 7, co przeczy
oryginalnemu założeniu o warunku Halla. Zatem system sprowadza się do rodziny zbiorów, w której każdy
element występuje tylko raz, a zatem system posiada SRR.

Załóżmy, że spełniony jest warunek Halla. Można powyższe rozumowanie wyrazić algorytmem niewielomiano-
wym:

1 while istnieje element a należący do dwóch różnych zbiorów do
2 Usuń a z jednego z tych dwóch zbiorów tak, aby warunek Halla nadal zachodził (to jest zawsze

możliwe);
3 end
4 Usuń z każdego zbioru wszystkie elementy, poza jednym dowolnym;
5 Wypisz otrzymany system jako SRR dla wejściowego systemu;

22.2 Oszacowania na liczbę SRR

Załóżmy, że mini |Si| = t i spełniony jest warunek Halla.

Teza 1. I posiada
t! SRR gdy t 6 m
t!

(t−m)! SRR gdy t > m

22.3 Grafy regularne

G = (V, E) dwudzielny, regularny stopnia ∆ > 3. Chcemy znaleźć skojarzenie doskonałe.

1 przypisz każdej krawędzi w grafie wagę 1;
2 while podgraf rozpięty na krawędziach z dodatnimi wagami nie jest lasem do
3 C := dowolny cykl (elementarny);
4 M1, M2 – doskonałe skojarzenia na C
5 end
6 if waga M1 > waga M2 then
7 od wagi każdej krawędzi z M1 odejmij 1, do wagi każdej krawędzi z M2 dodaj 1
8 else
9 odejmujemy z M2 i dodajemy do M1

10 Niezmiennik pętli: suma wag krawędzi wychodzących z wierzchołka wynosi ∆.
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22.4 Najliczniejsze skojarzenie

G = (V, E) graf prosty, spójny. M ⊂ E – skojarzenie, gdy żadne dwie krawędzie nie mają wspólnego końca.
Znaleźć M o największej liczności. Większość algorytmów znajdujących największe skojarzenie działa przez
szukanie ścieżek powiększających — gdy taka nie istnieje, skojarzenie jest największe.

G = (W, K, E) – graf dwudzielny, gdzie W to wiersze {1, 2, . . . , w}, K kolumny {1, 2, . . . , k} (reprezen-
tacja macierzowa). Zakładamy bez straty ogólności |W | > |K|. Budujemy drzewa rozpinające ukorzenione
w wierszach. Silne drzewo rozpinające to takie drzewo rozpinające, w którym każda kolumna-liść musi być
synem korzenia. Jeśli T to silne drzewo rozpinające, to niech Q(T ) oznacza zbiór kolumn-liści.

Nie każdy graf dwudzielny ma silne drzewo rozpinające. Modyfikujemy graf G→ Ga:

• Ga = (W ∪ {0}, K,Ea)

• Ea = E ∪ {(0, j) : j ∈ K}

Korzeniem silnego drzewa rozpinającego T będzie zawsze zero. Kolumnę h nazwiemy kandydatem, gdy:

1. posiada dwóch synów w T ,

2. istnieje ścieżka w G z h do pewnego liścia-kolumny taka, że pierwsza krawędź prowadząca poza drzewo
T (h) jest postaci wiersz → kolumna.

gdzie T (h) to poddrzewo T ukorzenione w h. Niech C(T ) to będzie zbiór kandydatów. Przez Z(T ) oznaczamy
skojarzenie indukowane przez T . Jeśli C(T ) jest puste, to skojarzenie jest największe.

Definiujemy operację pivot na krawędzi (l, h) typu wiersz → kolumna, gdzie h jest korzeniem T (h), a l
jest jego rodzicem w drzewie T . Operacja polega na usunięciu krawędzi (l, h) z T i dodaniu zamiast tego
krawędzi z warunku drugiego istnienia kandydata.

Obserwacja 8. Jeżeli h ma > 2 synów, to po wykonaniu zamiany mamy nadal silne drzewo rozpinające.

Obserwacja 9. Rozmiar skojarzenia indukowanego przez nowe drzewo może być o 1 większe od poprzedniego.

Dominatory: kolumny o co najmniej dwóch synach, nie posiadające właściwych przodków o tej własności.
Oznaczenie: D(T ). Jeśli D(T ) puste, to mamy najliczniejsze skojarzenie. WD(KD) – wiersze zdominowane.
Powiemy, że silne drzewo rozpinające jest zamknięte, gdy

1. D(T ) = ∅ lub Q(T ) = ∅

2. lub z faktu, że a ∈WD oraz (a, b) ∈ G wynika, że b ∈ KD.

Twierdzenie 19. Jeżeli T jest drzewem zamkniętym, to każde skojarzenie indukowane przez T jest największe.

22.5 Kolorowanie

Dla danego nieskierowanego grafu G = (V, E) szukamy jego liczby chromatycznej χ(G), czyli minimalnej liczby
różnych kolorów, jakich potrzeba na pokolorowanie krawędzi grafu w taki sposób, żeby w żadnym wierzchołku
nie spotykały się dwie krawędzie tego samego koloru. Czasami oprócz liczby chromatycznej chcemy wyznaczyć
samo kolorowanie – nie zawsze jest to proste. Wprowadzamy ∆(G) jako maksymalny stopień wierzchołka w G.

Twierdzenie 20 (Vizing). W każdym prostym grafie (bez pętli i nie-multigraf) G zachodzi χ(G) 6 ∆(G) + 1.

Dowód indukcyjny: przyjmiemy, że istnieje (∆ + 1)-kolorowanie grafu G′, gdzie G′ to graf G pozbawiony
dowolnego wierzchołka v. Wtedy wystarczy pokazać, że z istnienia takiego kolorowania grafu G′ można uzyskać
(∆+1)-kolorowanie grafu G. Powiemy, że dany kolor α jest dostępny w wierzchołku v, jeśli nie istnieje krawędź
incydentna z v pokolorowana kolorem α. Pomocniczy...

Lemat 6. Niech G będzie grafem prostym, v jakimś jego wierzchołkiem i k > ∆(G) pewną liczbą całkowitą.
Załóżmy, że graf G′ = G − v ma k-kolorowanie krawędziowe takie, że każdy sąsiad (bez co najwyżej jednego)
v z grafu G ma przynajmniej dwa kolory dostępne. Pojedynczy wyjątek może mieć tylko jeden kolor dostępny.
Wtedy graf G także jest k-kolorowalny.

Lemat jest prawdziwy gdy k = ∆ + 1, bo wtedy każdy sąsiad v w grafie G′ ma stopień co najwyżej ∆− 1.
Twierdzenie Vizinga można rozszerzyć na multigrafy bez pętli.

Twierdzenie 21 (Brooks). Jeśli G jest grafem spójnym, to χ(G) 6 ∆(G), chyba że G jest grafem pełnym albo
cyklem długości nieparzystej - wtedy χ(G) = ∆(G) + 1.
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22.6 Algorytmy kolorowania dla grafów dwudzielnych

22.6.1 Algorytm najprostszy O(nm)

Dla każdego wierzchołka grafu dwudzielnego G ustalamy zbiór kolorów dostepnych {1, 2, . . . , ∆}. Będziemy po
kolei dokonywali kolorowania każdej krawędzi grafu. Powiedzmy, że bierzemy teraz krawędź (u, v). W wierz-
chołku u na pewno nie użyliśmy jeszcze wszystkich kolorów, więc bierzemy dowolny kolor α dostepny w u.
Podobnie bierzemy dowolny kolor β dostępny w v. Jeśli α = β, to już jest dobrze: kolorujemy krawędź tym
kolorem i usuwamy go ze zbioru kolorów dostępnych w wierzchołkach u i v.

Jeśli jednak α 6= β, to szukamy ścieżki powiększającej w grafie G postaci v → u1 → v1 → u2 → . . . takiej,
że krawędzie, po których przechodzimy, są na przemian koloru α i β. Po znalezieniu takiej ścieżki odwra-
camy kolorowanie krawędzi (krawędzie koloru α kolorujemy na β i odwrotnie), dzięki czemu w wierzchołku v
„zwolnił się” kolor α i mamy przypadek pierwszy.

22.7 Algorytm O(∆m)

Załóżmy, że graf dwudzielny G jest k-regularny. Z grafami nieregularnymi za moment sobie poradzimy. Z twier-
dzenia Halla wynika, że każdy k-regularny graf dwudzielny ma skojarzenie doskonałe. Indukcyjnie można zna-
leźć skojarzenie doskonałe w grafie k-regularnym, usunąć je i następnie zajmować się grafem (k−1)-regularnym,
aż do usunięcia wszystkich krawędzi. W ten sposób otrzymamy k rozłącznych krawędziowo skojarzeń dosko-
nałych. Jeśli dla każdego z tych skojarzeń dobierzemy inny kolor, to mamy k-kolorowanie grafu.

Niestety znajdowanie kolejnych skojarzeń nie jest wystarczająco szybkie. Użyjemy algorytmu typu „dziel
i zwyciężaj”:

1. Jeśli k jest nieparzyste, znajdź skojarzenie doskonałe i usuń je – możemy to zrobić w czasie O(km).
W ten sposób redukujemy problem do grafu (k − 1)-regularnego.

2. Jeśli k jest parzyste, znajdź cykl Eulera. Podziel krawędzie cyklu na dwa zbiory (krawędzie o parzystych
i nieparzystych numerach), otrzymując w ten sposób dwa k

2 -regularne podgrafy.

Jeśli mamy graf H = (U, V ; E), który nie jest regularny, to weźmy d = ∆(H) i stworzymy graf G, który
będzie d-regularny. Z kolorowania grafu G można odtworzyć kolorowanie grafu H. Działamy następująco:

1. Dopóki jest więcej niż jeden wierzchołek w U (lub odpowiednio V ) stopnia co najwyżej d
2 , to wybierz

dowolne dwa z nich i sklej je w jeden wierzchołek.

2. Dodaj „fałszywe” wierzchołki i krawędzie, żeby powstał graf d-regularny. Można w ten sposób uzyskać
multigraf, ale to nie przeszkadza.
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