
The zooming method: a recursive approach to

time-space e�cient string-matching

�

Leszek G�asieniec Wojciech Plandowski Wojciech Rytter

Instytut Informatyki UW, Banacha 2, 02-097 Warszawa, Poland

Abstract

A new approach to time-space e�cient string-matching is presented.

The method is exible, its implementation depends whether or not the al-

phabet is linearly ordered. The only known linear-time constant-space

algorithm for string-matching over nonordered alphabets is the Galil-

Seiferas algorithm, see [8, 6] which is rather complicated. The zooming

method gives probably the simplest string-matching algorithm working

in constant space and linear time for nonordered alphabets. The novel

feature of our algorithm is the application of the searching phase (which

is usually simpler than preprocessing) in the preprocessing phase. The

preprocessing has a recursive structure similar to selection in linear time,

see [1]. For ordered alphabets the preprocessing part is much simpler,

its basic component is a simple and well-known algorithm for �nding the

maximal su�x, see [7]. Hence we demonstrate a new application of this

algorithm, see also [5]. The idea of the zooming method was applied in

[4] to two dimensional patterns.

1 Introduction

The pattern P of length m and the text T of length n are given as read-only

tables of symbols. The string-matching problem consists in �nding all occur-

rences of P in T . By the space complexity we mean additional memory (we do

not count the space occupied by P and T). Constant space means a constant

number of small (with logarithmic number of bits) integers. The sequential

string-matching algorithm is time-space optimal if it works simultaneously in

linear time and constant space. Presently, there are known three di�erent time-

space optimal string-matching algorithms, see [8, 5, 3]. The �rst one works in

the \classical" model where the only information about strings is by checking

equality of symbols. The alphabet is a set without any additional structure (e.g.

linear order). The other two algorithms use comparisons of the symbols with

�

Supported by the grant KBN 2-1190-91-01

1

respect to some linear order, thus they do not work in the classical model. In

this paper we produce the fourth algorithm, which can be implemented in the

classical model. However if the alphabet is ordered then our algorithm can be

simpli�ed.

Our strategy is to consider a sequence of nonperiodic subpatterns whose

lengths form a decreasing geometric sequence of integers (modulo oors). We

check their occurrences naively starting from the smallest one. Searching for a

nonperiodic pattern P is followed by a match of its nonperiodic subpattern P

0

.

If a mismatch occurs, the subpattern P

0

is su�ciently large to guarantee a long

shift which amortizes the work done in symbol comparisons.

Denote by jwj the length of the word w. The number p is a period of the

word w if w[i + p] = w[i] for 1 � i � jwj � p. Denote by per(P) the shortest

period of P . We use a weaker version of the so called periodicity lemma which

is the main tool in many advanced string-matching algorithms.

Lemma 1 If u and w are periods of a word x and juj+ jwj�1� jxj then x has

a period of size gcd(juj; jwj)), where gcd stands for the greatest common divisor.

We say that the pattern is periodic i� per(P) �

1

6

jP j. To simplify the

notation we write cn instead of bcnc. The constant

1

6

is important in the pre-

processing phase for nonordered alphabets to simplify the procedure Next.

For a nonperiodic pattern P the sequence of subpatterns ZoomSeq(P) is

de�ned by

ZoomSeq(P) = (P

1

; P

2

; : : : ; P

k

), where P

1

= P , jP

k

j = 1 and for 1 � j < k

P

j+1

is a nonperiodic pre�x or su�x of P

j

of length

3

4

jP

j

j (if both the su�x

and the pre�x are nonperiodic we take the pre�x). The series ZoomSeq(P) is

called the zooming sequence of P . Its compressed representation is a sequence

of k� 1 bits. The j-th bit is 0 i� P

j+1

is the pre�x of P

j

and the j-th bit is 1 i�

P

j+1

is the su�x of P

j

. In this way ZoomSeq(P) is stored as one integer with

logarithmic number of bits.

Example 2 The zooming sequence for P = a

12

b

5

looks as follows

ZoomSeq(P) = (P; a

7

b

5

; a

7

b

2

; a

4

b

2

; a

4

; a

3

; a

2

; a)

and the compressed representation for it is 1011111.

Assume, now that P may be periodic. Denote by sub(P) the set consisting

of the pre�x and the su�x of P of length

3

4

jP j. Let (f

1

; f

2

; : : :) be the sequence

of integers satisfying f

1

= jP j and f

t

=

3

4

f

t�1

for t > 1. Denote by head(P)

the longest nonperiodic pre�x of P whose length is in the sequence. Clearly,

head(P) = P for nonperiodic P .

Lemma 3 (key lemma)

a) If P is nonperiodic then there is a nonperiodic subword in sub(P).

b) If P is periodic then per(head(P)) = per(P).

2

Proof:

a) Let n = jP j. Since words shorter than 6 are nonperiodic we may assume

n � 6. Suppose, that both subwords in sub(P) are periodic. They have a large

overlap of size 2b

3

4

nc � n � 2(

3

4

n � 1) � n =

1

2

n � 2. On the other hand their

periods are not longer than b

1

6

b

3

4

ncc �

1

6

3

4

n =

1

8

n. Since periods of words in

sub(P) are periods of the overlap and

1

8

n+

1

8

n� 1 �

1

2

n� 2 for n � 4 Lemma 1

guarantees that the shortest periods of the words in sub(P) are the same. This

contradicts the nonperiodicity of P .

b) It is enough to prove that if P is periodic then per(P

0

) = per(P) where

P

0

is the pre�x of P of length

3

4

jP j. If per(P

0

) 6= per(P) then per(P

0

) < per(P)

and P

0

has two di�erent periods per(P

0

), per(P). Since

per(P

0

) + per(P)� 1 � b

1

6

jP jc+ b

1

6

jP jc � 1 �

2

3

jP j � 1 � jP

0

j

Lemma 1 becomes applicable and per(P

0

) is a period of P . A contradiction. 2

For a nonperiodic pattern P the zooming sequence ZoomSeq(P) = (P

1

; : : : ; P

k

)

is constructed as follows:

P

1

= P and for each 1 � l < k the word P

l+1

is a nonperiodic element of sub(P

l

)

(if both are nonperiodic take the pre�x).

Similar to other pattern-matching algorithms, the preprocessing phase is

more involved than the searching one. The preprocessing consists of two parts:

1. check if P is periodic and if it is compute per(P),

2. �nd ZoomSeq(head(P)).

Thus the goal of the preprocessing phase is to compute the pair preprocess(P) =

(quasiper(P); ZoomSeq(head(P))) where quasiper(P) = per(P) if P is peri-

odic and quasiper(P) = jP j otherwise.

The preprocessing algorithm for nonordered alphabets is simple due to two

features of our preprocessing:

� it has a recursive structure,

� searching phase is a basic component in the preprocessing.

3

2 Searching phase

2.1 Searching phase for nonperiodic patterns

We deal �rst with nonperiodic patterns. Denote by Partial Match(i; P

l

) the

function which in a given text T for l > 0 checks if the pattern P placed at

a (starting position) i in T agrees with T on the subpattern P

l

. The function

works in a naive way.

Observation 4 If Partial Match(i; P

l

) = true then there is no occurrence of

the pattern strictly between positions i and i +

1

6

jP

l

j.

The observation follows from the nonperiodicity of subpatterns in the zooming

sequence. Assume, for technical reasons, that jP

k+1

j = 0. In the algorithm

below m is the length of the pattern P , n is the length of the text; the pattern

is nonperiodic and the sequence ZoomSeq(P) = (P

1

; : : :P

k

) is precomputed.

ALGORITHM Text Searching By Zooming;

begin

i:= 1;

while i � n�m do

begin

l:=k + 1;

while l > 1 and Partial Match(i; P

l�1

) do l:= l � 1;

if l = 1 then fP

l

= P g report full match at i;

Shift:= max(1;

1

6

jP

l

j);

i:= i + Shift;

end;

end.

Our algorithm checks if there is an occurrence of the pattern at position i

in the text by checking occurrences of words from the zooming sequence. Since

it analyzes the zooming sequence from the shortest words to the longest ones,

we need a method to �nd a subword P

l

on the basis of P

l+1

in constant space

and time. We store the word P

l

as the pair: the starting position of P

l

in the

pattern and the length of P

l

. The compressed representation of ZoomSeq(P)

allows to �nd out if P

l+1

is the pre�x or the su�x of P

l

. It remains to �nd

the length of P

l

. Since jP

l+1

j = b

3

4

jP

l

jc we know that jP

l

j = d

4

3

jP

l+1

je + b

l

where b

l

= 0 or b

l

= 1. To �nd appriopriate length we store an additional

k � 1-length bit sequence whose l-th element equals b

l

. This sequence can be

easily computed in logarithmic time in the preprocessing phase on the basis of

jP j and the compressed representation of ZoomSeq(P).

Lemma 5 The algorithm Text Searching By Zooming is time-space optimal if

preprocess(P) has been already computed.

4

Proof: The linearity of the algorithm is clear since the number of comparisons

done during every execution of the main iteration is proportional to the shift

done at the end of the iteration. 2

2.2 Searching phase for periodic patterns

Assume, the pattern P is periodic. Then quasiper(P) = per(P) and the prepro-

cessing phase for P computes the zooming sequence for head(P) and the length

of the shortest period of P . The algorithm for periodic patterns searches for

head(P) using the algorithm Text Searching By Zooming. As it �nds head(P)

at position i in the text, starting from the position i + head(P), it searches for

the continuation of the period per(P) from head(P) in the text. Additionally, it

reports occurrences of the pattern when necessary. In case the period is broken

at position i + t, the algorithm does the shift equal to t=6. We can do such a

shift since the word which starts at position i and ends at position i + t in the

text is nonperiodic.

Lemma 6 The algorithm for periodic patterns �nds all occurrences of the pat-

tern in linear time and constant space.

Proof: In the algorithmText Searching By Zooming the shift is proportional to

the work done just before. As we �nd head(P) the total work done during �nding

head(P) and searching for the continuation of the period is also proportional to

the shift we do next. 2

3 Preprocessing phase for ordered alphabets

The Crochemore-Perrin version of Duval's algorithm, see [7], is ideally suited

to the preprocessing in the zooming method. The Duval's algorithm was orig-

inally related to some algebraic properties of words, see [10]. Then it was

simpli�ed, see page 668 in [5], where it is presented as a nonrecursive function

Maximal Su�x. Denote by max(P) lexicographically maximal su�x of P . The

algorithm Maximal Su�x computes max(P) and, as a side e�ect, the smallest

period of max(P).

If the pattern P is periodic then denote by period(P) the pre�x u of P of

size per(P). Then P is of the form u

r

v for some v, possibly empty word, which

is a pre�x of u. Denote such v by tail(P).

The algorithm Maximal Su�x is based on the following three observations

proved in [5]. The only nontrivial point is the point (a).

Observation 7 Denote j = jtail(x)j. Let < means here linear order in the

alphabet. Assume max(x) = x. Then there are three cases depending on how

the next symbol a�ects continuation of periodicity of x:

5

(a) if a < x[j + 1] then per(xa) = jxaj, max(xa) = xa and tail(xa) = �;

(b) if a = x[j+1] then per(xa) = per(x),max(xa) = xa and tail(xa) = tail(x)a;

(c) if a > x[j +1] then per(xa) = per(tail(x)a), max(xa) = max(tail(x)a) and

tail(xa) = tail(tail(x)a).

function Maximal Suffix(P); fjP j= mg

begin

ms := 1; j := 0; p := 1; i := 2;

while i � m do

fj = jtail(P [ms::i� 1])j; p = jper(P [ms::i� 1])j,

P [ms::i� 1] = max(P [1::i� 1])g

case

P [i] < P [ms+ j]: ffollow Observation 7 (a)g

j := 0; p := i �ms; i := i+ 1

P [i] = P [ms+ j]: ffollow Observation 7 (b)g

j := j + 1; i := i+ 1

else: fP [i] > P [ms+ j], follow Observation 7 (c)g

ms := i � j; j := 0; p := 1; i := ms + 1

endcase

return ms; p

The algorithm Maximal Su�x is on-line, it scans the pattern from left to

right and keeps the position ms of the maximal su�x of the current pre�x of P

and the smallest period p of this su�x. We refer the reader to [5], page 668, for

the detailed description of this algorithm and the (implicit) proof of point (a)

of the lemma below.

Lemma 8 Let m = jP j.

(a) The algorithm Maximal Su�x computes max(P) and per(max(P)) using

at most 2m comparisons.

(b) quasiper(P) and head(P) can be computed in linear time and constant

space using at most 2

1

6

m comparisons.

Proof: The following observation helps us in proving part b).

Observation 9 Let ms be the starting position of max(P) in P . If P is peri-

odic then per(P) = per(max(P)) and ms < jper(P)j.

First, we use the algorithm Maximal Su�x to compute max(P) and the start-

ing position ms of max(P) in P . By the observation above, if ms �

1

6

m then

the pattern is nonperiodic. Otherwise, we check naively whether or not the

ms � 1 length pre�x of P breaks periodicity of max(P). This allows to com-

pute quasiper(P) in the claimed number of comparisons. By Lemma 3, if P

is periodic then per(head(P)) = quasiper(P). To �nd head(P) we consider

6

consecutive pre�xes of P of lengths from the sequence f

s

and �nd the �rst one

which is nonperiodic. It does not require additional comparisons. 2

It remains to show how to compute ZoomSeq(P) for nonperiodic patterns.

Let next(P) be a nonperiodic element of sub(P), if P is nonperiodic, and the

pre�x of P of size

3

4

jP j, otherwise. The zooming sequence can be constructed

in an iterative way due to the following observation.

Observation 10 If P is nonperiodic then

ZoomSeq(P) = P � ZoomSeq(next(P)) (1)

where � denotes a concatenation of one element and a sequence of elements.

The function below computes ZoomSeq(P) for a nonperiodic pattern P .

function Zooming Sequence 1(P); fP is nonperiodic g

begin

if jP j = 1 then return P

else begin

P

0

:= pre�x of P of size

3

4

jP j;

compute quasiper(P

0

) by the algorithmMaximal Su�x;

if quasiper(P

0

) = jP

0

j then next:= P

0

else next:= su�x of P of size

3

4

jP j;

return P � Zooming Sequence 1(next),

end

end

Theorem 11 The preprocessing phase for ordered alphabets can be done in

linear time and constant space with at most 8

2

3

n comparisons.

Proof: We use Maximal Suffix for the whole pattern P to compute head(P)

and quasiper(P). It costs at most 2

1

6

n comparisons. Then we use the func-

tion Zooming Sequence 1 to compute ZoomSeq(head(P)). In the worst case

head(P) = P and during the computation of the zooming sequence for P the

procedure Maximal Suffix is applied to all elements in ZoomSeq(P) except

P . Each element of the sequence is

3

4

times smaller than the preceding one.

Processing one element of length l by Maximal Su�x requires at most 2

1

6

l com-

parisons. We have a power series which is bounded by 2

1

6

�

3

4

n �

1

1�3=4

. Summing

with the cost of computing head(P) and quasiper(P) we obtain the claimed

estimation. 2

7

4 Preprocessing phase for nonordered alpha-

bets

Let P be the pattern to preprocess. The preprocessing part computes the pair

(quasiper(P); ZoomSeq(head(P)). Having ZoomSeq(head(P)) we can easily

�nd quasiper(P) by searching the second from the left occurrence of head(P)

in P . Since head(P) is nonperiodic this can be done using the algorithm

Text Searching By Zooming. The sequence ZoomSeq(head(P)) is computed

by the procedure Zooming Sequence 2. It has a recursive structure which is

similar to the structure of the computation of the median.

Denote by Next(P; P

0

) the function computing quasiper(P) and next(P)

assuming preprocess(P

0

) has been already computed.

Lemma 12 Assume P

0

is the pre�x of P of length jP

0

j =

1

5

jP j. Then we can

compute Next(P; P

0

) in linear time and constant space.

Proof: We consider two cases.

Case 1: P

0

is nonperiodic.

We �nd all occurrences of P

0

in P by the algorithmText Searching By Zooming.

There is a constant number of positions which start an occurrence of P

0

in P .

Each of them corresponds to a potential small period of P . The potential

periods are checked (if they are real periods) naively, each one in linear time

and constant space. Afterwards we know whether the whole pattern and its

pre�x of size

3

4

jP j are periodic. This determines quasiper(P) and next(P).

Case 2: P

0

is periodic.

We check the continuation of the period per(P

0

) in the whole pattern. If it

continues till the end then quasiper(P) = quasiper(P

0

). Otherwise, it can be

easily proved (in the proof the constant

1

6

from the de�nition of the periodic

words is important) that the pattern is nonperiodic and next(P) is the pre�x

in sub(P) i� the period of P

0

breaks inside this pre�x. 2

Due to equation (1) we can recursively preprocess the pattern using the

function Next(P; P

0

). The algorithm has the structure quite similar to the

algorithm for selection given in [1].

8

function Zooming Sequence 2(P); fjP j = ng

begin

if n = 1 then return P

else begin

P

0

:= pre�x of P of size

1

5

n;

ZoomSeq(P

0

) := Zooming Sequence(P

0

); fstep 1g

compute quasiper(P

0

) using ZoomSeq(P

0

)

next(P):= Next(P; P

0

)

if P is nonperiodic then

return P � Zooming Sequence 2(next(P)); fstep 2g

else

return Zooming Sequence 2(next(P)) fstep 3g

end

end

Theorem 13 The preprocessing phase can be done in linear time and constant

space.

Proof: Let n = jP j. Observe, that jP

0

j =

1

5

n and jnext(P)j =

3

4

n. Denote by

T (n) be the time complexity of Zooming Sequence 2(P). Due to Lemma 12

and equation (1), T (n) satis�es the following recurrence:

T (n) � T (

3

4

n) + T (

1

5

n) + O(n):

It is the same recurrence equation as the one related to the complexity of selec-

tion and presented in [1]. The solution to the recurrence is T (n) = O(n).

The recurrence stack from the algorithm can be encoded by a logarithm

length sequence of numbers f1,2,2',3g. A number from the top of the stack

means how the current procedure was called. 1 means that it was called in

step 1 of the algorithm, 2 means that it was called in step 2 with a pre�x as a

parameter, 2' means that it was called in step 2 with a su�x as a parameter

and 3 means that it was called in step 3. Additionally, we store a stack which

keeps for every level of a recurrence a few bits determining how to retrieve the

length of a parameter of the procedure which called the current procedure on

the basis of the length of the current parameter and the top of the �rst stack.

This completes the proof. 2

5 Improving the worst case performance of the

searching phase to (2 + ")n

In this section we present an improved implementation of the searching phase.

We give a family of algorithms fA

s

g

1<s<2

such that the worst case perfor-

mance of the algorithm A

s

is (2 + "(s))n where n is the length of the text

9

and lim

s!1

"(s) = 0. The improvement however require slight changes in our

previous de�nitions.

For each 1 < s < 2 de�ne the sequence of natural numbers ff

s

t

g satisfying

the recurrence formulae f

s

0

is the minimal natural number x such that bsxc > x,

(one can calculate that f

s

0

= d

1

s�1

e) and f

s

t+1

= bsf

s

t

c. The sequences have a

nice feature that on the basis of each element of the sequence it is easy to

compute the previous one and f

s

t

= d

f

s

t+1

s

e. In further considerations we omit

the index s in f

s

t

assuming that s is �xed.

The sequences are used to modify the de�nition of the zooming sequence

as follows: Let k be a natural number such that f

k�2

< jP j � f

k�1

. For

any nonperiodic pattern P , ZoomSeq(P) = (P

1

; : : : ; P

k

) where P

1

= P and

jP

i

j = f

s

k�i

for i > 1 and as previously P

i+1

is the nonperiodic su�x or pre�x of

P

i

(if both are nonperiodic we take the pre�x). Note, that (with this de�nition

of the zooming sequence) there are no problems to calculate jP

i

j on the basis of

jP

i+1

j.

Change other de�nitions as follows. The pattern P is periodic if per(P) �

dpjP je where p = 1�

s

2

. The set sub(P) consists of the pre�x and the su�x of

sizes f

k

where f

k

< jP j � f

k+1

. We de�ne head(P) to be the longest nonperiodic

pre�x of P whose length is in the sequence f

n

.

Example 14 Let s = 4=3 and P = a

12

b

5

. Then p = 1=3, �rst elements of the

sequence f

t

are 3, 4, 6, 8, 11, 15, 20 : : :and the zooming sequence for P looks

as follows.

ZoomSeq(P) = (P; a

12

b

3

; a

8

b

3

; a

5

b

3

; a

5

b; a

3

b; a

2

b)

Under the modi�ed de�nitions the key lemma is easily restated as follows.

Its proof is similar to the proof of the key lemma.

Lemma 15 (modi�ed key lemma)

a) If P is nonperiodic then one of the words in sub(P) is nonperiodic.

b) If P is periodic then per(P) = per(head(P)).

Denote byKMP (i; P

0

) the function which starting from i in the text returns

the �rst to the right occurrence of the pattern P

0

. Additionally, we assume that

KMP uses any algorithm which scans the text from left to right and such that

�nding the �rst occurrence of the pattern costs at most 2(i � 1) + m

0

symbol

comparisons where i is the starting position of the pattern in the text and m

0

is the length of the pattern. Moreover, the algorithm has to use constant size

additional memory for constant size patterns. One of the algorithms with these

properties is the well-known Knuth-Morris-Pratt algorithm, see [9].

The improved algorithm (presented below) for nonperiodic patterns is a

slight modi�cation of the algorithm Text Searching By Zooming. Assume,

that ZoomSeq(P) = (P

1

; : : :P

k

) is precomputed.

10

ALGORITHM Improved Text Searching By Zooming;

f r - the starting position of P

k

in P g

begin

i:= 1;

while i � n�m do

begin

i:=KMP (i+ r � 1; P

k

) � (r � 1); l:=k � 1;

while l � 1 and Partial Match(i; P

l

) do l:= l � 1;

if l = 0 then fP

l+1

= P g report full match at i;

i:= i+ dpjP

l+1

je;

end;

end.

In the algorithmwe may assume that the procedure Partial Match(i; P

l

) do

not compare the symbols from P

l+1

because the previous calls of Partial Match

have already done it.

The algorithm for periodic patterns is almost the same as the one from

Section 2.2. The only di�erence is that, now since the de�nition of periodic

words is changed, the shift is changed from t=6 to dp � te.

Theorem 16

a) The worst case performance of the modi�ed algorithm for nonperiodic pat-

terns is (2 + "(s))n symbol comparisons where lim

s!1

"(s) = 0.

b) The algorithm for periodic patterns makes at most (2 + "(s))n symbol com-

parisons where lim

s!1

"(s) = 0.

Proof:

a) The main informal idea of the proof is that the number of comparisons

made after each execution of the main iteration is proportional to the shift made

after this execution with the constant which is close to 2 when s is close to 1.

This is caused by the fact that for values of s close to 1 a short period means a

period of a size close to half of the considered subpattern, hence for nonperiodic

subpatterns the shift is very close to half of the scanned subpattern. The total

work is amortized by twice the total sum of all shifts (which correspond to

disjoint subintervals, the sum of these subintervals is at most n).

More precisely, suppose the main iteration is executed exactly t times. Let

i

j

be the value of the variable i after the j-th execution of the main iteration

and i

0

j

the value of i returned by the function KMP in this execution. Clearly,

i

0

= 1 and i

t

� n. Let q

j

be the total number of symbol comparisons made

in the j-th iteration and q

0

j

be the total number of comparisons done in all

operations Partial Match(i; P

l

) in the j-th iteration.

Assume, that the subword P

l+1

of length m

j

matches the text and P

l

does

not or the pattern matches the text (m

j

= m). Then i

j

� i

0

j

= dpm

j

e and

q

0

j

� bsm

j

c � jP

k

j. We have

11

q

j

� (2(i

0

j

� i

j�1

) + jP

k

j) + q

0

j

� 2(i

0

j

� i

j�1

) + s=p(i

j

� i

0

j

)

and, since s=p = 2s=(2� s) � 2 we obtain

q

j

� 2s=(2� s)(i

j

� i

j�1

) .

Summing over all iterations, the total number of comparisons does not exceed

2s=(2� s)(i

t

� i

0

) � 2s=(2� s)n. Since lim

s!1

2s=(2� s) = 2 the result follows.

b) The proof is similar as the proof of point a). When head(P) is found we

take m

j

= t and the rest of the analysis is the same. 2

Remark. The preprocessing phase for ordered alphabets is the same as previ-

ously. The preprocessing phase for general alphabets should be changed in the

following way. Let r be the number such that f

t�r

+ f

t�1

< cf

t

for all t � r

and where c < 1 is a constant. Recall, that k is such that f

k

< jP j � f

k+1

.

Then as P

0

we take the pre�x of P of size f

k+1�r

and the next(P) is the pre�x

or the su�x of P of length f

k

. Now the preprocessing remains linear since the

solution of the recurrence

T (f

t

) = T (f

t�r

) + T (f

t�1

) + O(f

t

)

where f

t�r

+ f

t�1

< c � f

t

for a constant c < 1 is T (f

t

) = O(f

t

).

Remark. The zooming method can be extended to the 2-dimensional pat-

tern matching, however this is much more complicated due to the complicated

structure of 2-dimensional periodicities, see [4]

References

[1] J.Aho, J.Hopcroft, J.Ullman, \The design and analysis of computer algo-

rithms", Addison-Wesley, 1974.

[2] D.Breslauer, Saving comparisons in the Crochemore-Perrin string matching

algorithm, in Proceeding of ESA'93.

[3] M.Crochemore, String matching for ordered alphabets, TCS 92 (1992) 225{

251.

[4] M.Crochemore, L. G�asieniec, W.Plandowski, W.Rytter, Time-space e�-

cient searching of 2-dimensional patterns, manuscript

[5] M.Crochemore, D.Perrin, Two-way string matching, JACM 38:3 (1991),

651{675.

[6] M.Crochemore, W.Rytter, Periodic pre�xes in texts, in Sequences II, (ed.

R.Capocelli, A.de Santis, U.Vacarro), Springer Verlag, 1993, 153{165.

[7] J.Duval, Factorizing words over an ordered alphabet, J. Algorithms 4

(1983) 363{381.

12

[8] Z.Galil, J.Seiferas, Time-space optimal string matching, JCSS 26 (1983)

280{294.

[9] D. Knuth, J. Morris, V. Pratt, Fast pattern matching in strings, SIAM

Journal on Algebraic and Discrete Methods, 6:2(1977), 323{350.

[10] M.Lothaire, \Combinatorics on words", Addison-Wesley, Reading, 1983.

13

