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a b s t r a c t

We present a simple algorithm which for an explicitly given input string pat (a pattern)
and a standard Sturmian word x described by the recurrences of size n computes, in time
O(|pat|+n), the set of all occurrences of pat in x as a single arithmetic progression (modulo
the length of x). The algorithm can be extended to the casewhen some letters of the pattern
are replaced by a don’t care symbol. In this case the set of all occurrences does not need to
be a single arithmetic progression and our algorithm produces linearly many (with respect
to the size of pat) arithmetic progressions. It is an example of fast computations for the
input given in a compressed form. In our special case the length of the standard Sturmian
word x is usually exponential with respect to the size of the input.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The standard Sturmian words (standard words, in short) are generalization of Fibonacci words and have many interesting
combinatorial properties, see for example [11,9,4,5,15,2,3,12,13,1,10]. In particular in [9] it has been introduced the
lexicographic shift property: the lexicographic order of cyclic shifts corresponds to an arithmetic progression of shifts (modulo
the length of the word). We introduce and investigate a similar property of Sturmian words – the occurrence shift property.
We fix the alphabetΣ = {a, b}. The length of a word x ∈ Σ∗ is denoted by |x|. The letter on the ith position in the word

x is denoted by x[i]. We assume that the first letter is at the position 0.
The subword v of a word x starting at the position i and ending at the position j is denoted by x[i..j].
Standard words are described by the recurrences corresponding to the so-called directive sequences

γ = (γ0, γ1, . . . , γn−1),

where γ0 ≥ 0, γi > 0 for 0 < i < n. The standard word corresponding to γ , denoted by SW (γ ) = xn, is defined by the
recurrence:

x−1 = b, x0 = a, xi+1 = x
γi
i xi−1 for 0 ≤ i < n. (1)

We consider here standard words starting with the letter a, hence assume γ0 > 0 (the case γ0 = 0 can be considered
similarly).
For even n > 0 the word xn has the suffix ba, and for odd n > 1 it has the suffix ab.

The number N = |xn| is the (real) size, while n can be thought as the compressed size.

I Supported by the grant KBN N206 004 32/0806 for the second author. A preliminary version of the paper has been presented at LATA 2007.
∗ Corresponding author at: Institute of Informatics, Warsaw University, Warsaw, Poland.
E-mail address: rytter@duch.mimuw.edu.pl (W. Rytter).

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.03.007

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:rytter@duch.mimuw.edu.pl
http://dx.doi.org/10.1016/j.tcs.2009.03.007


P. Baturo, W. Rytter / Theoretical Computer Science 410 (2009) 2804–2810 2805

Example. Consider the standard word x = SW (1, 2, 1, 1, 1) = ababaabababaababaab written below together with the
positions of the letters in x and the corresponding sequence of recurrences:

a b a b a a b a b a b a a b a b a a b
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

x−1 = b, x0 = a, x1 = x10x−1, x2 = x21x0,

x3 = x12x1, x4 = x13x2, x5 = x14x3.

A grammar-based compression is given by a context-free grammar generating a single string. Our recurrences can be
treated as a special grammar-based compression.
A very simple representation of standard Sturmianwords has some special algorithmic consequences. In fact in this paper

we show an algorithm for the compressed pattern-matching in standard words working in linear time. This is much better
than the general compressed pattern-matching algorithms for texts given by a grammar-based compressed representation,
see [7,14,6].
In the paper [8] the authors present an algorithm for finding the number of occurrences of the pattern pat in an index

structure of an arbitrary text x in time O(|pat| + occ · log1+εN), where occ is the number of occurrences of a pattern pat in
x, 0 < ε < 1 and N = |x|. Their data structure uses at most 5N Hk(T ) + o(n) bits of storage, where Hk(T ) is the kth order
empirical entropy of T .
In our special case of standard words we have O(|pat| + n) searching time for all occurrences of the pattern pat in a

standard word x, where n is the size of the directive sequence, while N is usually exponential with respect to the length n
of the directive sequence. Our algorithm works in constant space.
Denote by Occ(pat, x) the set of positions where an occurrence of the pattern pat starts in the text x.
We say that a word x has the occurrence shift property iff, for any pattern pat , the set Occ(pat, x) can be ordered as a

sequence which is an arithmetic progression modulo the length of x. Denote:

i⊕ j = (i+ j)mod N,

where N is the length of the Sturmian word x.

Example. (a) For x = ababaabababaababaab = SW (1, 2, 1, 1, 1)we have:

Occ(abab, x) = { 0, 5, 7, 12 }.

The set { 0, 5, 7, 12 } has occurrence shift property with respect to N = 19, since it can be ordered as an arithmetic
progression:

7
⊕ 12
−→ 0

⊕ 12
−→ 12

⊕ 12
−→ 5.

(b) For x = ababaabababaabababa = SW (1, 2, 1, 2)we have:

Occ(abab, x) = { 0, 5, 7, 12, 14 },

since the sequence (14, 7, 0, 12, 5) is the arithmetic progression modulo 19 with the difference 12.
Throughout the examples of this paper we use the word SW (1, 2, 1, 2) for the case of an even n and the word

SW (1, 2, 1, 1, 1) for an odd n.
A compressed representation of an arithmetic progression consists of 3 numbers: the starting element, the difference,

and the last element. We show: for a given sequence γ and an explicitly given pattern pat we can compute a compressed
representation of Occ(pat, SW (γ )) in time O(|pat| + |γ |).

2. Compressed string-matching in Sturmian words

There is a useful circular interpretation of a standard word x. Let q = |x|a denote the number of occurrences of a in x and
analogously let p = |x|b denote the number of b’s.
Define intervals:

Ia = [0, q− 1], Ib = [q,N − 1]

For 0 ≤ j < N we define the word Rp,j over the alphabet {a, b} as follows:

Rp,j[i] = a ⇔ j⊕ i · p ∈ Ia, for 0 ≤ i < N

In other words we generate the word Rp,j in the following way.
Draw consecutively on the circle q symbols a and after them p symbols b. Then start from the jth letter a (counting from

0) and go around the circle clockwise with the step p. Each time we meet awe output a, otherwise we output b.
After outputting N letters we stop. Then Rp,j is the generated word.
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Fig. 1. The mechanical generation of the word x = R8,7 . The jump is p = 8 and we start at j = 7. The outer numbering corresponds to the sequence ROT of
start positions of lexicographically sorted cyclic shifts, it is an arithmetic progression with the difference r = p−1 = 12 (since 8 · 12 = 96 = 5 · 19+ 1).

Example. In Fig. 1 we have:

x = R8,7 = ababaabababaababaab, q = 11, p = 8, N = 19.

This word is mechanically generated starting at (inner) position 7 (marked by the arrow) in Fig. 1 and moving around with
the step 8.
The small squares correspond to symbols a, the circles correspond to b’s. If we start at another point then we generate a
cyclic shift of x.
Let ROT be the sequence of start positions of cyclic shifts of a given word x listed in the lexicographic order. The cyclic

shift is identified with the size of the shift. For a given word x of length N define

shift(i, x) = x[i..N − 1]x[0..i− 1],

where x[0..− 1] is the empty word. The following facts have been shown in [11,9].

Lemma 1. (a) If x is a standard word starting with a then x = Rp,p or x = Rp,p−1, in the former case x ends with ba, otherwise it
ends with ab.
Let r = p−1 mod N, then
(b) The values of the lexicographically sorted rotations for the word Rp,p−1 are given by the formula:

ROT [i] = (N − 1)⊕N (i+ 1) · r.

(c) The values of the lexicographically sorted rotations for the word Rp,p are given by the formula:

ROT [i] = (N − 1)⊕N i · r.

We can use the following easy fact for the computation of the values of r from the point (c).

Fact 1. Let i,m ∈ Z and gcd(i,m) = 1, then there exist j ∈ Z such that i · j = 1 (mod m), equivalently i−1 = j (mod m).

Notice that gcd(p,N) = gcd(q,N) = gcd(p, q) = 1 (see [11]).
There are two numberings on the circle (see Fig. 1), the inner numbering corresponds to indices in the array ROT [∗], the

outer numbering to the values of ROT [∗].
In our example 8−1 = 12 (modulo 19) and the outer numbering is given by formula (N−1)⊕(i+1)·r = 18⊕(i+1)·12 =

11⊕ 12 · i.
For 0 ≤ s ≤ t ≤ N − 1 we define the interval I = [s, t] as the set

{s, s+ 1, . . . , t}.

If s > t then define I = [s, t] as the set {s, s+ 1, . . . ,N − 1, 0, . . . , t}.
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For an interval I = [s, t] denote

SHIFTp(I) = [s⊕ p, t ⊕ p].

Recall that

Ia = [0, q− 1], Ib = [q,N − 1].

ALGORITHM String-Matching(pat, x) ;

Input: A pattern pat and a directive sequence (γ0, γ1, . . . γn−1);

Let x = SW (γ0, γ1, . . . γn−1),

N := |x| ; p := |x|b ; q := |x|a ;m := |pat| ;

if n is odd then δ := N − 1 else δ := 0 ;

if pat[0] = a then I := Ia else I := Ib ;

Forward phase:

for j = 1 tom− 1 do

Invariant:

if δ ∈ I then δ is the start or the end position of I

(F1) I := I− {δ} ;
(F2) I := SHIFTp(I) ;
(F3) if pat[j] = a then I := I ∩ Ia else I := I ∩ Ib ;

Backward phase:

let s, t be the start and the end position of the interval I;

i := ROT [s] −m+ 1 ; j := ROT [t] −m+ 1 ;

return the arithmetic progression starting in i and ending
in j, with the difference r = p−1 mod N ;

Theorem 1 (String-Matching in Sturmian Words). For a standardword x given by a sequence γ = (γ0, . . . , γn−1) and a pattern
pat of length m, we can compute Occ(pat, x) in O(n + m) time. The output is produced as a single arithmetic progression given
by three numbers: the starting and ending positions, and the difference.

Proof. We show that the algorithm String-Matching(pat, x) computes the set of occurrences within the required
complexities.
An end-occurrence of the pattern pat in x is a position i such that the subword x[i − m + 1..i] equals pat . Observe that

the set of end-occurrences is an arithmetic progression iff the set of the start positions of the occurrences is. Denote by
End-Occ(pat, x) the set of end-occurrences of pat in x.
If I = [s, t] is an interval then define:

ROT (I) = { ROT [s], ROT [s+ 1], . . . , ROT [t] }.

Observe that it is a single arithmetic progression with the difference p−1.
The next claim follows directly from the circular interpretation of the word x implied by Lemma 1.

Claim 1. (a) If x[0] = a then End-Occ(pat[0], x) = ROT (Ia)
else End-Occ(pat[0], x) = ROT (Ib).

(b) Assume ROT (I) = End-Occ(pat[0..j− 1], x).
If x[j] = a then End-Occ(pat[0..j], x) = ROT (SHIFTp((I− {δ}) ∩ Ia))

else End-Occ(pat[0..j], x) = ROT (SHIFTp((I− {δ}) ∩ Ib)).
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Fig. 2. Computation of Occ(abab, x), the forward phase.

The sequence ROT has a special property (expressed by the next claim) responsible for the fact that the output is a single
arithmetic progression. Denote by δ the position of the word shift(N − 1, x) in the list of all cyclic shift of the word x sorted
lexicographically. The following claim is a direct consequence of Lemma 1.

Claim 2. If x ends with the letter b then ROT [N − 1] = N − 1 and δ = N − 1, otherwise ROT [0] = N − 1 and δ = 0. In other
words the cyclic shift starting at position N − 1 of x is either lexicographically the least, or the last.

Correctness of the value of δ chosen by the algorithm follows from Claim 2.
Claim 1 implies that the returned set is the set of all start-occurrences. In the backward phase end-occurrences become
start-occurrences, since we are subtracting from their values the numberm− 1 (m = |pat|).
We have still to show the following fact.

Claim 3. The returned set of occurrences is a single arithmetic progression.

Each time we extend the prefix of pat (processing the next value of j < m−1 in the forward phase) we correctly remove
the position N − 1, since the next position would go outside the word x. In this situation we remove the position δ from the
interval I since ROT [δ] = N − 1.
The point δ is at the beginning of Ia or at the end of Ib due to Claim 1. Hence in each iterationwhenwe remove δ then δ is

the first or the last in the current arithmetic progression. Consequently the final set of returned values is a single arithmetic
progression. This completes the proof of the claim.

Claim 4. The algorithm works in time O(|pat| + n) and in O(1) additional space.

The size of the word can be computed in O(n) time, as well as the numbers of letters a, b in x. Once we have the numbers
N, p, q the final interval I can be computed in O(m) time. The remaining parameter is the number r = p−1 mod N . It can be
computed in the following way (due to [9]):
if n is odd then r = |SW (γ0, . . . , γn−2)|, otherwise r = N − |SW (γ0, . . . , γn−2)|.
Hence this parameter can be also computed in linear time.
Consequently the overall complexity is linear. This completes the proof of the claim and the theorem. �

Example. We explain now the main ideas of the proof using illustrations in Figs. 2 and 3 for pat = abab. In the forward
phase,wemove the interval [0..10] by shifting it clockwise by 8 (modulo 19), each timewe take only positionswhich include
the required symbol. The sequence of symbols is: a, b, a, b.
If we meet the last position we do not take it, unless it is the final stage. Observe that we omit the number δ = 18 in the

first move.
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Fig. 3. The computation of Occ(abab, x), the backward phase. We have: Occ(abab, x) = { ROT [6], ROT [7], ROT [8], ROT [9] } = {7, 0, 12, 5}. It is a part of
the arithmetic progression describing the sequence ROT [∗].

3. The patterns with a don’t care symbol

Let ∗ denotes the don’t care symbol. This symbol is matching any other symbol, it is a kind of a universal symbol.
For the patterns with the don’t care symbol the set of occurrences is not necessarily a single arithmetic progression. For

example consider the Fibonacci word of length 21 (which is a special case of a Sturmian word) and the pattern pat = a∗∗a.
The set

Occ(a ∗ ∗a, abaababaabaababaababa) = {0, 2, 5, 7, 8, 10, 13, 17}

cannot be ordered as a single arithmetic progression modulo N = 21.
However it is the union of two arithmetic progressions with difference 8 (where addition is modulo 21):

7
⊕ 8
−→ 15

⊕ 8
−→ 2

⊕ 8
−→ 10 and 5

⊕ 8
−→ 13

⊕ 8
−→ 0

⊕ 8
−→ 8.

It happens that in general for the pattern pat containing don’t care symbols the set Occ(pat, x) consists of at most |pat|
arithmetic progressions. The algorithm computing Occ(pat, x) in the presence of don’t cares is almost identical to the
algorithm described earlier for the case without don’t cares.
The next theorem partially subsumes Theorem 1 as a special case. Then we could have started directly from Theorem 2.

However there are some reasons for a separate theorem.
An important nontrivial part of Theorem 1 and its proof is the occurrence shift property: the set of occurrences is a single

arithmetic progression. This is not a part of Theorem 2. In fact this property does not hold in the presence of don’t care
symbols.
Secondly, the main result is Theorem 1 and the algorithm related to Theorem 1 is much simpler. We have chosen to start

with an easily understandable algorithm for the main result, and then present in Theorem 2 some obscure details needed
to extend this algorithm to patterns with don’t care symbols.

Theorem 2. Assume x is a standard word given by a directive sequence of size n and some letters (possibly none) of the pattern
pat are replaced by a don’t care symbol. Then we can compute a compressed representation of Occ(pat, x) in time O(|pat| + n).
The computed representation consists of at most |pat| arithmetic progressions (modulo N).

Proof. Wecan apply essentially the samealgorithm String-Matching(pat, x) to extendTheorem1. There are several technical
differences.
When we process the next symbol of the pattern equal to the don’t care symbol then we do not intersect the current set

I with Ia nor Ib, the current interval I remains unchanged. This means that we change the statement (F3) in the forward
phase to:
(F3) if pat[j] 6= ∗ then

if pat[j] = a then I := I ∩ Ia else I := I ∩ Ib.
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The invariant written in the forward phase does not hold now. Consequently, there is a problem with the positions δ
removed in statement (F1), since they can be internal positions in I and the number of them can grow linearly. It would be
too expensive to process them in each individual SHIFT in the forward phase.
Therefore we remove the positions indirectly. The current set I is implemented as a single interval and instead of

removing the actual position δ we insert it into the set H of positions which should be removed. The positions in H are
called here the holes. We know that after the iteration j there are still (m − 1 − j) iterations and the positions are to be
shifted (m − 1 − j) times, each shift results in the addition (modulo N) of the number p. Hence in a given iteration j we
postpone the removal of δ, and finally (after the forward phase) this removal corresponds to the deletion of the position

rem(j, δ) = δ ⊕ [(m− 1− j) · p].

The statement (F1) is now changed into:
(F1) insert rem(j, δ) intoH .

Then at the end of the forward phase we execute:

I := I−H .

Such deletions can be interpreted as lazy deletions. In thisway the processing of all the holes is done by simple arithmetics
in linear time after the final iteration in the forward phase.
After the forward phase the set I is an interval with linear number of removed elements, in other words it is a set of

linearly many disjoint intervals

[s1, t1], [s2, t2], . . . [sk, tk].

Then the whole (modified) algorithm returns k arithmetic progressions, the ith progression starts in ROT (si) − m + 1 and
ends in ROT (ti)−m+ 1.
All these computations can be done inO(|pat|+n) time. Therefore the time complexity of thewhole (modified) algorithm

remains linear. �

4. Final remarks

In the case of cyclic shifts of standard Sturmian words the occurrence shift property is no longer valid. For example
consider our example word x = SW (1, 2, 1, 1, 1) = ababaabababaababaab and let

x′ = x[9..18]x[0..8] = abaababaabababaabab.

Then Occ(ba, x′) is not a single arithmetic progression. Although the cyclic shifts of standard words do not necessarily have
the occurrence shift property, the set Occ(pat, x) of occurrences in such words can be also described in a compressed way
using at most |pat| arithmetic progressions.
A similar algorithm as the one presented in the proof of Theorem 2 can be applied to cyclic shifts, again the main point is

the processing of the set of holes (positions to be removed). The solution does not need new ideas, it is enough to change the
numbering of positions due to the cyclic shift of the text, such a renumbering would technically complicate the algorithm
but the structure remains the same.
A similar approach to the pattern-matching in Sturmian words has been described in [5] for the case of infinite words.

In the case of finite words the situation is more subtle. In particular after each shift possibly one position is removed (such
a situation has no place in infinite case). The other difference is that for infinite case efficiency is not an issue. Also the
occurrence shift property is not considered there at all.
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