
 Elsevier Editorial System(tm) for Journal of Discrete Algorithms
 Manuscript Draft

Manuscript Number: JDA-10-50R1

Title: Efficient algorithms for three variants of the LPF table

Article Type: Stringology, Bioinformatics and Algorith

Keywords: longest previous reverse factor; longest previous non-overlapping reverse factor; longest
previous non-overlapping factor; longest previous factor; palindrome; runs; suffix array; text
compression

Corresponding Author: Mr. Marcin Kubica, Ph.D.

Corresponding Author's Institution: University of Warsaw

First Author: Maxime Crochemore, Professor

Order of Authors: Maxime Crochemore, Professor; Costas S Iliopoulos, Professor; Marcin Kubica, Ph.D.;
Wojciech Rytter, Professor; Tomasz Walen, Ph.D.

Abstract: The concept of a longest previous factor (LPF) is inherent to Ziv-Lempel factorization of
strings in text compression, as well as in statistics of repetitions and symmetries.
It is expressed in the form of a table --- LPF[i] is the maximum length of a factor starting at position i,
that also appears earlier in the given text.
We show how to compute efficiently three new tables storing different variants of previous factors
(past segments) of a string.
The longest previous non-overlapping factor, for a given position i, is the longest factor starting at i
which has an exact copy occurring entirely before, while the longest previous non-overlapping reverse
factor for a given position i is the longest factor starting at i, such that its reverse copy occurs entirely
before.
In both problems the previous copies of the factors are required to occur within the prefix ending at
position i-1.
The longest previous (possibly overlapping) reverse factor is the longest factor starting at i, such that
its reverse copy starts before i.

These problems have not been explicitly considered before, but they have several applications and
they are natural extensions of the longest previous factor problem, which has been extensively studied.

Moreover, the newly introduced tables store additional information on the structure of the string,
helpful to improve, for example, gapped palindrome detection and text compression using reverse
factors.

Response to Reviewers: We agree with all the reviewers' comments (with one small exception, see
detailed response).
Many thanks for a careful reviews.

All the remarks have been taken into account and applied.
The only exception is the suggestion of Reviewer#1,
to change symbols LPnF, LPrF, LPnrF to LPFn, LPFr, LPFnr.
Since it is a matter of taste, we would rather leave them in the original form.

Detailed Response to Reviewers

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Efficient algorithms for three variants of the LPF table✩

Maxime Crochemorea,c, Costas S. Iliopoulosa,e, Marcin Kubicab,
Wojciech Rytterb,d, Tomasz Waleńb

aKing’s College London, London WC2R 2LS, UK
bInstitute of Informatics, University of Warsaw, Warsaw, Poland

cUniversité Paris-Est, France
dDept. of Math. and Informatics, Copernicus University, Toruń, Poland

eDigital Ecosystems & Business Intelligence Institute, Curtin University of Technology,

Perth WA 6845, Australia

Abstract

The concept of a longest previous factor (LPF) is inherent to Ziv-Lempel fac-
torization of strings in text compression, as well as in statistics of repetitions
and symmetries. It is expressed in the form of a table — LPF[i] is the maximum
length of a factor starting at position i, that also appears earlier in the given
text. We show how to compute efficiently three new tables storing different
variants of previous factors (past segments) of a string. The longest previous
non-overlapping factor, for a given position i, is the longest factor starting at i
which has an exact copy occurring entirely before, while the longest previous
non-overlapping reverse factor for a given position i is the longest factor start-
ing at i, such that its reverse copy occurs entirely before. In both problems the
previous copies of the factors are required to occur within the prefix ending at
position i− 1. The longest previous (possibly overlapping) reverse factor is the
longest factor starting at i, such that its reverse copy starts before i.

These problems have not been explicitly considered before, but they have
several applications and they are natural extensions of the longest previous
factor problem, which has been extensively studied. Moreover, the newly intro-
duced tables store additional information on the structure of the string, helpful
to improve, for example, gapped palindrome detection and text compression
using reverse factors.

Keywords: longest previous reverse factor, longest previous non-overlapping
reverse factor, longest previous non-overlapping factor, longest previous factor,
palindrome, runs, suffix array, text compression

✩Research supported in part by the Royal Society, UK.
Email addresses: maxime.crochemore@kcl.ac.uk (Maxime Crochemore),

csi@dcs.kcl.ac.uk (Costas S. Iliopoulos), kubica@mimuw.edu.pl (Marcin Kubica),
rytter@mimuw.edu.pl (Wojciech Rytter), walen@mimuw.edu.pl (Tomasz Waleń)

Preprint submitted to Journal of Discrete Algorithms January 1, 2011

lprf-journal.tex

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1. Introduction

In this paper we describe new algorithmic results which exploit the power of
suffix arrays [6, 16, 18, 19, 24, 25]. Three new useful tables related to the table
of the longest previous factors (the LPF table, see [7, 8, 9, 12]) are computed in
linear time, additionally using the power of data structures for Range Minimum
Queries (RMQ, in short) [2, 10]. The LPF table, for a given position i, contains
the maximum length of a factor starting at position i, whose exact copy starts
before position i. We assume throughout the paper, that we have an integer
alphabet, sortable in linear time. This assumption implies we can compute the
suffix array in linear time, with constant coefficient independent of the alphabet
size.

The first problem is to compute efficiently, for a given string y, the table
of the longest previous non-overlapping reverse factors (the LPnrF table), that
stores at each index i the maximal length of factors (substrings), that both start
at position i in y and occur in reverse entirely before position i. This concept
is close to the table of the longest previous factors (the LPF table), for which
the previous occurrence is not reverse. The latter table extends the Ziv-Lempel
factorization of a text [28] intensively used for text compression (known as LZ77
method, see [1]). It turns out, that both problems are related to each other,
and together they can be applied to compress sequences containing repeated,
possibly reversed fragments.

Another problem is to compute the table of longest previous reverse factors
(the LPrF table). In the sense of the definition, this problem resembles the prob-
lem of computing the LPF table very much. However, if we consider positions
of the corresponding characters, it turns out they are not as related, as the
problems of computing the LPnrF and LPF tables. Also, it does not have such
natural applications in compression. However, it can be useful when extracting
symmetries, e.g. in detection of gapped and ordinary palindromes.

The third problem is to compute the table of longest previous non-overlapping
factors (the LPnF table). In the sense of the definition, the LPnF table differs
very slightly from the LPF table (because the latter allows overlaps between
the considered occurrences while the former does not), but the LPF table is a
permutation of the longest common prefix array (LCP array) [17], while LPnF

usually is not, and the algorithms for LPnF differ much from those for LPF.
However, the LPnF table can be useful when computing repetitions.

The LPnrF table generalises a factorization of strings used by Kolpakov and
Kucherov [21] to extract certain types of palindromes in molecular sequences.
These palindromes are of the form uvw where v is a short string and w is the
complemented reverse of u (complement consists in exchanging letters A and U,
as well as C and G, the Watson-Crick pairs of nucleotides). These palindromes
play an important role in RNA secondary structure prediction because they
signal potential hair-pin loops in RNA folding (see [3]).

An additional motivation for considering the LPnrF table is text compression.
Indeed, it may be used, in connection with the LPF table, to improve the Ziv-
Lempel factorization (the basis of several popular compression software) by

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

considering occurrences of reverse factors as well as usual factors. The feature
has already been implemented in [14] but without LPnrF and LPF tables, and
our algorithm provides a more efficient technique to compress DNA sequences
under the scheme.

We design algorithms computing the LPnrF, LPrF and LPnF tables. They are
computed, using two pre-computed read-only arrays (SUF and LCP) composing
the suffix array, in linear time on any integer alphabet.

As far as we know, the LPnrF table of a string has never been considered
before. Our source of inspiration was the notion of LPF table and the optimal
methods for computing it in [4, 8]. It is shown there that the LPF table can be
derived from the Suffix Array of the input string both in linear time and with
only a constant amount of additional space.

The second problem, computation of the LPnF table of non-overlapping pre-
vious factors, emerged from a version of Ziv-Lempel factorization. An alter-
native algorithm solving this problem was given in [27]. The factorization it
leads to plays an important role in string algorithms because the work done
on an element of the factorization is skipped since already done on one of its
previous occurrences. A typical application of this idea is to compute repeti-
tions in strings (see [5, 20, 22]). It happens that the algorithm for the LPnF

table computation is a simple adaptation of the algorithm for LPnrF. It may be
surprising, because in one case we deal with exact copies of factors and in the
second with reverse copies.

The problem of computing the LPrF table has been included for the sake of
completeness — this way we cover all possible combinations of previous factors:
reversed or not, and overlapping or not. The LPrF table, when compared to
LPnrF, has no known applications, yet.

In this article we show that the computation of the LPnrF, LPrF and LPnF

tables of a string can be done in linear time from its Suffix Array. So, we get
the same running time as the algorithm described in [21] for the corresponding
factorization although our algorithm produces more information stored in the
table and ready to be used.

In addition to the Suffix Array of the input string, the algorithm makes
use of a data structure for constant time RMQs, and the Manacher’s algorithm
to recognize palindromes [23]. The question of whether there exists a direct
linear-time algorithm, for integer alphabets, not using all these sophisticated
techniques (that is RMQ, Suffix Array or suffix tree) exists remains open. Its
solution would open an exciting path of novel techniques for text processing.

2. Preliminaries

Let us consider a string y = y[0 . . n − 1] of length n. By yR we denote
the reverse of y, that is yR = y[n − 1]y[n − 2] . . . y[0]. The LPF table (see
[7, 8, 9, 12]), and the three other tables we consider, LPnrF, LPrF and LPnF, are

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

a b b a b b a b a

abb

abb

a b b a b b a b a

abb b

a b b a b b a b a

abb b

bb a b

LPrF[4]=4

a b b a b b a b a

a b b

abb

LPnrF[4]=3

LPnF[4]=3LPF[4]=4

abb b

Figure 1: Illustration of LPF[4], LPnF[4], LPrF and LPnrF[4] for the string abbabbaba.

defined (for 0 ≤ i < n) as follows (see Figure 2):

LPF[i] = max{j : ∃0≤k<i : y[k . . k + j − 1] = y[i . . i+ j − 1]}

LPnrF[i] = max{j : ∃0≤k≤i−j : y[k . . k + j − 1]R = y[i . . i+ j − 1]}

LPrF[i] = max{j : ∃0≤k<i : y[k . . k + j − 1]R = y[i . . i+ j − 1]}

LPnF[i] = max{j : ∃0≤k≤i−j : y[k . . k + j − 1] = y[i . . i+ j − 1]}

It can be noted that in the definition of the LPF and LPrF tables the occurrences
of y[k . . k+j−1] and y[i . . i+j−1] may overlap, while it is not the case with the
other tables above. For example, the string y = abbabbaba has the following
tables:

position i 0 1 2 3 4 5 6 7 8
y[i] a b b a b b a b a

LPF[i] 0 0 1 5 4 3 2 2 1
LPnrF[i] 0 0 2 1 3 3 2 2 1
LPrF[i] 0 6 5 5 4 3 2 2 1
LPnF[i] 0 0 1 3 3 3 2 2 1

We start the computation of these arrays with computation of the Suffix Array
[6, 16, 18, 24, 25] for the text y. It is a data structure used for indexing the
text. It comprises three tables denoted by SUF, RANK and LCP, and is defined
as follows. The SUF array stores the list of positions in y sorted according to
the increasing lexicographic order of suffixes starting at these positions. That
is, the SUF table is such that:

y[SUF[0] . . n− 1] < y[SUF[1] . . n− 1] < · · · < y[SUF[n− 1] . . n− 1]

Thus, indices of SUF are ranks of the respective suffixes in the increasing lexi-
cographic order. The RANK array is the inverse of the SUF array, that is:

SUF[RANK[i]] = i and RANK[SUF[r]] = r

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

b b b a a b b a a a b b a a b b a a b b a a a b y

a b b a a b b a a

a b b a a b b a a

LPF

LPF

a b b a a

a b b a a

LPnF

LPnF

a b b a a b b a a a b

b a a a b b a a b b a

LPrF

LPrF

a b b a a b b

b b a a b b a

LPnrF

LPnrF

Figure 2: Comparison of LPF, LPnF, LPrF and LPnrF tables; it shows differences between LPF

and LPnF, and between LPrF and LPnrF.

The LCP [17] array is indexed by the ranks of the suffixes, and stores the lengths
of the longest common prefixes of consecutive suffixes in SUF. Let us denote by
lcp(i, j) the length of the longest common prefix of y[i . . n− 1] and y[j . . n− 1]
(for 0 ≤ i, j < n). Then, we set LCP[0] = 0 and, for 0 < r < n, we have:

LCP[r] = lcp(SUF[r − 1], SUF[r])

For example, the Suffix Array of the text y = abbabbaba is:

i s[i] RANK[i]
0 a 3
1 b 8
2 b 6
3 a 2
4 b 7
5 b 5
6 a 1
7 b 4
8 a 0

rank r SUF[r] LCP[r] suf(SUF[r])
0 8 0 a

1 6 1 aba

2 3 2 abbaba

3 0 5 abbabbaba

4 7 0 ba

5 5 2 baba

6 2 3 babbaba

7 4 1 bbaba

8 1 4 bbabbaba

The Suffix Array can be built in time O(n) (see [6] [6, 16, 18, 19, 25]).
In the algorithms presented in this paper we use the Minimum (Maximum)

Range Query data-structure (RMQ, in short). Let us assume, that we are given
an array A[0 . . n − 1] of numbers. This array is preprocessed to answer the
following form of queries: given an interval [ℓ . . r] (for 0 ≤ ℓ ≤ r < n), find the
minimum (maximum) value A[k] for ℓ ≤ k ≤ r.

The RMQ problem has received much attention in the literature. Bender and
Farach-Colton [2] presented an algorithm with O(n) preprocessing complexity

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

and O(1) query time, using O(n logn)-bits of space. The same result was previ-
ously achieved in [13], albeit with a more complex data structure. Sadakane [26],
and recently Fischer and Heun [11] presented a succinct data structures, which
achieve the same time complexity using only O(n) bits of space.

3. The technique of alternating search

At the heart of our algorithms for computing the LPnrF and LPnF tables,
there is a special search in a given interval of the table SUF for a position k (the
best candidate) which gives the next value of the table (LPnrF or LPnF). This
search is composed of two simple alternating functions, so we call it here the
alternating search.

Assume we have an integer function Val(k) which is non-increasing for k ≥ i.
Our goal is to find any position k in the given range [i . . j], which maximises
Val(k) and satisfies some given property Candidate(k) (we call values satisfying
Candidate(k) simply candidates). We assume, that Val(k) and Candidate(k)
can be computed in O(1) time. Let us also assume, that the following two
functions are computable in O(1) time:

• FirstMin(i, j) — returns the first position k in [i . . j] with the minimum
value of Val(k),

• NextCand(i, j) — returns any candidate k from [i . . j) if there are any,
otherwise it returns some arbitrary value not satisfying Candidate(k).

Without loss of generality, we can assume that j is a candidate — otherwise, we
can narrow our search to the range [i . .NextCand(i, j)]. Please, observe, that:

Val(k) > Val(j) for i ≤ k < FirstMin(i, j)

Hence, if FirstMin(i, j) > i and NextCand(i,FirstMin(i, j)) is a candidate,
then we can narrow our search to the interval [i . .NextCand(i,FirstMin(i, j))].
Otherwise, j is the position we are looking for.

Consequently, we can iterate FirstMin and NextCand(i, k) queries, increas-
ing with each step the value of Val(j) by at least one unit. This observation is
crucial for the complexity analysis of our algorithms.

Algorithm 1: Alternating-Search(i, j)

k := initial candidate in the range [i . . j], satisfying Candidate;
while Candidate(k) do

j := k ;
k := NextCand(i,FirstMin(i, j));

return j;

Lemma 1. Let k = Alternating-Search(i, j). The execution time of Alternating-
Search(i, j) is O(Val(k)−Val(j) + 1).

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Proof. Observe, that each iteration of the while loop, except the last one, in-
creases Val(k) by at least one. The last iteration assigns the value of k to j,
which is then returned as a result. Hence, the number of iterations performed
by the while loop is not greater than Val(k)−Val(j)+1. Each iteration requires
O(1) time, what concludes the proof.

In the following sections, we apply the Alternating-Search algorithm to com-
pute the LPnrF and LPnF tables. Our strategy is to design the algorithm in
which, in each invocation of the Alternating-Search algorithm, the initial value
of Val(k) is smaller than the previously computed element of the LPnrF/LPnF
table by at most 1. In other words, we start with a reasonably good candidate,
and the cost of a single invocation of the Alternating-Search algorithm can be
charged to the difference between two consecutive values. The linear time fol-
lows from a simple amortisation argument. The details are in the following
sections.

4. Computation of the LPnrF table

This section presents how to calculate the LPnrF table, for a given string y of
size n, in O(n) time. First, let us create a string x = y#yR of size N = 2n+1
(where # is a character not appearing in y). For the sake of simplicity, we set
that y[n] = # and y[−1] = x[−1] = x[N] are defined and smaller than any
character in x[0 . . N − 1].

Let SUF be the suffix array related to x, RANK be the inverse of SUF (that
is SUF[RANK[i]] = i, for 0 ≤ i < N), and LCP be the longest common prefix
table related to x. Let i and j, 0 ≤ i, j < N be two different positions in x, and
let i′ = RANK[i] and j′ = RANK[j]. Observe, that:

lcp(i, j) = min{LCP[min(i′, j′) + 1 . .max(i′, j′)]}

LPnrF[i] = max{lcp(i, j) : j ≥ N − i}

Let us define two auxiliary arrays: LPnrF> and LPnrF<, which are variants
of the LPnrF array restricted to the case, where the first mismatch character in
the reversed suffix is greater (smaller) than the corresponding character in the
suffix. More formally, using x:

LPnrF>[i] = max

{

j : ∃j−1≤k<i : y[k − j + 1 . . k]R = y[i . . i+ j − 1]
and y[k − j] > y[i+ j]

}

LPnrF<[i] = max

{

j : ∃j−1≤k<i : y[k − j + 1 . . k]R = y[i . . i+ j − 1]
and y[k − j] < y[i+ j]

}

or equivalently, using x:

LPnrF>[i] = max

{

j : ∃N−i≤k≤N−j : x[k . . k + j − 1] = x[i . . i+ j − 1]
and x[k + j] > x[i+ j]

}

LPnrF<[i] = max

{

j : ∃N−i≤k≤N−j : x[k . . k + j − 1] = x[i . . i+ j − 1]
and x[k + j] < x[i+ j]

}

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

x = y # y R

b a a b a b aa b a b a a b

b a a b a

b a a b a b a

a b a a b b a a b a

< iLPnrF []

> iLPnrF []

b a a b a b a

b a a b a

 b a b a b a a b a a b a a b a a b a b a a

b a b a b a a b a a b a a b a a b a b a a y =

a a b a b a a b a a b a a b a a b a b a b#

i

Figure 3: Examples of LPnrF> and LPnrF< values, in the text y and in x = y#y
R.

The following lemma, formulates an important property of the LPnrF array,
which is extensively used in the presented algorithm.

Lemma 2. For 0 < i < n, we have LPnrF>[i] ≥ LPnrF>[i − 1] − 1 and
LPnrF<[i] ≥ LPnrF<[i− 1]− 1.

Proof. Without loss of generality, we can limit the proof to the first property.
Let LPnrF>[i− 1] = j. So, there exists some k < i− 1, such that:

y[k − j + 1 . . k]R = y[i− 1 . . i+ j − 2] and y[k − j] > y[i+ j − 1]

Omitting the first character, we obtain:

y[k − j + 1 . . k − 1]R = y[i . . i+ j − 2] and y[k − j] > y[i+ j − 1]

and hence LPnrF>[i] ≥ j − 1 = LPnrF>[i− 1]− 1.

In the algorithm computing the LPnrF array, we use two data structures for
RMQ queries. They are used to answer, in constant time, two types of queries:

• FirstMinPos(p, q, LCP) returns the first (from the left) position in the range
[p . . q] with minimum value of LCP,

• MaxValue(p, q, SUF) returns the maximal value from SUF[p . . q].

Lemma 3. The MaxValue(p, q, SUF) and FirstMinPos(p, q, LCP) queries require
O(n) preprocessing time, and then can be answered in constant time.

Proof. Clearly, the SUF and LCP arrays can be constructed in O(n) time (see
[6]). The MaxValue(p, q, SUF) and FirstMinPos(p, q, LCP) queries are applied to
the sequence of O(n) length. Hence they require O(n) preprocessing time and
then can be answered using Range Minimum Queries in constant time (see [10]).
Note that, in the FirstMinPos query we need slightly modified range queries, that
return the first (from the left) minimal value, but the algorithms solving RMQ
problem can be modified to accommodate this fact.

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Algorithm 2: Compute-LPrF>

initialization: LPnrF>[0] := 0; k0 := 0 ;
for i = 1 to n− 1 do

ri := RANK(i) { start Alternating Search } ;
k := InitialCandidate(ki−1, LPnrF>[i− 1]) ;
while k ≥ N − i do

ki := k ;
rk := RANK(k) ;
r′k := FirstMinPos(ri + 1, rk, LCP) ;
LPnrF>[i] := LCP[r′k] ;
if ri + 1 < r′k then

k := MaxValue(ri + 1, r′k − 1, SUF)
else break;

return LPnrF>;

Function InitialCandidate(k, l)

if l > 0 then
return k + 1

else
return N ;

Algorithm 2 computes the LPnrF> array from left to right. In each iteration it
also computes the value ki, which is the position of the substring (in the second
half of x), that maximizes LPnrF>[i]. Namely, if LPnrF>[i] = j, then:

y[i . . i+ j − 1] = x[ki . . ki + j − 1] = y[N − ki − j + 1 . .N − ki]
R

Lemma 4. Algorithm 2 works in O(n) time.

Proof. We prove this lemma using amortized cost analysis. The amortization
function equals LPnrF>[i]. Initially we have LPnrF>[0] = 0.
Observe, that the body of the for loop is an instance of the Algorithm 1, with:

Val(k) = lcp(i, k)

Candidate(k) ≡ k ≥ N − i

FirstMin(i, k) = FirstMinPos(RANK[i] + 1,RANK[k], LCP)

NextCand(i, j) = MaxValue(RANK[i] + 1, j − 1, SUF)

Hence, by Lemmata 1 and 2, each iteration of the for loop takes O(LPnrF>[i]−
LPnrF>[i − 1] + 2) time, and the overall time complexity of Algorithm 2 is
O(n+ LPnrF[n− 1]− LPnrF[0]) = O(n).
The correctness of the algorithm follows from the fact that (for each i) the body
of the while loop is executed at least once (as a consequence of Lemma 2).

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Suffix array

i

ri

ki

optimal c0c1

FirstMinPos

MaxValue

Figure 4: Iterations of the while loop of Algorithm 2.

Theorem 1. The LPnrF array can be computed in O(n) time. For (polynomially
bounded) integer alphabets the complexity does not depend on the size of the
alphabet.

Proof. The table LPnrF< can be computed using similar approach in O(n) time.
Then, LPnrF[i] = max(LPnrF<[i], LPnrF>[i]).

5. Computation of the LPrF table

This section presents how to calculate the LPrF table, for a given string y of
length n, in O(n) time. We will show, how to reduce it to a new problem of the
longest previous overlapping reverse factor. This new problem is to compute a
LPorF table, defined as follows:

LPorF[i] = max{j : j = 0 or ∃i−j<k<i : y[k . . k + j − 1]R = y[i . . i+ j − 1]}

Let us consider the longest previous reversed factor of y[i . . n − 1] for some
i = 0, . . . , n− 1. There are two possible cases: either it occurs not overlapping
position i, or it overlaps it. In the first case, its length equals LPnrF[i], and in
the latter one it equals LPorF[i]. Hence:

LPrF[i] = max(LPnrF[i], LPorF[i])

We have already shown how to compute the LPnrF table in O(n) time. Now,
we will show how to compute the LPorF table in the same time complexity.

Let i be a position in y, 0 ≤ i < n, and let j = LPorF[i] > 0. Since
LPorF[i] cannot be equal 1, we have LPorF[i] ≥ 2. Let us consider an overlapping
reversed occurrence of y[i . . i+ j− 1] and let k be its starting position. We have
i− j < k < i and:

y[k . . k + j − 1]R = y[i . . i+ j − 1]

Note, that:
y[i . . k + j − 1] = y[i . . k + j − 1]R

and:
y[k + j . . i+ j − 1] = y[k . . i− 1]R

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

k k + j − 1

i i+ j − 1

y

Figure 5: Previous overlapping reversed factor and related palindrome.

Hence:
y[k . . i+ j − 1] = y[k . . i+ j − 1]R

That is, y[k . . i+j−1] is a palindrome (see Fig. 5). The center of this palindrome
is at k+i+j−1

2 , where halves denote positions between characters.
The reverse implication is also valid. Let y[b . . e] be a palindrome, where

0 ≤ b < e < n. The center of the palindrome is at b+e
2 . For any such integer i,

that b < i ≤ b+e
2 , we have: y[i . . e] = y[b . . b+e−i]R. Hence, LPorF[i] ≥ e−i+1.

Moreover, taking into account all such palindromes, we obtain:

LPorF[i] = max

{

e− i + 1 : b < i ≤
b+ e

2
and y[b . . e] = y[b . . e]R

}

(1)

Information about all the palindromes in y can be obtained in O(n) time using
Manacher’s algorithm [23]. The output from this algorithm has a form of a
table D[0 . . 2(n − 1)], such that D[c] is the maximum length of a palindrome
with a center at position c

2 (where halves denote positions between characters).
More formally, the maximal palindrome with a center at position c

2 is:

y

[

c−D[c]

2
. .
c+D[c]

2

]

Having computed array D, we can reformulate equation 1, as:

LPorF[i] = max

{

c+D[c]

2
− i+ 1 :

c−D[c]

2
< i ≤

c

2

}

=

= max

{

c+D[c]

2
: c−D[c] < 2i ≤ c

}

− i+ 1

Array D can be processed from right to left, and each of the above maxima can
be computed in a constant amortized time. With each index i, two new elements,
D[2i] and D[2i + 1], should be considered. On the other hand, all such values
D[c] considered in the previous step, for which c−D[c] = 2i, can be discarded
in further computations. Moreover, we can use the following two observations
to further limit the number of values D[c] needed to compute LPorF[i].

Lemma 5. Let c1 and c2 be two such indices, that 0 ≤ c1 < c2 ≤ 2(n− 1) and
c1 − D[c1] ≥ c2 − D[c2], then D[c1] does not influence the computation of the
LPorF array.

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Proof. If i is such an index, that c1 −D[c1] < 2i ≤ c1, then also c2 −D[c2] <

2i ≤ c2. Moreover, D[c2] > D[c1] and hence c2+D[c2]
2 > c1+D[c1]

2 .

Lemma 6. Let c1 and c2 be two such indices, that 0 ≤ c1 < c2 ≤ 2(n− 1) and
c1+D[c1] ≥ c2+D[c2], then D[c2] does not influence the values of LPorF[i], for
i ≤ c1

2 .

Proof. If i is such an index, that 2i ≤ c1. Even if 2i > c2 − D[c2], then
c1+D[c1]

2 ≥ c2+D[c2]
2 .

As an immediate consequence of Lemmata 5 and 6, we obtain the following
fact:

Lemma 7. When computing LPorF[o . . i], instead of considering all the values
D[2i . . 2(n−1)], one can limit considerations to D[c1], D[c2], . . . , D[cm], where
c1, c2, . . . , cm is the maximal sequence satisfying the following properties:

• i ≤ c1 < c2 < · · · < cm,

• c1 −D[c1] < c2 −D[c2] < · · · < cm −D[cm] < 2i,

• c1 +D[c1] < c2 +D[c2] < · · · < cm +D[cm].

Due to Lemma 7, we can use a two-sided queue to store all relevant indices
c1, c2, . . . , cm. Moreover, if the queue is empty, thenLPorF[i] = 0, and otherwise:

LPorF[i] =
cm +D[cm]

2
− i+ 1

Algorithm 4 exploits the above observations, calculating the LPorF array.

Algorithm 4: Compute-LPorF

initialization: q := empty ;
for i = n− 1 downto 0 do

Insert(q, 2i+ 1) ;
Insert(q, 2i) ;
LPorF[i] = GetMax(q) ;

return LPorF;

Function Insert(q, c)

if empty(q) or c−D[c] < q.first−D[q.first] then
while not empty(q) and c+D[c] ≥ q.first+D[q.first] do

remove first(q);
insert first(q, c);

Total number of elements inserted into queue q does not exceed 2n−1. Since
each element can be removed only once, the amortized running time of Insert
and GetMax functions is constant. Hence, the total running time of Algorithm 4
is O(n). As a consequence, we obtain the following theorem:

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Function GetMax(q, i)

while not empty(q) and q.last−D[q.last] ≥ 2i do
remove last(q) ;

if empty(q) then
return 0

else
return (q.last+D[q.last])/2− i+ 1

Theorem 2. The LPrF array can be computed in O(n) time.

6. Longest previous non-overlapping factor

This section presents how to calculate the LPnF table in O(n) time. First,
let us investigate the values of the LPnF array. For the sake of simplicity, we
set that y[n] is defined and smaller than any character in y[0 . . n− 1]. For each
value j = LPnF[i], let us have a look at the characters following the respective
factors of length j. Let 0 ≤ k < i be such that y[k . . k+ j− 1] = y[i . . i+ j − 1].
There are two possible reasons, why these factors cannot be extended:

• either the following characters do not match (that is, y[k + j] 6= y[i+ j]),
or

• they match, but if the factors are extended, then they would overlap (that
is, y[k + j] = y[i+ j] and k + j = i).

We divide the LPnF problem into two subproblems, and (for 0 ≤ i < n) define:

LPnF
M [i] = max

{

j : ∃k<j : y[k . . k + j − 1] = y[i . . i+ j − 1],
y[k + j] 6= y[i+ j] and k + j ≤ i

}

LPnFO[i] = max{j : ∃k<j : y[k . . k + j − 1] = y[i . . i + j − 1] and k + j = i}

It is easy to see that LPnF[i] = max{LPnFM [i], LPnFO[i]}. The LPnFO[i] is,
in fact, the maximum radius of a square that has its center between positions
i− 1 and i. Such array can be easily computed in linear time from runs, using
approach proposed in [20].

We have to show how to compute the LPnFM array. Following the same
scheme we have used for the LPnrF problem, we reduce this problem to the
computation of two tables, namely LPnFM

> and LPnFM
< , defined as LPnFM with

the restriction that the mismatch character in the previous factor y[k + j] is
greater (smaller) than y[i+ j]. More formally:

LPnFM
> [i] = max

{

j : ∃0≤k≤i−j : y[k . . k + j − 1] = y[i . . i+ j − 1]
and y[k + j] > y[i+ j]

}

LPnFM
< [i] = max

{

j : ∃0≤k≤i−j : y[k . . k + j − 1] = y[i . . i+ j − 1]
and y[k + j] < y[i+ j]

}

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Clearly, LPnFM [i] = max(LPnFM
> [i], LPnFM

< [i]). Without loss of generality, we

can limit our considerations to computation of LPnFM
> . Just like LPnrF, the

LPnFM
> array has the property, that for any i, 1 < i ≤ n, LPnFM

> [i] ≥ LPnFM
> [i−

1]− 1.

Lemma 8. For 0 < i < n, we have LPnF
M
> [i] ≥ LPnF

M
> [i− 1]− 1.

Proof. Let LPnFM
> [i− 1] = j. So, there exists some 0 ≤ k ≤ i− j− 1, such that:

y[k . . k + j − 1] = y[i− 1 . . i+ j − 2] and y[k + j] > y[i+ j − 1]

If we omit the first characters, then we obtain:

y[k + 1 . . k + j − 1] = y[i . . i+ j − 2] and y[k + j] > y[i+ j − 1]

and hence LPnFM
> [i] ≥ j − 1 = LPnFM

> [i− 1]− 1.

Algorithm 7: Compute-LPnF>

initialization: LPnFM
> [0] := 0; k0 = 0 ;

for i = 1 to n− 1 do
ri := RANK[i] ;
(k, l) = InitialCandidate(ki−1, LPnF

M
> [i− 1]) ;

while l = 0 or k + l ≤ i do
ki = k;
rk := RANK[k] ;
r′k := FirstMinPos(ri + 1, rk, LCP) ;

LPnFM
> [i] := l ;

if [ri + 1 ≤ r′k − 1] 6= ∅ then
k := MinValue(ri + 1, r′k − 1, SUF) ;
l := lcp(ri,RANK[k]) ;

else break;
return LPnFM

> ;

Function InitialCandidate(k, l)

if l > 0 then
return (k + 1, l− 1)

else
return (n, 0);

In the algorithm computing the LPnF
M
> array, we use two data structures

for RMQ queries. They are applied to answer, in constant time, two types of
queries:

• FirstMinPos(p, q, LCP) returns the first (from the left) position in the range
[p . . q] with minimum value of LCP,

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• MinValue(p, q, SUF) returns the minimal value from SUF[p . . q].

Lemma 9. Algorithm 7 works in O(n) time.

Proof. We prove this lemma using amortized cost analysis. The amortization
function equals LPnFM

> [i]. Initially we have LPnFM
> [0] = 0. Please observe, that

the body of the for loop is an instance of the Algorithm 1, with:

Val(k) = lcp(i, k)

Candidate(k) ≡ k + l ≤ i or l = 0

FirstMin(i, k) = FirstMinPos(RANK[i] + 1,RANK[k], LCP)

NextCand(i, j) = MinValue(RANK[i] + 1, j − 1, SUF)

Hence, by Lemmata 1 and 8, each iteration of the for loop takes O(LPnFM
> [i]−

LPnFM
> [i − 1] + 2) time, and the overall time complexity of Algorithm 7 is

O(n+ LPnFM
> [n− 1]− LPnFM

> [0]) = O(n).
The correctness of the algorithm follows from the fact that (for each i) the

body of the while loop is executed at least once (as a consequence of 8).

Theorem 3. The LPnF array can be computed in O(n) time (without using the
suffix trees). For (polynomially bounded) integer alphabets the complexity does
not depend on the size of the alphabet.

Proof. The table LPnFM
< can be computed using similar approach in O(n) time.

As already mentioned, the LPnFO array can also be computed in O(n) time.
Then, LPnF[i] = max(LPnFM

< [i], LPnFM
> [i], LPnFO[i]).

7. Applications to text compression

Several text compression algorithms and many related software are based on
factorizations of input text in which each element is a factor of the text occurring
at a previous position possibly extended by one character (see [1] for variants of
the scheme). We assume, to simplify the description, that the current element
occurs before as it is done in LZ77 parsing [28].

Algorithm 9: AbstractSemiGreedyfactorization(w)

i = 1; j = 0; n = |w| ;
while i ≤ n do

j = j + 1 ;
if w[i] doesn’t appear in w[1 . . (i− 1)] then fj = w[i];
else

fj = u such that uv is the longest prefix of w[i . . n] for which u
appears before position i and v appears before position i+ |u|.

i = i+ |fj | ;
return (f1 . . . fj)

15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

An improvement on the scheme, called optimal parsing, has been proposed
in [15]. It optimizes the parsing by utilizing a semi-greedy algorithm. The
algorithm reduces the number of elements of the factorization. Algorithm 9 is
an abstract semi-greedy algorithm for computing factorization of the word w.
At a given step, instead of choosing the longest factor starting at position i
and occurring before, which is the greedy technique, the algorithm chooses the
factor whose next factor goes to the furthest position. The semi-greedy scheme
is simple to implement with the LPF table. We should also note, that LPnrF

array can be used to construct reverse Lempel-Ziv factorization described in
[21] in O(n) time, while in [21] authors present O(n log |Σ|) algorithm.

Combining reverse and non-reverse types of factorization is a mere applica-
tion of the LPF (or LPnF) and LPnrF tables as shown in Algorithm 10. We get
the next statement as a conclusion of the section.

Theorem 4. The optimal parsing using factors and reverse factors can be com-
puted in linear time independently of the alphabet size.

Algorithm 10: LinearTimeSemiGreedyfactorization(w)

i = 1; j = 0; n = |w| ;
compute LPF and LPnrF arrays for word w ;
let maxF[i] = max{LPF[i], LPnrF[i]} ;
let maxF+[i] = maxF[i] + i ;
prepare maxF

+ for range maximum queries ;
while i ≤ n do

j = j + 1 ;
if w[i] doesn’t appear in w[1 . . (i− 1)] then fj = w[i];
else

let k = maxF[i] ;
find i ≤ q < i+ k such that maxF+[q] is maximal ;
fj = w[i . . q] ;

return (f1 . . fj)

References

[1] Bell, T. C., Clearly, J. G., Witten, I. H., 1990. Text Compression. Prentice
Hall Inc., New Jersey.

[2] Bender, M. A., Farach-Colton, M., 2000. The LCA problem revisited. In:
Gonnet, G. H., Panario, D., Viola, A. (Eds.), Latin American Theoretical
INformatics (LATIN). Vol. 1776 of Lecture Notes in Computer Science.
Springer, pp. 88–94.

[3] Böckenhauer, H.-J., Bongartz, D., 2007. Algorithmic Aspects of Bioinfor-
matics. Springer, Berlin.

16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[4] Chen, G., Puglisi, S. J., Smyth, W. F., 2008. Lempel-ziv factorization using
less time & space. Mathematics in Computer Science 1 (4), 605–623.

[5] Crochemore, M., 1986. Transducers and repetitions. Theoretical Computer
Science 45 (1), 63–86.

[6] Crochemore, M., Hancart, C., Lecroq, T., 2007. Algorithms on Strings.
Cambridge University Press, Cambridge, UK.

[7] Crochemore, M., Ilie, L., 2008. Computing Longest Previous Factor in
linear time and applications. Information Processing Letters 106 (2), 75–
80.

[8] Crochemore, M., Ilie, L., Iliopoulos, C., Kubica, M., Rytter, W., Waleń, T.,
2009. LPF computation revisited. In: Fiala, J., Kratochvl, J., Miller, M.
(Eds.), International Workshop on Combinatorial Algorithms. Vol. 5874 of
Lecture Notes in Computer Science. Springer, Berlin, pp. 158–169.

[9] Crochemore, M., Ilie, L., Smyth, W. F., 2008. A simple algorithm for com-
puting the Lempel-Ziv factorization. In: Storer, J. A., Marcellin, M. W.
(Eds.), 18th Data Compression Conference. IEEE Computer Society, Los
Alamitos, CA, pp. 482–488.

[10] Fischer, J., Heun, V., 2006. Theoretical and practical improvements on the
RMQ-problem, with applications to LCA and LCE. In: Lewenstein, M.,
Valiente, G. (Eds.), Proc. Symposium on Combinatorial Pattern Matching
(CPM). Vol. 4009 of Lecture Notes in Computer Science. Springer, pp.
36–48.

[11] Fischer, J., Heun, V., 2007. A new succinct representation of RMQ-
information and improvements in the enhanced suffix array. In: Chen, B.,
Paterson, M., Zhang, G. (Eds.), Proceedings of the International Sym-
posium on Combinatorics, Algorithms, Probabilistic and Experimental
Methodologies (ESCAPE’07). Vol. 4614 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, Hangzhou, China, April 7–9, 2007, pp. 459–470.

[12] Franek, F., Holub, J., Smyth, W. F., Xiao, X., 2003. Computing quasi
suffix arrays. Journal of Automata, Languages and Combinatorics 8 (4),
593–606.

[13] Gabow, H., Bentley, J., Tarjan, R., 1984. Scaling and related techniques for
geometry problems. In: Symposium on the Theory of Computing (STOC).
pp. 135–143.

[14] Grumbach, S., Tahi, F., 1993. Compression of DNA sequences. In: Data
Compression Conference. pp. 340–350.

[15] Hartman, A., Rodeh, M., 1985. Optimal parsing of strings. In: Apostolico,
A., Galil, Z. (Eds.), Combinatorial algorithms on words. Vol. 12 of Com-
puter and System Sciences. Springer, Berlin, pp. 155–167.

17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[16] Kärkkäinen, J., Sanders, P., 2003. Simple linear work suffix array construc-
tion. In: Baeten, J. C. M., Lenstra, J. K., Parrow, J., Woeginger, G. J.
(Eds.), ICALP. Vol. 2719 of Lecture Notes in Computer Science. Springer,
pp. 943–955.

[17] Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K., 2001. Linear-time
longest-common-prefix computation in suffix arrays and its applications.
In: Proc. Symposium on Combinatorial Pattern Matching (CPM). Vol.
2089 of Lecture Notes in Computer Science. Springer, pp. 181–192.

[18] Kim, D. K., Sim, J. S., Park, H., Park, K., 2003. Linear-time construction
of suffix arrays. In: Proc. Symposium on Combinatorial Pattern Matching
(CPM). Vol. 2676 of Lecture Notes in Computer Science. Springer, pp.
186–199.

[19] Ko, P., Aluru, S., 2003. Space efficient linear time construction of suffix
arrays. In: Proc. Symposium on Combinatorial Pattern Matching (CPM).
Vol. 2676 of Lecture Notes in Computer Science. Springer, pp. 200–210.

[20] Kolpakov, R. M., Kucherov, G., 1999. Finding maximal repetitions in a
word in linear time. In: Proc. Symposium on Foundations of Computer
Science (FOCS). pp. 596–604.

[21] Kolpakov, R. M., Kucherov, G., 2008. Searching for gapped palindromes.
In: Ferragina, P., Landau, G. M. (Eds.), Combinatorial Pattern Matching,
19th Annual Symposium, Pisa, Italy, June 18-20, 2008. Vol. 5029 of Lecture
Notes in Computer Science. Springer, Berlin, pp. 18–30.

[22] Main, M. G., 1989. Detecting leftmost maximal periodicities. Discret. Appl.
Math. 25, 145–153.

[23] Manacher, G. K., 1975. A new linear-time “on-line” algorithm for finding
the smallest initial palindrome of a string. J. ACM 22 (3), 346–351.

[24] Manber, U., Myers, E. W., 1993. Suffix arrays: A new method for on-line
string searches. SIAM J. Comput. 22 (5), 935–948.

[25] Nong, G., Zhang, S., Chan, W. H., 2009. Linear time suffix array construc-
tion using D-critical substrings. In: Kucherov, G., Ukkonen, E. (Eds.),
Proc. Symposium on Combinatorial Pattern Matching (CPM). Vol. 5577
of Lecture Notes in Computer Science. Springer, pp. 54–67.

[26] Sadakane, K., 2007. Succinct data structures for flexible text retrieval sys-
tems. Journal of Discrete Algorithms 5 (1), 12–22.

[27] Tischler, G., 2009. Personal communication.

[28] Ziv, J., Lempel, A., 1977. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, 337–343.

18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

b b b a a b b a a a b b a a b b a a b b b y

a b b a a b b

a b b a a b b

LPF

LPF

a b b a a

a b b a a

LPnF

LPnF

a b b a a b b b

b b b a a b b a

LPRF

LPRF

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

i

kopt k0 = jk1

FirstMin

NextCand

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Suffix array

i

ri

ki

optimal c0c1

FirstMinPos

MaxValue
lprf-1.eps

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

b b b a a b b a a a b b a a b b a a b b b y

a b b a a b b

a b b a a b b

LPF

LPF

a b b a a

a b b a a

LPnF

LPnF

a b b a a b b b

b b b a a b b a

LPRF

LPRF

lprf-2.eps

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

i

kopt k0 = jk1

FirstMin

NextCand

lprf-3.eps

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

b b b a a b b a a a b b a a b b a a b b a a a b y

a b b a a b b a a

a b b a a b b a a

LPF

LPF

a b b a a

a b b a a

LPnF

LPnF

a b b a a b b a a a b

b a a a b b a a b b a

LPrF

LPrF

a b b a a b b

b b a a b b a

LPnrF

LPnrF

lprf-4.eps

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

k k + j − 1

i i+ j − 1

y

lprf-5.eps

