Matching Integer Intervals by Minimal Sets of
Binary Words with don’t cares

Wojciech Fraczak, Wojciech Rytter, Mohammadreza Yazdani

We consider n-bit binary encodings of integers. An integer interval
[p, q] can be considered as the set X of binary strings corresponding
to encodings of all integers in [p, q|.

The most natural encoding is the usual binary representation of
integers (lexicographic encoding) and another useful encoding,
considered in the paper, the reflected Gray code.

A word w with a don’t care symbol is matching the set L(w) of all
words of the same length which can differ only on positions

containing a don’t care.

A set Y of words with don’t cares is matching X ift
X = UwEY L(w)

For a set X of codes of integers in [p, q] we ask for a minimal size
set Y of words with don’t cares matching X.

Such a problem appears in the context of network processing
engines using Ternary Content Addressable Memory (TCAM) as a
lookup table for IP (Internet Protocol) packet header fields.

Hence we use the name TCAM for sets of words with don’t cares.

A TCAM representation of intervals has been traditionally
performed by a heuristic called “prefix match”, which can produce
the TCAM of the size approximately twice larger than the minimal

one.

We present two fast (linear time in the size of the input and the

output) algorithms for finding minimal solutions.

0001
001«
01 %%
10%x%
110
1110

) & N U VI

B~ W N

Oxx*1
10
*10x%
*x*x10

B~ W N

01*x*
1x0x%
x0x1
*xx10

_~ W N

O*x1x%
10
*1%0
*x(01

Rysunek 1: TCAM representations for interval [1,14], where the
integers are represented in the standard unsigned binary encoding
over 4 bits. The first table corresponds to the TCAM generated by

the “prefix match” heuristics.

B~ W N

01 %%
1%x0
*(01
*x(01

We define a full tree of height n as a perfect binary tree of height n
such that each pair of sibling edges are labeled 0 and 1. The
assignment of labels to the edges (two alternatives per each internal
node) can be chosen arbitrarily.

Let T, be a full tree of height n. The label w € {0,1}"™ of the path
from the root to i-th leaf defines the n-bit encoding of number ¢,
with 0 corresponding to the furthest left leaf of the tree. In this
way, T, defines a bijection T, : {0,1}" — {0,1,...,2" — 1}, which
we call dense-tree encoding. The lexicographic encoding (i.e.,
standard unsigned binary encoding) and the binary reflected Gray

encoding are two important examples of dense-tree encodings.

In the context of a dense-tree encoding T},, a set X C {0,1}"
defines both the set T}, (X) of integers and a subset of leaves of T;,.
X can be represented by a skeleton tree . The skeleton tree of X is
obtained from 7),, by removing all edges which are not leading to
the leaves of X and turning all full sub-trees into leaves.

interval tree for |] and its skeleton tree

@ m § Chamézbb :

Rysunek 2: The skeleton tree for an interval [z,y], a chain, and a
double-chain.

We say that a skeleton tree S is a chain, if every vertex of S has at
most one non-leaf child. A double-chain is a skeleton tree with at
most one vertex v having two non-leaf children and such that all
ancestors of v have only one child. Examples of a chain and a
double-chain are illustrated in Figure 2. The skeleton tree of any
interval in a dense-tree encoding is either a chain or a double-chain.
A chain is called left chain (resp., right chain) if every right (resp.,
left) child is a unique child or it is a leaf. Intuitively, a left-chain
C'r, defines an range [z,2™ — 1], and a right-chain Cg a range [0, y],
where n is the width of the dense-tree encoding, and

z,y € {0,1,...,2" — 1}. We say that C, and Cg are
complementary chains if the intervals they define overlap, i.e., if
and only if x <y + 1.

Lemma 1

Let the skeleton tree of X C {0,1}™ in a dense-tree encoding T, be

a chain C with k leaves. There exists a unique minimal canonical

TCAM for X, denoted by ChainTCAM, (C), with k rules, which
can be computed in time O(kn).

Let C,, CRr be left and right chains, respectively. Denote by
Merge(Cr,Cgr) the interval skeleton tree which results by creating

a new root and connecting C, to the left child and C'r to the right
child of the root .

ALGORITHM LexTCAM(S,n)
1. if S is a chain then return ChainTCAM,, (S);

2. if v = root(S) has one child z and the edge v — z has label a € {0, 1}
then return a - LexTCAM(S.a,n — 1), where S.a is the tree rooted at z;

3. k := number of grandchildren of the root;
let L, R be the leftmost and rightmost grandchildren of v, and Cr, Cr the left
and the right chains rooted in L and R, respectively;

if k = 2 then return 01 - ChainTCAM,,_2(Cr) + 10 - ChainTCAM,,—2(CRr);
4. 8" := Merge(Cr,Cr); R' := LexTCAM(S',n —1);
Split rules of R’ w.r.t. the first symbol, i.e., R' =0- Ry +1-Rj +*-R.;
if k =3 and L is a right child then
return 01 - R{ + 1x - R 4+ *1 - R, + (10" 2);
if £ =3 and L is a left child then
return 0% - Ry + 10 - R} + x0 - R, + (01x"72);
5. (k=4)R := 0x- Ry + *x1- Ry 4+ #x - RL + (10+™2);
if (Cr,CRr) are complementary then return R else return R + (01" ?);

10

The algorithm consists of 5 parts which correspond to the
treatment of 5 different types of interval skeleton trees described

below

.....

.-
-
.
-

Rysunek 3: Double-chains of types &1,&5,&3, and &4. The double-
chain Cp, left chain (1, and right chain Cr are non-empty. Notice
that in some cases the chains cannot be trivial (i.e., a single node
tree). For example, in &4 both chains C, and Cr are non-trivial.

11

5 different types of interval skeleton trees
&0 — Chains;
&1 — Double-chains whose roots have only one child;

&5 — Double-chains whose roots have two children and two

grandchildren;
¢3 — Double-chains whose roots have three grandchildren;

¢4 — Double-chains whose roots have four grandchildren.

12

Theorem 1 The algorithm LexTCAM computes in time O(n + K)
a minimal canonical TCAM for an interval in the n-bit

lexicographic encoding, where K is the total size (in bits) of the
generated TCAM.

Good example: an interval I = [19,61] within Lexg encoding.

Lex(010011) = 19 and Lexg(111101) = 61

13

Alternative presentation of algorithm LexT CA M.
Assume o = (ai,as2,...ax),8 = (b1,ba,...bg) are binary strings
of a same length k, denote by [a]2 the number corresponding to «
in binary. Assume p = [a]|s < ¢ = [B]2. The input interval [p, q| is
presented in the form (a, 8). Denote by size(a, 3) the length of the
interval [p, q]. Denote by 1, O the sequence of k ones, and k
zeros, respectively. It is convenient to assume later that we write

0, 1 without indices, the length is implied by the other string in a
corresponding pair. The crucial is the notion of complementary
interval. The pair a < 3 is called complementary iff

size(a, 1) + size(0y, B) > 2°

14

ALGORITHM LexTCAMI1 (c,)

1.
2.

if [a, (] is a chain then return ChainTCAM (a, B);

if @4 = a-a, 8 = a-p for a € {0,1} then return a -
LexTCAM1(d', B');

. if (¢ = 01/, B = 108’ then return

01 - ChainTCAM (o/,1) + 10 - ChainTCAM (0, 5');

. Let o = ajas-a’, 8 = biby - B';

R’ := LexTCAM1(0-<a', 1-8"); Represent R’ as 0R} + 1R} + *xR’;
if ayas = 00, bybs = 10 then return 01-R{ + 11- R} + **R., + 10x.. ;
if ajay = 01, bybs = 11 then return 0x-Rjy + 10- R} + **R., + 01x. . ;

. (Now aias = 00, bibs = 11;) R := 0xR{ + 1R} + *xR. + 10%x - - - *;

if o, B’ are complementary then return R else return R + 0Llxx - - - x;

15

Example Let us consider the same interval as before: [19, 61],
corresponding to the pair (o,) = (010011, 111101). Below there
is a part of the history of the computation (going back from

recursion):

LexTCAM (011, 101) = 011 + 10% ~<f°

LexTCAM(OOll, 1101) = 0O0x11 + *10 * + 10 * * + 01 * % Stepb

LexTCAM (00011, 11101) = 0##11 + ##10% + #10%% + Oxlsx + 10#sx -F*
LexTCAM(010011, 111101) = 01 #11 + #*#1%10% + *110%*
+ O01lx1x%x 4+ 1x«0x%xx 4+ 10 %% % %

16

Unlike for the lexicographic encoding, not every sub-tree of the
reflected Gray dense-tree encoding Gray, is a Gray dense-tree
encoding. However, every pair of sibling sub-trees of the dense tree
representing Gray, are the mirror copies of each other, Gray, and
its mirror copy Gray,, 1 < k < n. Suppose that I = [z,y] is an
interval and y < 2™. We say that I is reciprocal if t =2" — 1 —y. If
I is reciprocal, then there is a w € {0,1}"~! such that

z = Gray, (Ow) and y = Gray,, (lw). (The same holds for Gray,,

where 0 and 1 are interchanged.)

ALGORITHM GrayTCAM(S,n)
1. v:=LCA(2',y); a=1II(u,v);

2. R1:=ChainTCAMn-1(C1); Rz := ChainTCAM,,_|q|—2(C2);
Rs := ChainTCAM,,_|4|-1(C3);

3. if (d1 < d2) return (¥R1 + OaxR3) else return (¥R1 + 0aR3)

17

Rysunek 4: The structure of the skeleton tree S for a non-reciprocal

interval in Gray.

18

Theorem 2 The algorithm GrayTCAM computes in time
O(n+ K) a minimal canonical TCAM for an interval in the n-bit

reflected Gray encoding, where K is the total size (in bits) of the
generated TCAM.

19

Theorem 3 There 1s a dense-tree encoding T, and an interval 1
such that the minimum number of prefiz rules representing I s

2n — 2 and the minimum TCAM size is only n.

Theorem 4

(a) Let T,, be a lexicographic or reflected Gray encoding of length n.
There is an interval I = [x,y] which cannot be represented with less
than max(n,2n —4) TCAM rules.

(b) For each n > 1 there exists a dense-tree encoding T, and an
interval I = |z, y| which needs max(n,2n — 3) TCAM rules.

20

Theorem 5 Let T, be a dense-tree encoding of length n. Every

interval I = |x,y] can be represented by max(n,2n —3) TCAM
rules.

Theorem 6 Let T,, € {Lex,,Gray, } be the lexicographic or the
reflected Gray encoding of length n. Every interval I = [x,y| can be
represented by max(n,2n — 4) TCAM rules.

21

