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Abstract

A new string-matching algorithm working in constant space and linear time is presented. It
is based on a powerful idea of sampling, originally introduced in parallel computations. The al-
gorithm uses a sample S which consists of two positions inside the pattern P. First the positions
of the sample S are tested against the corresponding positions of the text T, then a version of
Knuth-Morris-Pratt algorithm is applied. This gives the simplest known string-matching algo-
rithm which works in constant space and linear time and which does not use any linear order
of the alphabet. A refined version of the algorithm gives the fastest (in the sense of number of
comparisons) known algorithm for string-matching in constant space. It makes (1 +¢)n + O(5%)
symbol comparisons. This improves substantially the result of [3], where a (% + &)n comparisons

constant space algorithm was designed.

1 Introduction

Assume we are given two strings: a pattern P of length m and a text T of length n. The string-
matching problem consists in finding all occurrences of P in T'.

The algorithms solving this problem with linear cost and (simultaneously) constant space are the
most interesting and usually the most sofisticated. By the cost of computations we mean the number
of symbol comparisons between pattern and text symbols. The first algorithm which used constant
amount of additional memory was given by Galil and Seiferas in [15]. Later Crochemore and Perrin
in [10] have shown how to achieve 2n comparisons algorithm preserving small amount of memory.
An alternative algorithm was presented by Gasieniec, Plandowski and Rytter in [16]. The first small
space algorithm which beats the bound of 2n comparisons was presented by Breslauer in [3]. He
designed (% + €)n comparisons, constant space algorithm. In this paper we present constant space
and (1 4+ €)n + O() comparisons algorithm. For constant space algorithms this bound seems to

be tight due to the last results of Breslauer [2]. We introduce also a very simple constant space



algorithm with 2n comparisons called sequential sampling.

All strings considered in the paper are built over a general alphabet ¥ (without any restriction).
Given a word w € ¥*, by w[i] we mean the symbol at the ith position of the word w. Notice that
positions in a word are enumerated from 1. We say that the word w has a period per if and only if
w(i] = w[i + per]| for all positions 1 < ¢ < |w| — per. The shortest period of w is called the period of

w. If the period per < |w|/2, then the word w is called periodic, otherwise w is nonperiodic.

Lemma 1 If the word w has two periods ¢,d and ¢ + d < |w| then w has also a period gcd(c,d),

where gcd stands for the greatest common divisor.
Denote by w~ the word w without its last symbol, then Lemma 1 implies:

Fact 2 Given periodic word w with the period per, let v be the prefix of w of size per.

Then the word vv~ is nonperiodic.

The main novel idea behind our algorithm is a use of a two-point sample S of the pattern P. The

samples were extensively used in parallel computations, see [19]. Here the sample is used in a

sequential setting, another application of sample in sequential computations appears in [8]. Assume

that a nonperiodic pattern P has a periodic prefix. Denote by 7« the longest periodic prefix of P.

Let ¢ — 1 be the length of 7, let per be the size of the shortest period of m and let p = g — per. Define

the set S ={ p,q } as the sample S of the prefix P[l..q]. Introduce the predicate:
MatchSample(i,S) = (T[i + p] = P[p] and T'[i + ¢] = P[q])

Observation
The positions p, g are the first (from the left) witnesses against the period per of .

If MatchSample(i,S) then no occurrence of the pattern starts at any position of T in [i+2...1+p].

The observation implies that if the pattern matches the text at the positions of the sample, then
the next safe shift is at least p. For example if P = aaaaaaab then S = {7,8}. In this case if
MatchSample(i, S) then the next shift is at least 7.

Our algorithm is also based on Knuth Morris Pratt (KMP in short) algorithm, see [17].

ALGORITHM KMP;

1:= 0; j:=0;

while s <n —m do

begin
jr=max{k : Tli+j+1...i+k=Pj+1...k]or k=0}
if 7 = m then report match at 7 + 1;
i:= 1+ max(1,j — FT[j]);
j = FT[jl;

end

The KMP algorithm makes ezact shifts, using the failure table FT, we refer to [12] and [17] for the



definition of the failure table. We shall make approximate shifts and use a partial failure table.

2 A simple algorithm performing 2n comparisons: sequential sam-

pling

Recall that we call the word w periodic if it has a period per < %|w| We consider first the case when

none of the prefixes of P is periodic. For this case we have a very simple algorithm for text-searching.

ALGORITHM Simple_Text_Searching;

{ none of the prefixes is periodic }

1:= 0;

while : <n —m do

begin
jgr=max{k : T[i+1...i+k]=P[l...k] or k=0};
if j = m then report match at 7 4+ 1;
Q=i+ [

end

During every stage (iteration of outer while loop) of the algorithm Simple_Text_Searching the
total work (number of comparisons) is equal to j + 1. Since every prefix is nonperiodic we can make

shift of size f%] Notice that Zf%] > 7+ 1 and we get the algorithm which performs at most 2n

comparisons.
The second case is when P is nonperiodic and there is a periodic prefix of P.

ALGORITHM SequentialSampling;
{the case when P is nonperiodic and has a sample S = {p, ¢} }
1:= 0;
while : <n —m do
begin
{ first test positions of the sample {p, q} in P}
if not MatchSample(i,S) then i : =i+ 1 else
begin
jgr=max{k : T[i+1...i+k]=P[l...k] or k= 0};
if 5 = m then report match at 7 + 1;
if j <¢—1theni:=i+p elsei:=i+ [L];

end

Remark We assume that when we compute j := max{k : T[i+1...i+ k| =P[l...k] or k =0}
then the positions T'[i + p] and T[i + ¢] are not tested, since we have already tested them when



computing MatchSample(i, S) .

In this case the algorithm starts with the test if pattern symbols associated with positions of the
sample S are the same as corresponding symbols in the text. Then we try to match full occurence of
prefix P[1..q] without inspecting P[p] and Plq| for the second time. In case a mismatch is found we
make shift of size p. Otherwise we start to match longer nonperiodic prefixes and use the approach

from the previous algorithm.

We give the name sequential sampling to the whole algorithm consisting of subalgorithms for
three cases:
(A) the simple case, when the algorithm Simple_Text_Searching is applied;
(B) the (main) case of nonperiodic pattern having a sample, when the algorithm SequentialSampling
is applied;
(C) the case of periodic patterns, which is reduced to one of the cases (A) or (B) in the proof of the

theorem below.

Theorem 3 The algorithm sequential sampling performs at most 2n symbol comparisons and uses

a constant additional space.

Proof:

We prove the theorem in three stages:

A: P is nonperiodic and all its prefixes are nonperiodic (the algorithm Simple_Text_searching is

applied)

The text searching is done as follows inductively. Assume that we start to recognize an occurence
of the pattern P at position ¢ in text T. We compare, one by one, pattern and text symbols. Assume
that first j comparisons were positive (i.e. P[l..j] = T[i..i + j — 1]) and (j + 1)th one was negative
(P[j + 1] # T[i + j]). In that case we can make shift of length s = [%], since prefix P[1..7] is

nonperiodic. The work of j + 1 comparisons is amortized by shift s, since 2-s > 5 + 1.

B: P is nonperiodic and P[1..q — 1] is the longest periodic prefix of P (the algorithm SequentialSam-
pling is applied).

Let per be the period of P[1...q—1]. We have that P[k] = P[k+per] forall1 < k < g—per —1.
Since prefix P[1..q] is nonperiodic we know that P[q — per] # P|q]. Let p = ¢ — per and recall that
the pair § = (PIp], P[q]) is the sample of P. Negative tests are amortized by immediate shifts, i.e.
two comparisons are amortized by shift of length one. In case of positive match of the sample S, we
start to test the full match of P[l..q], omitting recognized earlier symbols of the sample. Symbols
from S don’t belong to period of the prefix P[l..q — 1], so if a mismatch between text and prefix is
found we can make shift of length s = p. Hence the total work is not greater than ¢ — 1 and p > q%l
(prefix P[l..q — 1] is periodic) so ¢ < 2 - s and we get proper amortization. In case the whole prefix

P[1..q] was matched all longer prefixes are nonperiodic and we come to case A.

C: Pattern P is periodic with a period per.



Recall that the pattern P is periodic with the period per iff per < @, ie. P=w

is the prefix of P of length per, k > 2 and v’ is a prefix of v. We know from fact 2 that the prefix

ky' where v

vu~ is nonperiodic. Our algorithm starts with searching for prefix vv~. One of the cases (A) or (B)
is applied. Since the word vv™ is nonperiodic the work to find all its occurrences is amortized by
the shifts according to nonperiodic case parts (A and B). If the word vv~ is found then we start to
match next symbols of the pattern P. In case of any later mismatch the work equals to 2 - per + k,
for some 0 < k < m — 2 - per + 1, but the shift is s = per 4+ k, since matched prefix has the period
per. Also 2-s > 2-per + k so we get proper amortization in this case, too. Note that in the case the
whole pattern is found, the shift equals per and amortize, one to one, comparisons involved in testing
first per symbols of the occurrence of P. Since we can remember pattern prefix of size m — per, all

further comparisons are amortized by one of the shifts explained above. O

3 Partial Algorithm KMP

Let F'T be the failure table of the pattern. The a-part of F'T is the table:

FT[j] for FT[j] > aj

0 FTH<aj M

- |

We say that a table X can be represented in constant space if using a precomputed information of a

constant size we can compute each value of X[j] in constant time, for any index j.

Lemma 4 Assume 0 < o, o < 1 are constants. Then the a-part of the failure table corresponding

to prefixes longer than om can be represented in constant space.

Proof: A technical proof is omitted in this version. O

We introduce the function Partial_KMP which works in the same way as KMP as long as the needed

values of the failure table are avaliable in F'T.

The algorithm is designed as a function. The main point is that we know that when this function
stops the shift in the algorithm KMP would be enough large. The function starts at the position s
of the text assuming the length r prefix of P matches the text and returns the last position of the
begining of the pattern with respect to the text. In the first moment the c-part doest not contain

the true value of the failure table the algorithm stops.

Obviously the algorithm reports correctly all matches that start in the interval [s..s'], where s is

the returned value.

Note, that the algorithm uses the table only for prefixes not shorter than cr.



function Partial_ KMP(c, s, r);
ir=s—1; ji=r; { initlally T[i + 1...i+r] = P[1...7]}
while i <n —m do
beginj :=max{k : Tli+j+1...i+k]=P[j+1...kl or k=0};
if j = m then report match at ;
if j < cr then { the matched prefix is shorter than cr }
return ¢ and STOP
if F'T.[j] = 0 then { shift is at least j —¢j}
return max(i,i + j — ¢j) and STOP
else begin { FT,[j] > cj }
=i+ (j - P
j = FT.[j];
end
end

return ¢;

Lemma 5 Assume the function Partial KMP(c,s,r) returns the value s'. Then it can be modified

to work with (1”—7,0) —r+ O(”%) comparisons for n' = s’ — s.

Proof: The algorithm makes shifts ( j — FT,[j]). Denote by ¢ the number of matches. Since at
the beginning of the algorithm the length r pattern prefix matches the text the number of matched
symbols is ¢ + r. It can be ¢(t 4+ r) matched symbols at the end not amortized by shifts. Thus the
number n’ of matched symbols amortized by shifts is not less than (1 —¢)(t + ), i.e. t > ﬁ —r.
For each mismatch we make a shift. If all shifts are large enough (larger than ' = 2(1 — ¢)r) then
the number of mismatches is C’)(”?’) We have to modify slightly the algorithm if the shift is smaller
than 7’. In this case a prefix of P, of size at least (1 — ¢)r, has a period of size at most %(1 —o)r.
In this moment instead of continuing the algorithm we compute the maximal continuation of such
period in the text. This gives us later the shift which is large enough. Then we resume the algorithm

given above. We omit the details. g

4 Reducing the number of comparisons

In the latter we need to redefine the notion of periodicity. We say that the word w is periodic (or

c-periodic) if it has a period g < c|w|. Observe that each text is 1-periodic.

As previously we search for the pattern P of length m in the text T of length n. The algorithm
which is described in this section depends on two constants 4, ¢ such that 6 > 0, 0 < ¢ < 1. Our

algorithm makes at most (1 +£(d,c))n + O(;;) comparisons and lims_,0,1£(J,c) = 0.

Denote by OnLine one of the known online algorithms for string-matching with small number of



comparisons (i.e. n+ O((n —m)/m)) and O(m) space, e.g. the algorithm from [5]. Such algorithm
finds at the position 7 in a text the first from the left occurrence of a pattern making at most

(i +m)+ (’)(#) comparisons. We shall apply the algorithm OnLine to very short patterns.

Define another constant M to be the least number K such that the algorithm OnLine finds in
a given text the first (from the left) occurrence i of length M pattern with at most (1 + ¢)i+K
comparisons. Note, that if § tends to 0 then M tends to infinity. The pattern (or its prefix) is very
short iff its length does not exceed M.

Denote by PREF (k) the set of the pattern prefixes longer than k. The behavior of our algorithm
depends on the type of the pattern.

Case 1. The pattern is very short (m < M).
Apply algorithm OnLine.

Case 2. One of the prefixes in PREF (M) is c¢-periodic with the period shorter than the shortest
period of the whole pattern.

Let pref be the longest prefix of P with the period per shorter than c|pref| which is not a period
of P. Take the positions p = |pref|+ 1, ¢ = p — per as the sample S. The algorithm in this case is
a modification of the algorithm SequentialSampling. We replace the predicate MatchSample by the
function ModifiedMatchSample(i, S) which works as follows. If P[g — 1] = P|g| then test the position
p of the sample first and then the position ¢, otherwise do it in the reverse order. Return 0 if the
sample occurs and the number of made comparisons otherwise. Since Pq — 1] = P[p — 1] if the first

symbol compared by the function matches a symbol in the text, the next shift is at least 2.

ALGORITHM Economic_SequentialSampling;
{ P is nonperiodic and p, ¢ give the sample S }
.= 1;
while s <n —m do
begin k:=Modified MatchSample(i, S);
1:=1 + k;
if k =0 then begin j:= max{k: P[l.k]=T[i+1.i+k]or k =0}
if j <= ¢ then i:=i+q
else i:=Partia . KMP(1 — ¢,i,7);
end

end

Lemma 6 Assume the pattern satisfies the conditions in Case 2 and S = {p,q} is the sample of
this pattern. Then the (1 — c)-part of the failure table for the prefixes in PREF((1 — ¢)q) may be

represented in constant space.

Proof: The prefixes in PREF(p) are either non c-periodic or c-periodic with the period being
the shortest period sh_per of the pattern. All c-periodic ones are longer than those which are not

c-periodic. The values of the (1 — ¢)-part of the failure table for non c-periodic prefixes equal 0 and



for length k c-periodic prefixes with the period sh_per equal k — sh_per. Hence, having sh_per we
are able to retrieve those values in constant time. On the other hand since p < g+ per < qg+c-p
we have p < (1—30) and, by Lemma, 4, the (1 — ¢)-part of the failure table for the prefixes longer than

(1 — ¢)q and shorter than p can be encoded in constant space. This completes the proof. O

Lemma 7 The algorithm Economic_SequentialSampling makes at most n/c + O(n/M) symbol

comparisons and may be implemented in constant space.

Proof: The fact that the algorithm may be implemented in constant space is a consequence of
Lemma 6. Let shift be the shift of the pattern over the text which is made by execution of the
instructions inside the while-loop. Let comp be the number of symbol comparisons made during
this execution of the instructions. If the sample does not match the text then shift = comp. If
the sample matches the text and j < ¢ then shift = ¢ > comp and again the shift amortizes the
number of comparisons. In the case j > ¢, the function Partial_ KMP is called, and, by Lemma 5,
the number of comparisons in this loop is at most shift/c+ O(shift/j). Since the sum of all shifts
does not exceed n and j > g >M the result follows. O

Case 3. Each prefix in PREF (M) is either not c-periodic or its shortest period is the period of the
pattern.
Denote by OnLine(i, s) the function which starts the algorithm OnLine from the ith position in T’
and finds the first to the left of ¢ occurrence of length s pattern prefix.
ALGORITHM Economic_KMP;

.= 1;

while : <n —m do

begin i:= OnLine(i,M)

i:= Partial_ KMP(1 — c,i,M));
end

The proof of our next lemma is similar to the proof of Lemma 6.

Lemma 8 Assume the pattern satisfies the requirements of Case 3. Then the (1 — ¢)-part of the

failure table for the prefixes longer than (1 — ¢)M may be represented in constant space.

The upper bound for the number of symbol comparisons in Fconomic_. KM P is a consequence of

such upper bounds in algorithms Online and Partial K M P.

Lemma 9 The algorithm Economic.K M P makes at most (max{l + §,1/c})n + O(n/M) symbol

comparisons and may be implemented in constant space.

The theorem below is a direct consequence of Lemmas 7 and 9 and the fact that if § tends to 0 then

M tends to infinity.

Theorem 10
For any € > 0 there is a string-matching algorithm working in constant space with (1 +¢)n + O(7%)

symbol comparisons.



5 Pattern Preprocessing

Our preprocessing does not assume that the alphabet is linearly ordered, as it is done in [3]. We

show the preprocesing only for the case ¢ = %, the extension to the general case 1 > ¢ > 0 is possible.

During the preprocessing we compute the period of P (in the case P is periodic) and the longest
periodic prefix of P (if there is any). The solution uses iterative approach when we process all pattern
prefixes of size 2, for all 1 < i < |logm]. In case the pattern length is not a power of 2, we run

the same algorithm on the pattern extended by some additional dummy symbols. Assume we have

|ma| = 5 !
|| =% pattern P

A
Y

periodic prefix
Figure 1: Looking for the longest periodic prefix

already precomputed pattern prefixes 7y, m such that || = F and |m3| = F. To find the longest
periodic prefix of the pattern P of length greater then % we use the precomputed prefix 7. Note that
the structure of all such prefixes are based on occurences of m; in P, see Figure 1. Those occurences
could be found by our new searching algorithm sequential sampling described before. In case prefix
w1 is nonperiodic it appears in P constant number of times, so all potential periodic prefixes can
be checked naively. In case prefix m is periodic with the period per;, all periodic prefixes can be
recognized with support of all proper length sequences of occurences of the word vyv; in P, where
v1 is the prefix of P of size per;. Notice that the period of P corresponds to some periodic prefix.
So if we use T'(m) to denote the cost of preprocessing of the pattern of length 3 and m we get the

inequality T'(m) < T(%) + O(m) which implies T'(m) < O(m).
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