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Abstra
t

A new string-mat
hing algorithm working in 
onstant spa
e and linear time is presented. It

is based on a powerful idea of sampling, originally introdu
ed in parallel 
omputations. The al-

gorithm uses a sample S whi
h 
onsists of two positions inside the pattern P . First the positions

of the sample S are tested against the 
orresponding positions of the text T , then a version of

Knuth-Morris-Pratt algorithm is applied. This gives the simplest known string-mat
hing algo-

rithm whi
h works in 
onstant spa
e and linear time and whi
h does not use any linear order

of the alphabet. A re�ned version of the algorithm gives the fastest (in the sense of number of


omparisons) known algorithm for string-mat
hing in 
onstant spa
e. It makes (1 + ")n+O(

n

m

)

symbol 
omparisons. This improves substantially the result of [3℄, where a (

3

2

+ ")n 
omparisons


onstant spa
e algorithm was designed.

1 Introdu
tion

Assume we are given two strings: a pattern P of length m and a text T of length n. The string-

mat
hing problem 
onsists in �nding all o

urren
es of P in T .

The algorithms solving this problem with linear 
ost and (simultaneously) 
onstant spa
e are the

most interesting and usually the most so�sti
ated. By the 
ost of 
omputations we mean the number

of symbol 
omparisons between pattern and text symbols. The �rst algorithm whi
h used 
onstant

amount of additional memory was given by Galil and Seiferas in [15℄. Later Cro
hemore and Perrin

in [10℄ have shown how to a
hieve 2n 
omparisons algorithm preserving small amount of memory.

An alternative algorithm was presented by G�asienie
, Plandowski and Rytter in [16℄. The �rst small

spa
e algorithm whi
h beats the bound of 2n 
omparisons was presented by Breslauer in [3℄. He

designed (

3

2

+ ")n 
omparisons, 
onstant spa
e algorithm. In this paper we present 
onstant spa
e

and (1 + ")n + O(

n

m

) 
omparisons algorithm. For 
onstant spa
e algorithms this bound seems to

be tight due to the last results of Breslauer [2℄. We introdu
e also a very simple 
onstant spa
e
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algorithm with 2n 
omparisons 
alled sequential sampling.

All strings 
onsidered in the paper are built over a general alphabet � (without any restri
tion).

Given a word w 2 �

�

, by w[i℄ we mean the symbol at the ith position of the word w. Noti
e that

positions in a word are enumerated from 1. We say that the word w has a period per if and only if

w[i℄ = w[i + per℄ for all positions 1 � i � jwj � per. The shortest period of w is 
alled the period of

w. If the period per � jwj=2, then the word w is 
alled periodi
, otherwise w is nonperiodi
.

Lemma 1 If the word w has two periods 
; d and 
 + d � jwj then w has also a period g
d(
; d),

where g
d stands for the greatest 
ommon divisor.

Denote by w

�

the word w without its last symbol, then Lemma 1 implies:

Fa
t 2 Given periodi
 word w with the period per, let v be the pre�x of w of size per.

Then the word vv

�

is nonperiodi
.

The main novel idea behind our algorithm is a use of a two-point sample S of the pattern P . The

samples were extensively used in parallel 
omputations, see [19℄. Here the sample is used in a

sequential setting, another appli
ation of sample in sequential 
omputations appears in [8℄. Assume

that a nonperiodi
 pattern P has a periodi
 pre�x. Denote by � the longest periodi
 pre�x of P .

Let q�1 be the length of �, let per be the size of the shortest period of � and let p = q�per. De�ne

the set S = f p; q g as the sample S of the pre�x P [1::q℄. Introdu
e the predi
ate:

Mat
hSample(i; S) = (T [i+ p℄ = P [p℄ and T [i+ q℄ = P [q℄)

Observation

The positions p; q are the �rst (from the left) witnesses against the period per of �.

If Mat
hSample(i; S) then no o

urren
e of the pattern starts at any position of T in [i+2 : : : i+p℄.

The observation implies that if the pattern mat
hes the text at the positions of the sample, then

the next safe shift is at least p. For example if P = aaaaaaab then S = f7; 8g. In this 
ase if

Mat
hSample(i; S) then the next shift is at least 7.

Our algorithm is also based on Knuth Morris Pratt (KMP in short) algorithm, see [17℄.

ALGORITHM KMP;

i:= 0; j:=0;

while i � n�m do

begin

j := maxfk : T [i+ j + 1 : : : i+ k℄ = P [j + 1 : : : k℄ or k = 0g;

if j = m then report mat
h at i+ 1;

i:= i+max(1; j � FT [j℄);

j := FT [j℄;

end

The KMP algorithm makes exa
t shifts, using the failure table FT , we refer to [12℄ and [17℄ for the
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de�nition of the failure table. We shall make approximate shifts and use a partial failure table.

2 A simple algorithm performing 2n 
omparisons: sequential sam-

pling

Re
all that we 
all the word w periodi
 if it has a period per �

1

2

jwj. We 
onsider �rst the 
ase when

none of the pre�xes of P is periodi
. For this 
ase we have a very simple algorithm for text-sear
hing.

ALGORITHM Simple Text Sear
hing;

f none of the pre�xes is periodi
 g

i:= 0;

while i � n�m do

begin

j := maxfk : T [i+ 1 : : : i+ k℄ = P [1 : : : k℄ or k = 0g;

if j = m then report mat
h at i+ 1;

i:= i+ d

j+1

2

e;

end

During every stage (iteration of outer while loop) of the algorithm Simple Text Sear
hing the

total work (number of 
omparisons) is equal to j +1. Sin
e every pre�x is nonperiodi
 we 
an make

shift of size d

j+1

2

e. Noti
e that 2d

j+1

2

e � j + 1 and we get the algorithm whi
h performs at most 2n


omparisons.

The se
ond 
ase is when P is nonperiodi
 and there is a periodi
 pre�x of P .

ALGORITHM SequentialSampling;

fthe 
ase when P is nonperiodi
 and has a sample S = fp; qg g

i:= 0;

while i � n�m do

begin

f �rst test positions of the sample fp, qg in Pg

if not Mat
hSample(i; S) then i := i+ 1 else

begin

j := maxfk : T [i+ 1 : : : i+ k℄ = P [1 : : : k℄ or k = 0g;

if j = m then report mat
h at i+ 1;

if j < q � 1 then i:= i+ p else i:= i+ d

j+1

2

e;

end

Remark We assume that when we 
ompute j := maxfk : T [i+ 1 : : : i + k℄ = P [1 : : : k℄ or k = 0g

then the positions T [i + p℄ and T [i + q℄ are not tested, sin
e we have already tested them when
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omputing Mat
hSample(i; S) .

In this 
ase the algorithm starts with the test if pattern symbols asso
iated with positions of the

sample S are the same as 
orresponding symbols in the text. Then we try to mat
h full o

uren
e of

pre�x P [1::q℄ without inspe
ting P [p℄ and P [q℄ for the se
ond time. In 
ase a mismat
h is found we

make shift of size p. Otherwise we start to mat
h longer nonperiodi
 pre�xes and use the approa
h

from the previous algorithm.

We give the name sequential sampling to the whole algorithm 
onsisting of subalgorithms for

three 
ases:

(A) the simple 
ase, when the algorithm Simple Text Sear
hing is applied;

(B) the (main) 
ase of nonperiodi
 pattern having a sample, when the algorithm SequentialSampling

is applied;

(C) the 
ase of periodi
 patterns, whi
h is redu
ed to one of the 
ases (A) or (B) in the proof of the

theorem below.

Theorem 3 The algorithm sequential sampling performs at most 2n symbol 
omparisons and uses

a 
onstant additional spa
e.

Proof:

We prove the theorem in three stages:

A: P is nonperiodi
 and all its pre�xes are nonperiodi
 (the algorithm Simple Text sear
hing is

applied)

The text sear
hing is done as follows indu
tively. Assume that we start to re
ognize an o

uren
e

of the pattern P at position i in text T . We 
ompare, one by one, pattern and text symbols. Assume

that �rst j 
omparisons were positive (i.e. P [1::j℄ = T [i::i + j � 1℄) and (j + 1)th one was negative

(P [j + 1℄ 6= T [i + j℄). In that 
ase we 
an make shift of length s = d

j+1

2

e, sin
e pre�x P [1::j℄ is

nonperiodi
. The work of j + 1 
omparisons is amortized by shift s, sin
e 2 � s � j + 1.

B: P is nonperiodi
 and P [1::q� 1℄ is the longest periodi
 pre�x of P (the algorithm SequentialSam-

pling is applied).

Let per be the period of P [1 : : : q�1℄. We have that P [k℄ = P [k+per℄ for all 1 � k � q�per�1.

Sin
e pre�x P [1::q℄ is nonperiodi
 we know that P [q � per℄ 6= P [q℄. Let p = q � per and re
all that

the pair S = (P [p℄; P [q℄) is the sample of P . Negative tests are amortized by immediate shifts, i.e.

two 
omparisons are amortized by shift of length one. In 
ase of positive mat
h of the sample S, we

start to test the full mat
h of P [1::q℄, omitting re
ognized earlier symbols of the sample. Symbols

from S don't belong to period of the pre�x P [1::q � 1℄, so if a mismat
h between text and pre�x is

found we 
an make shift of length s = p. Hen
e the total work is not greater than q� 1 and p �

q�1

2

(pre�x P [1::q � 1℄ is periodi
) so q � 2 � s and we get proper amortization. In 
ase the whole pre�x

P [1::q℄ was mat
hed all longer pre�xes are nonperiodi
 and we 
ome to 
ase A.

C: Pattern P is periodi
 with a period per.
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Re
all that the pattern P is periodi
 with the period per i� per �

jP j

2

, i.e. P = v

k

v

0

where v

is the pre�x of P of length per, k � 2 and v

0

is a pre�x of v. We know from fa
t 2 that the pre�x

vv

�

is nonperiodi
. Our algorithm starts with sear
hing for pre�x vv

�

. One of the 
ases (A) or (B)

is applied. Sin
e the word vv

�

is nonperiodi
 the work to �nd all its o

urren
es is amortized by

the shifts a

ording to nonperiodi
 
ase parts (A and B). If the word vv

�

is found then we start to

mat
h next symbols of the pattern P . In 
ase of any later mismat
h the work equals to 2 � per + k,

for some 0 � k � m � 2 � per + 1, but the shift is s = per + k, sin
e mat
hed pre�x has the period

per. Also 2 � s � 2 � per+ k so we get proper amortization in this 
ase, too. Note that in the 
ase the

whole pattern is found, the shift equals per and amortize, one to one, 
omparisons involved in testing

�rst per symbols of the o

urren
e of P . Sin
e we 
an remember pattern pre�x of size m� per, all

further 
omparisons are amortized by one of the shifts explained above. 2

3 Partial Algorithm KMP

Let FT be the failure table of the pattern. The �-part of FT is the table:

FT

�

[j℄ =

(

FT [j℄ for FT [j℄ > �j

0 FT [j℄ � �j

(1)

We say that a table X 
an be represented in 
onstant spa
e if using a pre
omputed information of a


onstant size we 
an 
ompute ea
h value of X[j℄ in 
onstant time, for any index j.

Lemma 4 Assume 0 < �; � < 1 are 
onstants. Then the �-part of the failure table 
orresponding

to pre�xes longer than �m 
an be represented in 
onstant spa
e.

Proof: A te
hni
al proof is omitted in this version. 2

We introdu
e the fun
tion Partial KMP whi
h works in the same way as KMP as long as the needed

values of the failure table are avaliable in FT




.

The algorithm is designed as a fun
tion. The main point is that we know that when this fun
tion

stops the shift in the algorithm KMP would be enough large. The fun
tion starts at the position s

of the text assuming the length r pre�x of P mat
hes the text and returns the last position of the

begining of the pattern with respe
t to the text. In the �rst moment the 
-part doest not 
ontain

the true value of the failure table the algorithm stops.

Obviously the algorithm reports 
orre
tly all mat
hes that start in the interval [s..s

0

℄, where s

0

is

the returned value.

Note, that the algorithm uses the table only for pre�xes not shorter than 
r.
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fun
tion Partial KMP(
, s, r);

i:= s� 1; j:=r; f initially T [i+ 1 : : : i+ r℄ = P [1 : : : r℄g

while i � n�m do

begin j := maxfk : T [i+ j + 1 : : : i+ k℄ = P [j + 1 : : : k℄ or k = 0g;

if j =m then report mat
h at i;

if j � 
r then f the mat
hed pre�x is shorter than 
r g

return i and STOP

if FT




[j℄ = 0 then f shift is at least j � 
jg

return max(i; i + j � 
j) and STOP

else begin f FT




[j℄ > 
j g

i:= i+ ( j � FT




[j℄);

j := FT




[j℄;

end

end

return i;

Lemma 5 Assume the fun
tion Partial KMP(
,s,r) returns the value s

0

. Then it 
an be modi�ed

to work with

n

0

(1�
)

� r +O(

n

0

r

) 
omparisons for n

0

= s

0

� s.

Proof: The algorithm makes shifts ( j � FT




[j℄). Denote by t the number of mat
hes. Sin
e at

the beginning of the algorithm the length r pattern pre�x mat
hes the text the number of mat
hed

symbols is t+ r. It 
an be 
(t + r) mat
hed symbols at the end not amortized by shifts. Thus the

number n

0

of mat
hed symbols amortized by shifts is not less than (1� 
)(t+ r), i.e. t �

n

0

(1�
)

� r.

For ea
h mismat
h we make a shift. If all shifts are large enough (larger than r

0

=

1

2

(1 � 
)r) then

the number of mismat
hes is O(

n

0

r

). We have to modify slightly the algorithm if the shift is smaller

than r

0

. In this 
ase a pre�x of P , of size at least (1 � 
)r, has a period of size at most

1

2

(1 � 
)r.

In this moment instead of 
ontinuing the algorithm we 
ompute the maximal 
ontinuation of su
h

period in the text. This gives us later the shift whi
h is large enough. Then we resume the algorithm

given above. We omit the details. 2

4 Redu
ing the number of 
omparisons

In the latter we need to rede�ne the notion of periodi
ity. We say that the word w is periodi
 (or


-periodi
) if it has a period q � 
jwj. Observe that ea
h text is 1-periodi
.

As previously we sear
h for the pattern P of length m in the text T of length n. The algorithm

whi
h is des
ribed in this se
tion depends on two 
onstants Æ, 
 su
h that Æ > 0, 0 < 
 < 1. Our

algorithm makes at most (1 + "(Æ; 
))n +O(

n

m

) 
omparisons and lim

Æ!0;
!1

"(Æ; 
) = 0.

Denote by OnLine one of the known online algorithms for string-mat
hing with small number of
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omparisons (i.e. n+O((n�m)=m)) and O(m) spa
e, e.g. the algorithm from [5℄. Su
h algorithm

�nds at the position i in a text the �rst from the left o

urren
e of a pattern making at most

(i+m) +O(

i

m

) 
omparisons. We shall apply the algorithm OnLine to very short patterns.

De�ne another 
onstant m to be the least number k su
h that the algorithm OnLine �nds in

a given text the �rst (from the left) o

urren
e i of length m pattern with at most (1 + Æ)i+k


omparisons. Note, that if Æ tends to 0 then m tends to in�nity. The pattern (or its pre�x) is very

short i� its length does not ex
eed m.

Denote by PREF (k) the set of the pattern pre�xes longer than k. The behavior of our algorithm

depends on the type of the pattern.

Case 1. The pattern is very short (m � m).

Apply algorithm OnLine.

Case 2. One of the pre�xes in PREF (m) is 
-periodi
 with the period shorter than the shortest

period of the whole pattern.

Let pref be the longest pre�x of P with the period per shorter than 
jpref j whi
h is not a period

of P . Take the positions p = jpref j+ 1, q = p� per as the sample S. The algorithm in this 
ase is

a modi�
ation of the algorithm SequentialSampling. We repla
e the predi
ate Mat
hSample by the

fun
tion Modi�edMat
hSample(i; S) whi
h works as follows. If P [q� 1℄ = P [q℄ then test the position

p of the sample �rst and then the position q, otherwise do it in the reverse order. Return 0 if the

sample o

urs and the number of made 
omparisons otherwise. Sin
e P [q� 1℄ = P [p� 1℄ if the �rst

symbol 
ompared by the fun
tion mat
hes a symbol in the text, the next shift is at least 2.

ALGORITHM E
onomi
 SequentialSampling;

f P is nonperiodi
 and p, q give the sample S g

i:= 1;

while i � n�m do

begin k:=Modi�edMat
hSample(i; S);

i:=i+ k;

if k = 0 then begin j:= maxfk : P [1::k℄ = T [i+ 1::i + k℄ or k = 0g;

if j <= q then i:=i+q

else i:=Partial KMP(1� 
; i; j);

end

end

Lemma 6 Assume the pattern satis�es the 
onditions in Case 2 and S = fp; qg is the sample of

this pattern. Then the (1 � 
)-part of the failure table for the pre�xes in PREF ((1 � 
)q) may be

represented in 
onstant spa
e.

Proof: The pre�xes in PREF (p) are either non 
-periodi
 or 
-periodi
 with the period being

the shortest period sh per of the pattern. All 
-periodi
 ones are longer than those whi
h are not


-periodi
. The values of the (1� 
)-part of the failure table for non 
-periodi
 pre�xes equal 0 and
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for length k 
-periodi
 pre�xes with the period sh per equal k � sh per. Hen
e, having sh per we

are able to retrieve those values in 
onstant time. On the other hand sin
e p < q + per � q + 
 � p

we have p <

q

(1�
)

and, by Lemma 4, the (1� 
)-part of the failure table for the pre�xes longer than

(1� 
)q and shorter than p 
an be en
oded in 
onstant spa
e. This 
ompletes the proof. 2

Lemma 7 The algorithm E
onomi
 SequentialSampling makes at most n=
 + O(n=m) symbol


omparisons and may be implemented in 
onstant spa
e.

Proof: The fa
t that the algorithm may be implemented in 
onstant spa
e is a 
onsequen
e of

Lemma 6. Let shift be the shift of the pattern over the text whi
h is made by exe
ution of the

instru
tions inside the while-loop. Let 
omp be the number of symbol 
omparisons made during

this exe
ution of the instru
tions. If the sample does not mat
h the text then shift = 
omp. If

the sample mat
hes the text and j � q then shift = q � 
omp and again the shift amortizes the

number of 
omparisons. In the 
ase j > q, the fun
tion Partial KMP is 
alled, and, by Lemma 5,

the number of 
omparisons in this loop is at most shift=
+O(shift=j). Sin
e the sum of all shifts

does not ex
eed n and j > q >m the result follows. 2

Case 3. Ea
h pre�x in PREF (m) is either not 
-periodi
 or its shortest period is the period of the

pattern.

Denote by OnLine(i; s) the fun
tion whi
h starts the algorithm OnLine from the ith position in T

and �nds the �rst to the left of i o

urren
e of length s pattern pre�x.

ALGORITHM E
onomi
 KMP;

i:= 1;

while i � n�m do

begin i:= OnLine(i;m)

i:= Partial KMP (1� 
; i;m));

end

The proof of our next lemma is similar to the proof of Lemma 6.

Lemma 8 Assume the pattern satis�es the requirements of Case 3. Then the (1 � 
)-part of the

failure table for the pre�xes longer than (1� 
)m may be represented in 
onstant spa
e.

The upper bound for the number of symbol 
omparisons in E
onomi
 KMP is a 
onsequen
e of

su
h upper bounds in algorithms Online and Partial KMP .

Lemma 9 The algorithm E
onomi
 KMP makes at most (maxf1 + Æ; 1=
g)n + O(n=m) symbol


omparisons and may be implemented in 
onstant spa
e.

The theorem below is a dire
t 
onsequen
e of Lemmas 7 and 9 and the fa
t that if Æ tends to 0 then

m tends to in�nity.

Theorem 10

For any " > 0 there is a string-mat
hing algorithm working in 
onstant spa
e with (1 + ")n+O(

n

m

)

symbol 
omparisons.
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5 Pattern Prepro
essing

Our prepro
essing does not assume that the alphabet is linearly ordered, as it is done in [3℄. We

show the prepro
esing only for the 
ase 
 =

1

2

, the extension to the general 
ase 1 > 
 > 0 is possible.

During the prepro
essing we 
ompute the period of P (in the 
ase P is periodi
) and the longest

periodi
 pre�x of P (if there is any). The solution uses iterative approa
h when we pro
ess all pattern

pre�xes of size 2

i

, for all 1 � i � blogm
. In 
ase the pattern length is not a power of 2, we run

the same algorithm on the pattern extended by some additional dummy symbols. Assume we have

.

.

.

.

.

.

.

.

�
-

pattern P

periodi
 pre�x

j�

1

j =

m

4

�
-

j�

2

j =

m

2

Figure 1: Looking for the longest periodi
 pre�x

already pre
omputed pattern pre�xes �

1

; �

2

su
h that j�

1

j =

m

4

and j�

2

j =

m

2

. To �nd the longest

periodi
 pre�x of the pattern P of length greater then

m

2

we use the pre
omputed pre�x �

1

. Note that

the stru
ture of all su
h pre�xes are based on o

uren
es of �

1

in P , see Figure 1. Those o

uren
es


ould be found by our new sear
hing algorithm sequential sampling des
ribed before. In 
ase pre�x

�

1

is nonperiodi
 it appears in P 
onstant number of times, so all potential periodi
 pre�xes 
an

be 
he
ked naively. In 
ase pre�x �

1

is periodi
 with the period per

1

, all periodi
 pre�xes 
an be

re
ognized with support of all proper length sequen
es of o

uren
es of the word v

1

v

�

1

in P , where

v

1

is the pre�x of P of size per

1

. Noti
e that the period of P 
orresponds to some periodi
 pre�x.

So if we use T (m) to denote the 
ost of prepro
essing of the pattern of length

m

2

and m we get the

inequality T (m) � T (

m

2

) +O(m) whi
h implies T (m) � O(m).
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