
Constant-spae string mathing with smaller

number of omparisons: sequential sampling.

Leszek G�asienie Wojieh Plandowski Wojieh Rytter

Instytut Informatki, Uniwersytet Warszawski, Warszawa,

flehu,wojtekpl,rytterg�mimuw.edu.pl

Abstrat

A new string-mathing algorithm working in onstant spae and linear time is presented. It

is based on a powerful idea of sampling, originally introdued in parallel omputations. The al-

gorithm uses a sample S whih onsists of two positions inside the pattern P . First the positions

of the sample S are tested against the orresponding positions of the text T , then a version of

Knuth-Morris-Pratt algorithm is applied. This gives the simplest known string-mathing algo-

rithm whih works in onstant spae and linear time and whih does not use any linear order

of the alphabet. A re�ned version of the algorithm gives the fastest (in the sense of number of

omparisons) known algorithm for string-mathing in onstant spae. It makes (1 + ")n+O(

n

m

)

symbol omparisons. This improves substantially the result of [3℄, where a (

3

2

+ ")n omparisons

onstant spae algorithm was designed.

1 Introdution

Assume we are given two strings: a pattern P of length m and a text T of length n. The string-

mathing problem onsists in �nding all ourrenes of P in T .

The algorithms solving this problem with linear ost and (simultaneously) onstant spae are the

most interesting and usually the most so�stiated. By the ost of omputations we mean the number

of symbol omparisons between pattern and text symbols. The �rst algorithm whih used onstant

amount of additional memory was given by Galil and Seiferas in [15℄. Later Crohemore and Perrin

in [10℄ have shown how to ahieve 2n omparisons algorithm preserving small amount of memory.

An alternative algorithm was presented by G�asienie, Plandowski and Rytter in [16℄. The �rst small

spae algorithm whih beats the bound of 2n omparisons was presented by Breslauer in [3℄. He

designed (

3

2

+ ")n omparisons, onstant spae algorithm. In this paper we present onstant spae

and (1 + ")n + O(

n

m

) omparisons algorithm. For onstant spae algorithms this bound seems to

be tight due to the last results of Breslauer [2℄. We introdue also a very simple onstant spae

1

algorithm with 2n omparisons alled sequential sampling.

All strings onsidered in the paper are built over a general alphabet � (without any restrition).

Given a word w 2 �

�

, by w[i℄ we mean the symbol at the ith position of the word w. Notie that

positions in a word are enumerated from 1. We say that the word w has a period per if and only if

w[i℄ = w[i + per℄ for all positions 1 � i � jwj � per. The shortest period of w is alled the period of

w. If the period per � jwj=2, then the word w is alled periodi, otherwise w is nonperiodi.

Lemma 1 If the word w has two periods ; d and + d � jwj then w has also a period gd(; d),

where gd stands for the greatest ommon divisor.

Denote by w

�

the word w without its last symbol, then Lemma 1 implies:

Fat 2 Given periodi word w with the period per, let v be the pre�x of w of size per.

Then the word vv

�

is nonperiodi.

The main novel idea behind our algorithm is a use of a two-point sample S of the pattern P . The

samples were extensively used in parallel omputations, see [19℄. Here the sample is used in a

sequential setting, another appliation of sample in sequential omputations appears in [8℄. Assume

that a nonperiodi pattern P has a periodi pre�x. Denote by � the longest periodi pre�x of P .

Let q�1 be the length of �, let per be the size of the shortest period of � and let p = q�per. De�ne

the set S = f p; q g as the sample S of the pre�x P [1::q℄. Introdue the prediate:

MathSample(i; S) = (T [i+ p℄ = P [p℄ and T [i+ q℄ = P [q℄)

Observation

The positions p; q are the �rst (from the left) witnesses against the period per of �.

If MathSample(i; S) then no ourrene of the pattern starts at any position of T in [i+2 : : : i+p℄.

The observation implies that if the pattern mathes the text at the positions of the sample, then

the next safe shift is at least p. For example if P = aaaaaaab then S = f7; 8g. In this ase if

MathSample(i; S) then the next shift is at least 7.

Our algorithm is also based on Knuth Morris Pratt (KMP in short) algorithm, see [17℄.

ALGORITHM KMP;

i:= 0; j:=0;

while i � n�m do

begin

j := maxfk : T [i+ j + 1 : : : i+ k℄ = P [j + 1 : : : k℄ or k = 0g;

if j = m then report math at i+ 1;

i:= i+max(1; j � FT [j℄);

j := FT [j℄;

end

The KMP algorithm makes exat shifts, using the failure table FT , we refer to [12℄ and [17℄ for the

2

de�nition of the failure table. We shall make approximate shifts and use a partial failure table.

2 A simple algorithm performing 2n omparisons: sequential sam-

pling

Reall that we all the word w periodi if it has a period per �

1

2

jwj. We onsider �rst the ase when

none of the pre�xes of P is periodi. For this ase we have a very simple algorithm for text-searhing.

ALGORITHM Simple Text Searhing;

f none of the pre�xes is periodi g

i:= 0;

while i � n�m do

begin

j := maxfk : T [i+ 1 : : : i+ k℄ = P [1 : : : k℄ or k = 0g;

if j = m then report math at i+ 1;

i:= i+ d

j+1

2

e;

end

During every stage (iteration of outer while loop) of the algorithm Simple Text Searhing the

total work (number of omparisons) is equal to j +1. Sine every pre�x is nonperiodi we an make

shift of size d

j+1

2

e. Notie that 2d

j+1

2

e � j + 1 and we get the algorithm whih performs at most 2n

omparisons.

The seond ase is when P is nonperiodi and there is a periodi pre�x of P .

ALGORITHM SequentialSampling;

fthe ase when P is nonperiodi and has a sample S = fp; qg g

i:= 0;

while i � n�m do

begin

f �rst test positions of the sample fp, qg in Pg

if not MathSample(i; S) then i := i+ 1 else

begin

j := maxfk : T [i+ 1 : : : i+ k℄ = P [1 : : : k℄ or k = 0g;

if j = m then report math at i+ 1;

if j < q � 1 then i:= i+ p else i:= i+ d

j+1

2

e;

end

Remark We assume that when we ompute j := maxfk : T [i+ 1 : : : i + k℄ = P [1 : : : k℄ or k = 0g

then the positions T [i + p℄ and T [i + q℄ are not tested, sine we have already tested them when

3

omputing MathSample(i; S) .

In this ase the algorithm starts with the test if pattern symbols assoiated with positions of the

sample S are the same as orresponding symbols in the text. Then we try to math full ourene of

pre�x P [1::q℄ without inspeting P [p℄ and P [q℄ for the seond time. In ase a mismath is found we

make shift of size p. Otherwise we start to math longer nonperiodi pre�xes and use the approah

from the previous algorithm.

We give the name sequential sampling to the whole algorithm onsisting of subalgorithms for

three ases:

(A) the simple ase, when the algorithm Simple Text Searhing is applied;

(B) the (main) ase of nonperiodi pattern having a sample, when the algorithm SequentialSampling

is applied;

(C) the ase of periodi patterns, whih is redued to one of the ases (A) or (B) in the proof of the

theorem below.

Theorem 3 The algorithm sequential sampling performs at most 2n symbol omparisons and uses

a onstant additional spae.

Proof:

We prove the theorem in three stages:

A: P is nonperiodi and all its pre�xes are nonperiodi (the algorithm Simple Text searhing is

applied)

The text searhing is done as follows indutively. Assume that we start to reognize an ourene

of the pattern P at position i in text T . We ompare, one by one, pattern and text symbols. Assume

that �rst j omparisons were positive (i.e. P [1::j℄ = T [i::i + j � 1℄) and (j + 1)th one was negative

(P [j + 1℄ 6= T [i + j℄). In that ase we an make shift of length s = d

j+1

2

e, sine pre�x P [1::j℄ is

nonperiodi. The work of j + 1 omparisons is amortized by shift s, sine 2 � s � j + 1.

B: P is nonperiodi and P [1::q� 1℄ is the longest periodi pre�x of P (the algorithm SequentialSam-

pling is applied).

Let per be the period of P [1 : : : q�1℄. We have that P [k℄ = P [k+per℄ for all 1 � k � q�per�1.

Sine pre�x P [1::q℄ is nonperiodi we know that P [q � per℄ 6= P [q℄. Let p = q � per and reall that

the pair S = (P [p℄; P [q℄) is the sample of P . Negative tests are amortized by immediate shifts, i.e.

two omparisons are amortized by shift of length one. In ase of positive math of the sample S, we

start to test the full math of P [1::q℄, omitting reognized earlier symbols of the sample. Symbols

from S don't belong to period of the pre�x P [1::q � 1℄, so if a mismath between text and pre�x is

found we an make shift of length s = p. Hene the total work is not greater than q� 1 and p �

q�1

2

(pre�x P [1::q � 1℄ is periodi) so q � 2 � s and we get proper amortization. In ase the whole pre�x

P [1::q℄ was mathed all longer pre�xes are nonperiodi and we ome to ase A.

C: Pattern P is periodi with a period per.

4

Reall that the pattern P is periodi with the period per i� per �

jP j

2

, i.e. P = v

k

v

0

where v

is the pre�x of P of length per, k � 2 and v

0

is a pre�x of v. We know from fat 2 that the pre�x

vv

�

is nonperiodi. Our algorithm starts with searhing for pre�x vv

�

. One of the ases (A) or (B)

is applied. Sine the word vv

�

is nonperiodi the work to �nd all its ourrenes is amortized by

the shifts aording to nonperiodi ase parts (A and B). If the word vv

�

is found then we start to

math next symbols of the pattern P . In ase of any later mismath the work equals to 2 � per + k,

for some 0 � k � m � 2 � per + 1, but the shift is s = per + k, sine mathed pre�x has the period

per. Also 2 � s � 2 � per+ k so we get proper amortization in this ase, too. Note that in the ase the

whole pattern is found, the shift equals per and amortize, one to one, omparisons involved in testing

�rst per symbols of the ourrene of P . Sine we an remember pattern pre�x of size m� per, all

further omparisons are amortized by one of the shifts explained above. 2

3 Partial Algorithm KMP

Let FT be the failure table of the pattern. The �-part of FT is the table:

FT

�

[j℄ =

(

FT [j℄ for FT [j℄ > �j

0 FT [j℄ � �j

(1)

We say that a table X an be represented in onstant spae if using a preomputed information of a

onstant size we an ompute eah value of X[j℄ in onstant time, for any index j.

Lemma 4 Assume 0 < �; � < 1 are onstants. Then the �-part of the failure table orresponding

to pre�xes longer than �m an be represented in onstant spae.

Proof: A tehnial proof is omitted in this version. 2

We introdue the funtion Partial KMP whih works in the same way as KMP as long as the needed

values of the failure table are avaliable in FT

.

The algorithm is designed as a funtion. The main point is that we know that when this funtion

stops the shift in the algorithm KMP would be enough large. The funtion starts at the position s

of the text assuming the length r pre�x of P mathes the text and returns the last position of the

begining of the pattern with respet to the text. In the �rst moment the -part doest not ontain

the true value of the failure table the algorithm stops.

Obviously the algorithm reports orretly all mathes that start in the interval [s..s

0

℄, where s

0

is

the returned value.

Note, that the algorithm uses the table only for pre�xes not shorter than r.

5

funtion Partial KMP(, s, r);

i:= s� 1; j:=r; f initially T [i+ 1 : : : i+ r℄ = P [1 : : : r℄g

while i � n�m do

begin j := maxfk : T [i+ j + 1 : : : i+ k℄ = P [j + 1 : : : k℄ or k = 0g;

if j =m then report math at i;

if j � r then f the mathed pre�x is shorter than r g

return i and STOP

if FT

[j℄ = 0 then f shift is at least j � jg

return max(i; i + j � j) and STOP

else begin f FT

[j℄ > j g

i:= i+ (j � FT

[j℄);

j := FT

[j℄;

end

end

return i;

Lemma 5 Assume the funtion Partial KMP(,s,r) returns the value s

0

. Then it an be modi�ed

to work with

n

0

(1�)

� r +O(

n

0

r

) omparisons for n

0

= s

0

� s.

Proof: The algorithm makes shifts (j � FT

[j℄). Denote by t the number of mathes. Sine at

the beginning of the algorithm the length r pattern pre�x mathes the text the number of mathed

symbols is t+ r. It an be (t + r) mathed symbols at the end not amortized by shifts. Thus the

number n

0

of mathed symbols amortized by shifts is not less than (1�)(t+ r), i.e. t �

n

0

(1�)

� r.

For eah mismath we make a shift. If all shifts are large enough (larger than r

0

=

1

2

(1 �)r) then

the number of mismathes is O(

n

0

r

). We have to modify slightly the algorithm if the shift is smaller

than r

0

. In this ase a pre�x of P , of size at least (1 �)r, has a period of size at most

1

2

(1 �)r.

In this moment instead of ontinuing the algorithm we ompute the maximal ontinuation of suh

period in the text. This gives us later the shift whih is large enough. Then we resume the algorithm

given above. We omit the details. 2

4 Reduing the number of omparisons

In the latter we need to rede�ne the notion of periodiity. We say that the word w is periodi (or

-periodi) if it has a period q � jwj. Observe that eah text is 1-periodi.

As previously we searh for the pattern P of length m in the text T of length n. The algorithm

whih is desribed in this setion depends on two onstants Æ, suh that Æ > 0, 0 < < 1. Our

algorithm makes at most (1 + "(Æ;))n +O(

n

m

) omparisons and lim

Æ!0;!1

"(Æ;) = 0.

Denote by OnLine one of the known online algorithms for string-mathing with small number of

6

omparisons (i.e. n+O((n�m)=m)) and O(m) spae, e.g. the algorithm from [5℄. Suh algorithm

�nds at the position i in a text the �rst from the left ourrene of a pattern making at most

(i+m) +O(

i

m

) omparisons. We shall apply the algorithm OnLine to very short patterns.

De�ne another onstant m to be the least number k suh that the algorithm OnLine �nds in

a given text the �rst (from the left) ourrene i of length m pattern with at most (1 + Æ)i+k

omparisons. Note, that if Æ tends to 0 then m tends to in�nity. The pattern (or its pre�x) is very

short i� its length does not exeed m.

Denote by PREF (k) the set of the pattern pre�xes longer than k. The behavior of our algorithm

depends on the type of the pattern.

Case 1. The pattern is very short (m � m).

Apply algorithm OnLine.

Case 2. One of the pre�xes in PREF (m) is -periodi with the period shorter than the shortest

period of the whole pattern.

Let pref be the longest pre�x of P with the period per shorter than jpref j whih is not a period

of P . Take the positions p = jpref j+ 1, q = p� per as the sample S. The algorithm in this ase is

a modi�ation of the algorithm SequentialSampling. We replae the prediate MathSample by the

funtion Modi�edMathSample(i; S) whih works as follows. If P [q� 1℄ = P [q℄ then test the position

p of the sample �rst and then the position q, otherwise do it in the reverse order. Return 0 if the

sample ours and the number of made omparisons otherwise. Sine P [q� 1℄ = P [p� 1℄ if the �rst

symbol ompared by the funtion mathes a symbol in the text, the next shift is at least 2.

ALGORITHM Eonomi SequentialSampling;

f P is nonperiodi and p, q give the sample S g

i:= 1;

while i � n�m do

begin k:=Modi�edMathSample(i; S);

i:=i+ k;

if k = 0 then begin j:= maxfk : P [1::k℄ = T [i+ 1::i + k℄ or k = 0g;

if j <= q then i:=i+q

else i:=Partial KMP(1� ; i; j);

end

end

Lemma 6 Assume the pattern satis�es the onditions in Case 2 and S = fp; qg is the sample of

this pattern. Then the (1 �)-part of the failure table for the pre�xes in PREF ((1 �)q) may be

represented in onstant spae.

Proof: The pre�xes in PREF (p) are either non -periodi or -periodi with the period being

the shortest period sh per of the pattern. All -periodi ones are longer than those whih are not

-periodi. The values of the (1�)-part of the failure table for non -periodi pre�xes equal 0 and

7

for length k -periodi pre�xes with the period sh per equal k � sh per. Hene, having sh per we

are able to retrieve those values in onstant time. On the other hand sine p < q + per � q + � p

we have p <

q

(1�)

and, by Lemma 4, the (1�)-part of the failure table for the pre�xes longer than

(1�)q and shorter than p an be enoded in onstant spae. This ompletes the proof. 2

Lemma 7 The algorithm Eonomi SequentialSampling makes at most n= + O(n=m) symbol

omparisons and may be implemented in onstant spae.

Proof: The fat that the algorithm may be implemented in onstant spae is a onsequene of

Lemma 6. Let shift be the shift of the pattern over the text whih is made by exeution of the

instrutions inside the while-loop. Let omp be the number of symbol omparisons made during

this exeution of the instrutions. If the sample does not math the text then shift = omp. If

the sample mathes the text and j � q then shift = q � omp and again the shift amortizes the

number of omparisons. In the ase j > q, the funtion Partial KMP is alled, and, by Lemma 5,

the number of omparisons in this loop is at most shift=+O(shift=j). Sine the sum of all shifts

does not exeed n and j > q >m the result follows. 2

Case 3. Eah pre�x in PREF (m) is either not -periodi or its shortest period is the period of the

pattern.

Denote by OnLine(i; s) the funtion whih starts the algorithm OnLine from the ith position in T

and �nds the �rst to the left of i ourrene of length s pattern pre�x.

ALGORITHM Eonomi KMP;

i:= 1;

while i � n�m do

begin i:= OnLine(i;m)

i:= Partial KMP (1� ; i;m));

end

The proof of our next lemma is similar to the proof of Lemma 6.

Lemma 8 Assume the pattern satis�es the requirements of Case 3. Then the (1 �)-part of the

failure table for the pre�xes longer than (1�)m may be represented in onstant spae.

The upper bound for the number of symbol omparisons in Eonomi KMP is a onsequene of

suh upper bounds in algorithms Online and Partial KMP .

Lemma 9 The algorithm Eonomi KMP makes at most (maxf1 + Æ; 1=g)n + O(n=m) symbol

omparisons and may be implemented in onstant spae.

The theorem below is a diret onsequene of Lemmas 7 and 9 and the fat that if Æ tends to 0 then

m tends to in�nity.

Theorem 10

For any " > 0 there is a string-mathing algorithm working in onstant spae with (1 + ")n+O(

n

m

)

symbol omparisons.

8

5 Pattern Preproessing

Our preproessing does not assume that the alphabet is linearly ordered, as it is done in [3℄. We

show the preproesing only for the ase =

1

2

, the extension to the general ase 1 > > 0 is possible.

During the preproessing we ompute the period of P (in the ase P is periodi) and the longest

periodi pre�x of P (if there is any). The solution uses iterative approah when we proess all pattern

pre�xes of size 2

i

, for all 1 � i � blogm. In ase the pattern length is not a power of 2, we run

the same algorithm on the pattern extended by some additional dummy symbols. Assume we have

.

.

.

.

.

.

.

.

�
-

pattern P

periodi pre�x

j�

1

j =

m

4

�
-

j�

2

j =

m

2

Figure 1: Looking for the longest periodi pre�x

already preomputed pattern pre�xes �

1

; �

2

suh that j�

1

j =

m

4

and j�

2

j =

m

2

. To �nd the longest

periodi pre�x of the pattern P of length greater then

m

2

we use the preomputed pre�x �

1

. Note that

the struture of all suh pre�xes are based on ourenes of �

1

in P , see Figure 1. Those ourenes

ould be found by our new searhing algorithm sequential sampling desribed before. In ase pre�x

�

1

is nonperiodi it appears in P onstant number of times, so all potential periodi pre�xes an

be heked naively. In ase pre�x �

1

is periodi with the period per

1

, all periodi pre�xes an be

reognized with support of all proper length sequenes of ourenes of the word v

1

v

�

1

in P , where

v

1

is the pre�x of P of size per

1

. Notie that the period of P orresponds to some periodi pre�x.

So if we use T (m) to denote the ost of preproessing of the pattern of length

m

2

and m we get the

inequality T (m) � T (

m

2

) +O(m) whih implies T (m) � O(m).

Referenes

[1℄ A.V. Aho, Algorithms for Finding Patterns in Strings. In Handbook of Theoretial Computer

Siene, p. 257{300. Elsevier Siene Publishers B. V., Amsterdam, The Netherlands, 1990.

[2℄ D. Breslauer, private ommuniation.

[3℄ D. Breslauer, Saving Comparisons in the Crohemore{Perrin String Mathing Algorithm. In

Pro. of 1st European Symp. on Algorithms, p. 61{72, 1993.

[4℄ D. Breslauer and Z. Galil, EÆient Comparison Based String Mathing. J. Complexity 9(3),

p. 339{365, 1993.

9

[5℄ R. Cole, R. Hariharan, Tighter bounds on the exat omplexity of string mathing. In Pro. of

33rd Annual Symp. on Foundations of Comp. Si., p. 600{609, 1992.

[6℄ R. Cole, R. Hariharan, M.S. Paterson and U. Zwik, Whih patterns are hard to �nd. In Pro.

of 2nd Israeli Symp. on Theory of Computing and Systems, p. 59{68, 1993.

[7℄ L. Colussi, Corretness and eÆieny of string mathing algorithms. Inform. and Control, 95,

p. 225{251, 1991.

[8℄ M.Crohemore, L. G�asienie, W. Plandowski andW. Rytter, Two-dimensional pattern mathing

in small time and spae, aepted to STACS'95.

[9℄ M. Crohemore, String-mathing on ordered alphabets. Theoret. Comput. Si., 92, p. 33{47,

1992.

[10℄ M. Crohemore and D. Perrin, Two-way string-mathing. J. Asso. Comput. Mah., 38(3),

p. 651{675, 1991.

[11℄ M. Crohemore and W. Rytter, Periodi Pre�xes in Texts. In Pro. of Sequenes'91 Work-

shop "Sequenes II: Methods in Communiation, Seurity and Computer Siene", p. 153{165,

Springer{Verlag, 1993.

[12℄ M. Crohemore and W. Rytter, Text algorithms, Oxford University Press, New York, 1994

[13℄ Z. Galil and R. Gianarlo, On the exat omplexity of string mathing: lower bounds. SIAM J.

Comput., 20(6), p. 1008{1020, 1991.

[14℄ Z. Galil and R. Gianarlo, The exat omplexity of string mathing: upper bounds. SIAM J.

Comput., 21(3), p. 407{437, 1992.

[15℄ Z. Galil and J. Seiferas, Time-spae-optimal string mathing. J. Comput. System Si., 26, p. 280{

294, 1983.

[16℄ L. G�asienie, W. Plandowski and W. Rytter, The zooming method: a reursive approah to

time-spae eÆient string-mathing. Theoret. Comput. Si., to appear.

[17℄ D.E. Knuth, J.H. Morris and V.R. Pratt, Fast pattern mathing in strings. SIAM J. Comput.,

6, p. 322{350, 1977.

[18℄ M. Lothaire, Combinatoris on Words. Addison-Wesley, Reading, MA., U.S.A., 1983.

[19℄ U.Vishkin, Deterministi sampling - a new tehnique for fast pattern mathing, SIAM J. Com-

put.,20, p. 22{40, 1991.

10

