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Abstract

We study a variation of the classical Shortest Common Superstring (SCS) problem in which a
shortest superstring of a finite set of strings S is sought containing as a factor every string of S
or its reversal. We call this problem Shortest Common Superstring with Reversals (SCS-R). This
problem has been introduced in T. Jiang, M. Li, D.-Z. Du. A Note on Shortest Superstrings with
Flipping. Inform. Process. Lett. 44: 195-199, where the authors designed a greedy-like algorithm
with length approximation ratio 4. In this paper, we show that a natural adaptation of the classical
greedy algorithm for SCS has (optimal) compression ratio %, i.e., the sum of the overlaps in the
output string is at least half the sum of the overlaps in an optimal solution. We also provide a
linear-time implementation of our algorithm.
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1. Introduction

The Shortest Common Superstring (SCS) problem is a classical combinatorial problem on strings
with applications in many domains, e.g. DNA fragment assembly, data compression, etc. (see [6]
for a recent survey). It consists, given a finite set of strings .S, in finding a shortest string containing
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as factors (substrings) all the strings in S. The decision version of the problem is known to be NP-
complete [13, 5, 4], even under several restrictions on the structure of S (see again [6]). However,
a particularly simple greedy algorithm introduced by Gallant in his Ph.D. thesis [5] is widely used
in applications since it has very good performance in practice (see for instance [12] and references
therein). It consists in repetitively replacing a pair of strings with maximum overlap with the
string obtained by overlapping the two strings, until one string remains. The greedy algorithm
can be implemented using Aho-Corasick automaton in O(n) randomized time (with hashing on the
symbols of the alphabet) or O(nmin(logm,log|3¥|)) deterministic time (see [17]), where n is the
sum of the lengths of the strings in S and m its cardinality.

The approximation of the greedy algorithm is usually measured in two different ways: one
consists in taking into account the approzimation ratio (also known as the length ratio) kq/kmin,
where kg is the length of the output string of greedy and £,,;, the length of a shortest superstring,
the other consists in taking into account the compression ratio (n — kg)/(n — kmin)-

For the approximation ratio, Turner [16] proved that there is no constant ¢ < 2 such that
kg/kmin < c. The greedy conjecture states that this approximation ratio is in fact 2 [1]. The best
bound currently known is 3.5 due to Kaplan and Shafrir [10]. Algorithms with better approximation
ratio are known; the best one is due to Mucha, with an approximation ratio of 2% [14].

For the compression ratio, Tarhio and Ukkonen [15] proved that (n —kg)/(n — kmin) > 1/2 and
this bound is tight, since it is achieved for the set S = {ab”, b"a, b" '} when greedy makes the first
choice merging the first two strings together.

Let us formally state the SCS problem:

SHORTEST COMMON SUPERSTRING (SCS)
Input: strings S = {s1,...,sn} of total length n.
Output: a shortest string u that contains s; for each ¢ = 1,...,m as a factor.

Several variations of SCS have been considered in literature. For example, shortest common
superstring problem with reverse complements was considered in [11]. In this setting the alphabet
is ¥ = {a,t,g,c} and the complement of a string s is 57, where ~ is defined by a = t, t = a,
g = c, ¢ = g, and t® denotes the reversal of ¢, that is the string obtained reading ¢ backwards.In
particular, this problem was shown to be NP-complete.

Other variations of the SCS problem can be found in (8, 3, 7, 2].

In this paper, we address the problem of searching for a string u of minimal length such that

for every s; € S, u contains as a factor s; or its reversal S,LR.

SHORTEST COMMON SUPERSTRING WITH REVERSALS (SCS-R)
Input: strings S = {s1,...,sm} of total length n.
Output: a shortest string u that contains for each ¢ = 1,...,m at least one of the strings s;

or st as a factor.

For example, if S = {aabb, aaac, abbb}, then a solution of SCS-R for S is caaabbb. Notice that
a shortest superstring with reversals can be much shorter than a classical shortest superstring. An
extremal example is given by an input set of the form S = {ab", cb"}.

The SCS-R problem was already considered by Jiang et al. [9], who observed that the problem
is still NP-hard. We provide a proof of this fact for the sake of completeness (see Proposition 1).

In [9], the authors proposed a greedy 4-approximation algorithm. Here, we show that an adapta-
tion of the classical greedy algorithm can be used for solving the SCS-R problem with an (optimal)
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compression ratio % .

2. Basics and Notation

Let ¥ be a finite alphabet. We assume that ¥ is linearly sortable, i.e., ¥ = {0,...,n°M}. The
length of a string s over X is denoted by |s|. The empty string, denoted by &, is the unique string
of length zero. A string t occurs in a string s if s = vtz for some strings v, z. In this case we say
that t is a factor of s. In particular, we say that t is a prefiz of s when v = € and a suffix of s when
z = e. We say that a factor is proper if |v| 4+ |z| > 0.

The string s’ obtained by reading s from right to left is called the reversal (or mirror image)
of s. Given a set of strings S = {s1,...,5n}, we define the set ST = {sf ... sE} and the set
S=Sust

Given two strings u, v, we define the (maximum) overlap between u and v, denoted by ov(u,v),
as the length of the longest suffix of u that is also a prefix of v. Sometimes we abuse the notation
and also say that the suffix of u of length ov(u,v) is the overlap of u and v. The overlap operation
is associative but not symmetric, because in general ov(u,v) is not equal to ov(v,u). However, it
is readily verified that ov(u,v) = ov(v®, u®f). Additionally, we define pr(u,v) as the prefix of u
obtained by removing the suffix of length ov(u,v) and denote u ® v = pr(u,v)v.

A set of strings S is called factor-free if no string in S is a factor of another string in S. We say
that .S is reverse-factor-free if there are no two different strings u, v in S such that u is a factor of
v or vl

Given a set of strings S = {s1,...,Sn}, the SCS problem for S is equivalent to that of finding
an optimal (i.e., with maximum total weight) Hamiltonian path 7 in the overlap graph Gg, which is
the directed weighted graph (V, E,w) defined by V =5, E = {(s;,s;) | i # j} and w;; = ov(s;, s;)
(cf. [15]).

We consider the overlap graph Gg. We say that a path 7 in Gg is semi-Hamiltonian if 7
contains, for every ¢ = 1,...,m, the vertex s; or the vertex SZR but not both (if they are different).
Hence, a solution to SCS-R problem for S corresponds to a longest semi-Hamiltonian path 7 in the
overlap graph G'z. Finally, by ov(m) we denote the total weight of edges in the path 7.

3. NP-completeness of the SCS-R Problem

Let I' = Y U {$,#}, where $,# ¢ X. Let h be the morphism from ¥* to I'* defined by
h(c) = $# c, for every c € 3. Given k > 1, we also define the morphism g (c) = ¥, for every c € X.

Observation 1. For every nonempty strings u,v, the strings h(u) and h(v)® have an overlap of
length at most one.

Observation 2. For every nonempty strings u, v, one has |h(gr(u))| = 3k|u|, and ov(h(gk(u)), h(gr(v))) =
3k - ov(u,v).
Proposition 1. The decision version of the SCS-R problem is NP-complete.

Proof. Let s1,..., 8y be an instance of the SCS problem. Set y; = h(gm(s;)), fori=1,...,m. We
have the following claim.

Claim 1. There exists a common superstring of si,..., s, of length at most ¢ if and only if there
exists a common superstring with reversal of y, ...,y of length at most 3m/.



Proof. (=) If u is a common superstring of si,..., sy, then A(gm,(u)) is a common superstring of
Y1,---,Ym. Hence, h(gm(u)) is also a common superstring with reversals of y1, ..., ym. If |u| = p,
then |h(gm(u))| = 3mp.

(<) Let u be a common superstring with reversals of y1,...,ym,. Let m = z,,...,2;, be the
sequence of nodes on the path in the overlap graph G that corresponds to u; here {iy,...,i,} =
{1,...,m} and each z; is either y; or le. Let us construct a new sequence of nodes 7/, that first
contains all nodes from 7 of the form g; in the same order as in 7w, and then all nodes from 7 of the
form le, but given in the reverse order and taken without reversal.

Let u/ be the common superstring corresponding to 7. By Observation 1, |u/| < |u| +m — 1.

Note that u' is also an ordinary common superstring (i.e., without reversal) of y1,...,ym. By
Observation 2, || is a multiple of 3m and u’ corresponds to a common superstring v of s1,..., S,
of length |«/|/(3m). If |u| < 3m/, then

/ p—
) = W flulEm =1,
3m 3m

O

The claim provides a reduction of the decision version of the SCS problem to the decision version
of the SCS-R problem. This shows that the latter is NP-hard, hence NP-complete, as it is obviously
in NP. O

4. Greedy Algorithm and its Linear Implementation

We define an auxiliary procedure MAKE-REVERSE-FACTOR-FREE(S) that iteratively removes
from S every string u such that there is a different string v in S for which u is a factor of v or v’
It runs until S is reverse-factor-free. Note that for any output S’ of the procedure, the following
holds: A string is a shortest common superstring with reversals for S’ if and only if it is a shortest

common superstring with reversals for S.

Example 1. Let S = {ab,aaa,aab,baa}. Then MAKE-REVERSE-FACTOR-FREE(S) produces
{aaa,aab} or {aaa,baa}.

Lemma 2. Procedure MAKE-REVERSE-FACTOR-FREE(S) can be implemented in time linear in
the total length of strings in S.

Proof. Let us introduce two auxiliary procedures defined for a set of strings X. Procedure REMOVE-
REVERSALS(X) for every pair of strings u,v € X such that u = v% leaves exactly one of them in
X. Procedure MAKE-FACTOR-FREE(X) iteratively removes from X every string u such that there
is a string v in X for which u is a proper factor of v. We will show that MAKE-REVERSE-
FACTOR-FREE(S) can be implemented using these two procedures. First we show that they can
be implemented efficiently.

Claim 2. REMOVE-REVERSALS(X) can be implemented in time linear in the total length of the
strings in X.

Proof. Let X = {z1,...,2m} and let n be the total length of strings in X. First we construct
the set X. For each element v € X we store, as ind(v), the index i of the element z; € X from
which v was constructed (as z; or ). Then we sort all the strings in X using radix sort. This

sorting requires only O(n)-time due to the assumption of linearly-sortable alphabet. Then, we
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iterate through the sorted set of strings and for each pair u, v of equal strings we store the pair
of indices ind(u), ind(v) (assume that ind(u) < ind(v)). Note that each pair occurs exactly twice
apart from the pairs of equal numbers that we can discard (then u is a palindrome). Finally, we
sort all the pairs in O(m)-time to remove duplicates and for each pair of indices remove exactly
one string from X. In total the procedure takes O(n)-time. O

Ukkonen [17] showed the following result about the preprocessing phase of the greedy algorithm
for the ordinary SCS problem:

Claim 3 (|17]). MAKE-FACTOR-FREE(X) can be implemented in time linear in the total length of
the strings in X.

We can now proceed to describe an efficient implementation of MAKE-REVERSE-FACTOR-
FREE(S). In the first step we replace S with REMOVE-REVERSALS(S). From now on we only
need to remove from S all strings u being proper factors of strings of the form v or v%, for v € S.
For this, we compute S , storing for each string the index of the string in S it corresponds to, and
the set S/ = MAKE-FACTOR-FREE(S). Note that if we remove u from S in this procedure, then
we also remove uft. As the result we leave in S all strings that have their counterparts in S’. The

whole procedure works in linear time in the total length of the strings in S. O

Now we can assume that S is reverse-factor-free. The Greedy-R algorithm works as follows:
while |S| > 1, choose u,v € S (excluding v = v or u = v'!) with biggest overlap, insert in S
the string « ® v and remove from S the strings among u, v, u’?, vt that are elements of S; see the

pseudocode.

Algorithm Greedy-R(S)
Input: a non-empty set of strings S
Output: a superstring of S that approximates a solution of SCS-R problem for §
begin
S := MAKE-REVERSE-FACTOR-FREE(S)
while |S| > 1 do
P:={(u,v) : u,v € S,u ¢ {v,v}}
{ S is reverse-factor-free and |S| > 1, so |P| > 1}
take (u,v) € P with the maximal value of ov(u,v)
S:=SU{u®uv}
S =8\ {u,v,uf, vF}

return the only element of S
end

Observation 3. The length ov(u,v) in the subsequent steps of the Greedy-R algorithm can only
decrease. This is due to the greedy characteristic of the approach.

Ukkonen [17] showed that the Greedy algorithm for the original SCS problem can be imple-
mented in linear time. A linear-time implementation of the Greedy-R algorithm is quite similar.
We show the following result.

Theorem 3. Greedy-R algorithm can be implemented in linear time.



Proof. Let S be the input set of strings. By Lemma 2, we can make S reverse-factor-free in linear
time.

Let S = {s1,...,sm} be the set of remaining strings and n the total length of strings in S. Let
us introduce some useful notation. Denote by Pref (§ ) the set of all different prefixes of strings in S.
Each element of this set can be represented as a state of the Aho-Corasick automaton constructed
for 3, thus using O(1) space per element. Further, given a string w, denote by PrefSet(w,g),
SufSet(w, S) the sets (represented as lists) of strings in S having w as a prefix, suffix, respectively.
Ukkonen [17] used the Aho-Corasick automaton for S to show the following fact:

Claim 4 ([17]). PrefSet(w,S), SufSet(w,S) for all w € Pref(S) have total size O(n) and can be
computed in O(n) time.

At each step of the Greedy-R algorithm we store a collection of disjoint paths in Gz representing
all the ®-operations that were performed so far. In the end of the algorithm this collection becomes
a semi-Hamiltonian path in Gg. For each v € S we remember if it is an endpoint of a path and, if
so, what is the other endpoint of the path. In the course of the algorithm we will remove all strings
v € S that correspond to inner vertices of paths or their reversals (called redundant strings) from
PrefSet and SufSet whenever encountered.

Now we show how to simulate the while-loop in the algorithm. By Observation 3, at each step
of the loop the value ov(u,v) is not greater than in the previous steps. Instead of simulating the
while-loop directly, we will consider all w € Pref(S) in decreasing length order and for each of them
check if there exist two strings u,v € S such that:

(a) w ¢ 0,07}, and
(b) u, v are endpoints of two different paths, and

(¢) w is the overlap of u and v.

If so, by the greedy property we know that |w| is the longest overlap, therefore we merge the two
strings (consequently join the two paths).

Let us explain how this can be done efficiently. To iterate through all w € Pref (§ ) in decreasing
length order we simply traverse all the states of the Aho-Corasick automaton in reverse-BFS order,
breaking ties arbitrarily. To check the conditions (a)-(c), we iterate through all pairs of elements
v € PrefSet(w, §) and u € SufSet(w, §) and verify if they satisfy the conditions. (We assume that
the sets already do not contain redundant strings; if not, we simply remove the redundant strings
whenever they are encountered, which accounts for only O(n) in the time complexity.) Note that
for each u € SufSet(w, S) there are at most four elements v € PrefSet(w,S) that do not form a
valid overlap w with w. Indeed, these are u, v, x and zf, where z is the other endpoint of the
path that starts with u. Hence, with constant-time overhead, either a pair of strings u, v satisfying
(a)-(c) is found and can be merged, or it can be checked that no pair of strings u, v satisfies (a)-(c)
for this particular string w and then we can continue iterating through strings in Pref (g) If a pair
of strings u, v is found, we start the next search with the same string w, since there could be many
such pairs satisfying conditions (a)-(c) for the same string w.

To conclude: in every step of the simulation, in constant time we either find a pair of strings
u, v to be merged or discard the given candidate w € Pref (§ ). The former situation takes place at
most m — 1 times and the latter takes place at most n times. The whole algorithm thus works in
O(n)-time. O



5. Compression Ratio

In this section we prove that the compression ratio of the Greedy-R algorithm is always at least
%, and that this value is effectively achieved, so the bound is tight.

Let S = {s1,...,Sn} be the input set of strings. We assume that S is already reverse-factor-free.
Let opt(S) be the length of a longest semi-Hamiltonian path in G = Gg. Let pgreedy(S) denote
the length of the semi-Hamiltonian path produced by the Greedy-R algorithm for S. We will show
that pgreedy(S) > 3 opt(S).

In the proof we use as a tool the following fact from [15] (see Lemma 3.1 in [15]):

Lemma 4. If x1,x2,x3, x4 are different vertices of Gx for some set of strings X such that
ov(x1,x4), 0v(x2,23) < ov(x1,x3)

then
ov(x1,x4) + ov(xa,x3) < ov(x1,x3) + 0v (T2, X4).

We proceed with the following crucial lemma.

Lemma 5. Let S be a set of strings and let u,v € S be two elements for which ov(u,v) is mazimal
(uw ¢ {v,vf}). Set OV = ov(u,v). Let opt(S) be the length of a longest semi-Hamiltonian path
in G and let opt’(S) be the length of a longest semi-Hamiltonian path in G that contains the edge
(u,v). Then:

opt’(S) > opt(S) — OV.

Proof. We consider the path 7 corresponding to opt(S) and show how it can be modified without
losing its semi-Hamiltonicity so that the edge (u,v) occurs in the path and the length of the path
decreases by at most OV.

Obviously, if m already contains the edge (u,v), nothing is to be done. If both u and v occur
in 7, we perform transformations as in the proof of a similar fact from [15] related to the ordinary
SCS problem. If u occurs in 7 before v then we select 7’ as in Fig. 1 and:

ov(m") > ov(m) — ov(u,b) — ov(c,v) + ov(u,v) > ov(r) — ov(u,b) > ov(w) — OV.

Note that both nodes b, ¢ exist (they could be the same node, though). If any of the remaining
nodes does not exist, it is simply skipped on the path.

O O, 0L O O, 0, OS2 O
O OL010229%> OJOR 090

Figure 1: Proof of Lemma 5, first case: u occurs in 7 before v.

If v occurs before u, then by applying the inequality of Lemma 4 (with x1 = u, 9 = a, T3 = v,
x4 = d) we have
ov(u,d) + ov(a,v) < ov(u,v) + ov(a,d).
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By this inequality, for the path «’ defined in Fig. 2 we have:

ov(m) — ov(a,v) — ov(u,d) + ov(u,v) + ov(a,d) — ov(v,b)
ov(m) — ov(v,b) > ov(m) — OV.

ov(")

(A\VARAYS

As before, if any of the depicted nodes does not exist, we simply skip the corresponding part of the
path. In particular, if any of the nodes u, v is an endpoint of the path w, we do not need to use the
aforementioned inequality to show that ov(n’) > ov(w) — OV.

! @’\A/\A/\) @ e @» @'\N\A/\/»

Figure 2: Proof of Lemma 5, second case: u occurs in 7 after v.

Differently from the original SCS problem considered in [15], it might not be the case that v and
v are in 7. If none of them is, then 7 contains both uf and v and by reversing 7 (that is, reversing
all the strings and the edges in the path) we obtain a semi-Hamiltonian path that contains both u
and v, which was the case considered before. Thus, we can assume that v and v occur in 7 (the
case of uf' and v is symmetric). Again, we have two cases, depending on which of the two strings
comes first in 7. If u occurs before vt in 7, then we have (note that ov(c, vf) = ov(v, cf?)):
ov(') > ov(m) — ov(u,b) — ov(v’,d) + ov(u,v) > ov(w) — ov(u,b) > ov(r) — OV,
see also Fig. 3.
Finally, if vf* occurs before u, then (see Fig. 4):
ov(r') > ov(m) — ov(v®,b) — ov(u,d) + ov(u,v) > ov(r) — ov(v,b) > ov(r) — OV.

This completes the proof of the lemma. O

O (D G D) (9 ®

Figure 3: Proof of Lemma 5, third case: u occurs in 7 before v™.



O O T O 0, 0, Ot O
v @A) (e OS2 0

Figure 4: Proof of Lemma 5, third case: u occurs in 7 after ™.

To conclude the proof of the compression ratio of the Greedy-R algorithm we use an inductive
argument. Assume that pgreedy(S’) > 3 opt(S’) for all S’ such that |S’| < |S|. By Lemma 5, for
S = S\ {u,v,u? v} U{u®v}:

opt(S) — OV < opt/(S) < opt(S) + OV,

so that opt(S") + 20V > opt(S). Moreover, pgreedy(S) = pgreedy(S’) + OV and, by the inductive
hypothesis, pgreedy(S’) > %opt(S” ). Consequently:

[y

pgreedy(S) = pgreedy(S’) + OV > —(opt(S') +20V) > %opt(S).

[\]

We arrive at the following theorem.
Theorem 6. Greedy-R has compression ratio %

It turns out that the bound on the compression ratio of the Greedy-R algorithm is tight. It
suffices to consider the set of strings {ab”, b"c, b"+1} (this is actually the same example as from the
analysis of the Greedy algorithm [1]). The output of Greedy-R can be the string ab”cb*! with
total overlap h, whereas an optimal solution to SCS-R is ab"*'c of total overlap 2h.
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