
The Number of Runs in a String

Wojciech Rytter �

Key-Words: run, string, periodicity

Abstract

A run in a string is a nonextendable (with the same minimal period) periodic segment in a string.

The set of runs corresponds to the structure of internal periodicities in a string. Periodicities in

strings were extensively studied and are important both in theory and practice (combinatorics of

words, pattern-matching, computational biology). Let �(n) be the maximal number of runs in a

string of length n. It has been shown in [8] that �(n) = O(n), the proof was very complicated

and the constant coefficient in O(n) has not been given explicitly. We demystify the proof of

the linear upper bound for �(n) and propose a new approach to the analysis of runs based on the

properties of subperiods: the periods of periodic parts of the runs. We show that �(n) � 3:44 n

and there are at most O:67n runs with periods larger than 87. This supports the conjecture that

the number of all runs is smaller than n. We also give a completely new proof of the linear

bound and discover several new interesting “periodicity lemmas”. Our proofs are inspired by

the results of [4], where the role of new periodicity lemmas has been emphasized.

�Institute of Informatics, Warsaw University, Banacha 2, PL-02–097, Warsaw, Poland, e-mail: ryttermimuw.edu.pl.

Research supported by the grant 4T11C04425. The preliminary version of this paper appeared in [12] with the weaker

result: �(n) � 5n.

1

1

1 Introduction

The set of all runs in a string corresponds to the structure of its regularities. Initial interest was

mostly in repetitions of the type xx (so called squares), [1, 10]. The number of squares, with prim-

itive x, is
(n logn), hence the number of periodicities of this type is not linear. Then, it has been

discovered that the number of runs (also called maximal repetitions or repeats) is linear and con-

sequently linear time algorithms for runs were investigated [8, 7]. The result of [8] was one of the

deepest results related to combinatorics and algorithmics of strings. However the most intriguing

question remained the asymptotically tight bound for the number of runs. The first bound was quite

complicated and has not given any concrete constant coefficient in O(n) notation. This subject has

been studied in [13, 14, 2]. A beautiful construction showing the lower bound of approximately

0:927 n has been given in [2]. The exact number of runs has been considered for special strings:

Fibonacci words and (more generally) Sturmian words, [6, 5, 11]. In this paper we make a step to-

wards better understanding of the structure of runs. The proof of the linear upper bound is simplified

and small explicit constant coefficient is given in O(n) notation.

Let per(w) denote the size of the smallest period of w. We say that a word w is periodic iff

per(w) �

jwj

2

.

A run in a string w is an interval � = [i:::j℄ such that w[i:::j℄ is a periodic word with the period

p = per(w[i:::j℄) and this period is not extendable to the left or to the right of [i:::j℄.

In other words, [i:::j℄ is a run iff jj - i + 1j � 2p, i = 1 or w[i - 1℄ 6= w[i - 1 + p℄ and j = n or

w[j + 1℄ 6= w[j + 1 - p℄. A run � can be properly included as an interval in another run �, but in

this case per(�) < per(�).

The value of the run � = [i:::j℄ is val(�) = w[i:::j℄. When it creates no ambiguity we iden-

tify sometimes runs with their values although two different runs could correspond to the identical

subwords, if we disregard positions of these runs. Hence runs are also called maximal positioned

repetitions.

Denote by RUNS(w) the set of runs of w, see Figure 1 for an example.

a a b a b a a b a b b a b a a b a b a a

Figure 1: The structure of RUNS((aabab)2(babaa)2).

Denote: �(n) = maxfjRUNS(w)j : jwj = ng:

The most interesting and open conjecture about the runs is: �(n) < n.

We make a small step towards proving validity of this conjecture and show that �(n) � 3:44 n.

The proof of linear upper bound in [8] does not give any explicit constant coefficient at all.

2

Components of a run.

Each value of the run � is a string xky = w[i:::j℄, where jxj = per(�) � 1, k � 2 is an integer

and y is a proper prefix of x (possibly empty).

The subword x is called the periodic part of the run and denoted by PerPart(�) = x. Denote

SquarePart(�) = w[i : : : i+ 2 per(�) - 1℄; enter(�) = i+ jxj

The position i is said to be the occurrence of this run and is denoted by first(�).

We write � � � iff first(�) < first(�). Define also

dist(�;�) = jfirst�) - first(�)j

Example. In Figure 2 we have:

first(�) = 2; first(�) = 4; PerPart() = (aba)

4

ab

enter(�) = 22; enter(�) = enter() = 21

b a a b a a b a a b a a b a a b ab a ab b a a b a a b a a b a a b a a b a a b a

α
22

γ

4
β 21

Figure 2: Example of three hp-runs � � � � with subperiod 3. The runs �; are left-periodic

(the subperiod 3 continues to the left), � is not. The runs �;� (as well as �;) are “neighbors” in

sense of Lemma 1. The occurrences (starting positions) of very large runs can be very close. The

periodic parts are indicated by the arcs.

In the paper the crucial role is played by the runs � with highly periodic PerPart(�). Denote

subperiod(�) = per(PerPart(�)):

Example.

In Figure 2 we have:

subperiod(�) = subperiod(�) = subperiod() = 3.

We say that a word w is highly periodic (h-periodic) if per(w) �

jwj

4

. A word which is not highly

periodic is said to be weakly periodic.

Observe that a word can be periodic but at the same time weakly periodic. Also, according to the

definition, weakly periodic word can be not periodic.

3

Example. In order to understand better the structure of hp-runs we show that the number of hp-runs

is
(

1

2

n - o(n)), though we are interested mainly in the upper bound. Let x
k;l

= ((01)

k

0)

l,

see Figure 3. The string x

k;k

has approximately 1

2

n hp-runs. The exact formula for its number of

hp-runs is (k - 1)(k - 4) + 1 with the length of x
k;k

equal to n = (2k + 1) � k. Possibly it is

asymptotically the maximal number of hp-runs in a string of length n.

0 0 0 0 0 0 0 01 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 00 1 0 1 0 1 0 1 0 1 010 10 1 0

Figure 3: The string x
k;l

= ((01)

k

0)

l for k = 6; l = 4, and its 7 hp-runs (the general fomula or the

number of runs of x
k;l

is (l- 1)(k - 4) + 1).

2 Two Classes of Runs and Their Sparsity Properties

Our main approach is to explore sparsity preperties of runs, however two very long runs can start

at very close positions, so the set of all runs do not have good sparsity property. The key idea is to

partition the set of all runs into two classes, for each of them we will have a sparsity property which

will be good in different senses.

A run is said to be a highly periodic run (an hp-run, in short) iff PerPart(�) is h-periodic. The

run which is not h-periodic is called a weakly-periodic run (wp-run).

In Figure 2 �;�; are hp-runs, in Figure 1 all runs are wp-runs.

Denote � =

5
4
. We define two partitions of the set of runs of a given word:

L(k) = f� : � is a wp-run of w; �k

� per(�) < �

k+1

g

R(k) = f� : � is a hp-run of w; k � per(�) < 2k g

We say that a set X � f1; 2; : : : ; ng is p-sparse iff in any interval of size at most p there are at most

two positions in X.

We assume, to abbreviate the terminology, that we have a fixed word w of length n. Hence in the

notation we omit the dependance on the input word. A tedious proof of the following lemma is

given in the last two sections of the paper.

Lemma 2.1 [Key-Lemma]

(A) For each k � 1 the set L(k) is d1
4

�

k

e-sparse.

(B) For each p > 1 the set R(p) is p-sparse.

4

Example.

(a) In Figure 5 the runs the runs �;� are in L(11) (since d�11

e = 12 and the lengths of periodic

parts of �;� are 12, 13, respectively. At the same time they start in the same interval of length

d

1

4

�

11

e = 3.

(b) In Figure 2 the runs �;� are in R(3) (since both have subperiod 3) and they start in the same

interval of length 3.

Denote by HP(n; p) the maximal number of hp-runs � with subperiod(�) � p, and by WP(n; p)

the maximal number of wp-runs � with period(�) � p, maximized over strings of length n.

The Key-Lemma implies in a simple way the following fact.

Lemma 2.2

1. HP(n; p) � 4

p

� n;

2. WP(n; d�

r

e) � 40 � �

-r

� n

Proof :

Point 1. Denote by hp(n; p) the maximal number of hp-runs � with p � subperiod(�) < 2p,

maximized over strings of length n.

It follows directly from Lemma 2.1 that hp(n; p) � 2

p

n. Hence the number of hp-runs with

subperiod at least p is bounded from above by:

hp(n; p) + hp(n; 2p) + hp(n; 4p) + hp(n; 8p) + : : :

� 2n � (

1

p

+

1

2p

+

1

4p

+

1

8p

+ : : :) �

4

p

n

Point 2. It follows directly from Lemma 2.1 that

jL(k)j � 2 � (1=(�

k

�

1

4

) � n = 8�

-k

� n

Consequently we have

WP(n; d�

r

e) �

1

X

k=r

jL(k)j �

1

X

k=r

8 � �

-k

� n = 8�

-r

�

1

1 - �

-1

� n = 40 � �

-r

� n

2

Observe that HP(n; 1) = 0 and �(n) = HP(n; 2) +WP(n; d�

0

e). Consequently we have directly

the following corollary of Lemma 2.1.

Corollary 2.3 �(n) � 42n.

In this way we have a very simple (if we disregard technicalities in the proof of Lemma 2.1) proof

of a linear upper bound for �(n) with an explicit coefficient. In the next section we reduce the

coefficient from 42 to 3.44. The reduction is done by estimating separately runs with small periodic

part.

5

3 Estimating Number of Runs with Small Periodic Part

We say that a run is large iff per(�) > 86. Otherwise the run is called a small run. We estimate

now the number of small runs. Let �(n; k) be the maximal number of all runs � with per(�) � k,

in a string of length n. We estimate the number of runs with small PerPart(�) in a rather naive

way using the following lemma.

Lemma 3.1 For any given k � 1 there are at most 1

k+1

n runs with per(�) = k or per(�) = 2k.

Proof : The proof of the following simple fact is illustrated in Figure 4.

Claim 3.2 If u; v are primitive words and juj = 2jvj, then vv is not contained in uu as a subword.

Assume that � � � are two different runs with periods k or 2k.

If per(�) = per(�) = k then �;� can have an overlap of size at most k - 1, otherwise �;�

could be merged into a single run. Hence first(�) - first(�) � k+ 1.

If per(�) = k and per(�) = 2k then it is possible that first(�) - first(�) = 1. Due to the

claim the distance from first(�) to the occurrence of the next hp-run with period k or 2k is at least

2k+1. Then two consecutive distances give together (first(�)-first(�)+(first()-first(�)) �

2k + 2, and “on average” the distance is k + 1. Therefore there are at most n

k+1

runs with a period

k or 2k. 2

α α α

β δ β δ
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 4: An occurrence of a square text v = �� inside a square text u = �Æ�Æ, where juj = 2jvj,

implies that j�j is a period of u, consequently u is not periodic.

The last lemma motivates the introduction of the infinite set �, generated by the following

algorithm (which never stops).

� := ;; 	 := f1; 2; 3; : : :g;

repeat forever

k := min 	;

remove k and 2k from 	;

insert k into �;

Define the set �(p) = fk 2 � : k � pg. For example:

�(34) = f1; 3; 4; 5; 7; 9; 11; 12; 13; 15; 16; 17; 19; 20; 21; 23; 25; 27; 28; 29; 31; 33g

For p � 1 define the numbers:

H(p) =

P

k2�(p)

1

k+1

.

The next lemma follows directly from Lemma 3.1 and from the structure of the set �. We have, by

straightforward brute-force calculations, that H(86) � 2:77n.

6

Lemma 3.3

(a) �(n; p) � H(p)� n.

(b) There are at most 2:77n small runs.

4 Estimating the Number �(n) of All Runs

The analysis of the number of large runs is based on the sparsity properties of hp-runs and wp-runs.

We estimate separately the number of runs in four disjoint classes:

� large hp-runs with subperiod larger than 21 (at most 2

11

n);

� large hp-runs with subperiod smaller than 22 (at most 1

45

n);

� large wp-runs; (at most 0:4612 � n)

� small runs (at most 2:77n, due to Lemma 3.3).

Denote by hp(n; p) the maximal number of hp-runs � with p � subperiod(�) < 2p, maximized

over strings of length n.

Lemma 4.1

(a) There are at most 2

11

n hp-runs with subperiod larger than 21.

(b) There are at most 1

45

n large hp-runs with subperiod smaller than 22.

Proof : Point (a) follows directly from Lemma 2.2. We show now Point (b). Two occurrences of

two hp-runs with subperiods not exceeding 21 and with periods larger than 86 have to at least at

distance 87 - 2 � 21 = 45, otherwise they have large overlap implying that these two runs merge

into a single one (due to the periodicity lemma). Hence we have at most 1

45

n large hp-runs with

subperiod smaller than 22. 2

Lemma 4.2 There are at most 0:4612 � n large wp-runs.

Proof : If we choose r = 20 then b�r

 = 86 and d�r

e = 87.

Now it follows from Lemma 2.2 that the number of large runs is bounded from above by

40 � (

5

4

)

-20

� n � 0:4612 � n

2

4.1 Main Result

We can now combine all estimation together and proof the main result which gives a concrete

constant coefficient in O(n) notation for �(n).

Theorem 1 [Main Result]

(1) �(n) � 3:44 n;

(2) There are at most 0:67n large runs in a string of size n.

7

Proof :

According to Lemma 4.2, Lemma 3.3 and Lemma 4.1 we have at most 2:77 small runs, and at most

(

2

11

+

1

45

+ 0:4612) � n � 0:67n large runs.

Putting all together we get:

�(n) � (2:77 + 0:67n) � n = 3:44n

2

5 The Proof of Point A of Lemma 2.1

We introduce a useful terminology of neighboring runs. We say that two different runs �, � are

neighbors iff there is a positive number � such that:

dist(�;�) �

1

4

� and � � per(�); per(�) � � �

Informally, two runs are neighbors iff they have similar periods and are positioned close to each

other relatively to their sizes, in particular this means that

per(�); per(�) � 4 jdist(�;�).

Example. In Figure 5 we have two runs �;� which are neighbors with � = 12, per(�) =

12; per(�) = 13 and dist(�;�) = 2.

b b a a a a a a a a a a b b a a a a a a a a a a a b b a

α

β

Figure 5: Two weakly-periodic runs �;� which are neighbors with � = 12. We have: �;� 2 L(11)

and dist(�; beta) < d

1

4

�

11

e = 3.

5.1 The Three Neighbors Lemma

If � � � and the square part of � is not contained in the square part of � then we write � �� �

(see Figure 7). More formally:

� = � iff SquarePart(�) is contained in SquarePart(�) as an interval

� �� � iff [� � � and not (� = �) ℄

Lemma 5.1

(a) If � = � are distinct neighbors then � is an hp-run.

(b) If � �� � are distinct neighbors then the prefix of � of size per(�) - Æ has a period jq - pj,

where Æ = first(�) - first(�) and p = per(�); q = per(�).

8

δ

q

p

q

p

α

β

Figure 6: Two neighbors with � = �, a case enter(�) > enter(�). The square part of � is

contained in the square part of �. The periodic part of � is h-periodic, so it should have a period

p- q, where p = per(�); q = per(�).

δ

α
β

δp − q

q

p

p

Figure 7: Two neighbors with � �� �, the case p < q. The shaded part has the period jq - pj,

where p = per(�); q = per(�).

Proof :

Point (a) We refer the reader to Figure 6, where the case enter(�) > enter(�) is illustrated.

Obviously p > q. It is easy to see that the whole PerPart(�) has a period per(�) - per(�).

Let � be the constant from the definition of neighbors, then

per(�) - per(�) �

1

4

� and jPerPart(�)j � � ;

hence PerPart(�) is h-periodic. The case enter(�) � enter(�) can be considered similarly.

Point (b) We refer to Figure 7, when only the case p < q is shown. For each position i in the

shaded area we have w[i℄ = w[i+ p℄ = w[i+ p- q℄. The opposite case p > q can be considered

similarly. This completes the proof. 2

Lemma 5.2 [The Three-Neighbors Lemma]

If we have three distinct runs which are pairwise neighbors with the same number � then at least

one of them is h-periodic.

Proof : Assume we have 3 runs �
1

� �

2

� �

3

which are pairwise neighbors, with periods

p1; p2; p3, respectively. Let Æ
1

= first(�

2

) - first(�

1

), and Æ
2

= first(�

3

) - first(�

2

). Then,

9

α

α

α

p1

p2 p1 −

p2 −

δ 1

δ 2 δ 2

δ 1

2

1

3

Figure 8: The Three-Neighbors Lemma, a situation when �

1

�� �

2

�� �

3

. �

2

should be

h-periodic, since both its large suffix and large prefix have small periods.

due to Lemma 5.1 the “middle” run �
2

has a suffix 2 of size p
2

- Æ

2

with a period jp3 - p2j and

a prefix 1 of size p1- Æ1 with a period jp2 - p1j , see Figure 8.

Let � be the number from the definition of neighbors. We have

Æ

1

+ Æ

2

�

1

4

�, p1 � �, and j1 [2j = p

2

.

Hence:

j

1

\ 2j � (p

2

- Æ

2

) + (p1- Æ1) - p2 = p1- Æ1- Æ2 �

3

4

�

We have jp3 - p2j; jp2 - p1j �

1

4

�, hence per(1); per(2) � 1

4

�. Due to the periodicity lemma

1

\2 has a period which divides periods of 1 and 2, and the whole �
2

=

1

[2 has a period

of size not larger than 1

4

�. Consequently, the run �
2

is h-periodic. This completes the proof. 2

5.2 The Proof of Point A of Lemma 2.1

If we take � = d�

k

e then, as a direct corollary of Lemma 5.2 we obtain Point A of Lemma 2.1.

6 The Proof of Point B of Lemma 2.1.

First we prove the following lemma.

Lemma 6.1

Assume we have two distinct hp-runs �;� with the same subperiod p and such that periodic part of

one of them is a prefix of the periodic part of another. Then dist(�;�) � p.

Proof : If dist(�;�) < p then, due to periodicity lemma [9, 3, 13], the periodic part of one of the

runs would have subperiod smaller than p, which contradicts the assumption that p is the smallest

subperiod. 2

We say that a hp-run � = [i : : : j℄ of a string w is left-periodic iff w[i - 1℄ = w[i - 1 +

subperiod(�)℄. The runs �; in Figure 2 are left-periodic. We also say that a position i in a

word w breaks period p iff w[i℄ 6= w[i + p℄. Hence a hp-run � of a word w is left-periodic iff

10

first(�) - 1 does not break subperiod(�). In other words the subperiod of PerPart(�) contin-

ues to the left.

Example. In Figure 2 the runs �;�; are shown, the first one is not left periodic and the other two

are. The position enter(�) - 1 = enter() - 1 = 21 breaks subperiod 3. The periodic part of

� is a prefix of a periodic part of .

α)

a a a a a b a a a a a

PerPart(

h−periodic segment λ

PerPart(β)center()α

p
β

α

Figure 9: Two left-periodic runs. The position enter(�)-1 = enter(�)-1 breaking subperiod

p is placed in a small square. subperiod(�) = subperiod(�) = p, enter(�) = enter(�).

The second occurrences of periodic parts of � and � start at the same position enter(�), conse-

quently PerPart(�) is a prefix of PerPart(�).

Lemma 6.2

Assume two neighbors �;� are left-periodic and h-periodic. Then enter(�) = enter(�).

Proof :

We first prove that positions enter(�) - 1; enter(�) - 1 break subperiod(�), see Figure 9.

The proof is by contradiction. If it is not true then one of these runs can be extended one position to

the left. This contradicts the definition of the run as a left non-extendible segment. The positions

enter(�) and enter(�) are positions in the same h-periodic segment �, see Figure 9. They

should be equal to the first position of this segment, because the next position to the left breaks the

period. Hence they should be the same position, consequently enter(�) = enter(�). 2

Lemma 6.3 If �;� are two hp-runs of a string w and satisfy for a given p > 1 the inequality

dist(�;�) < p and �;� 2 R(p)

then subperiod(�) = subperiod(�).

Proof : Assume that first(�) � first(�). If dist(�;�) < p and p � per(�); per(�) < 2p

then periodic parts of hp-runs �;� have an overlap of size at least per(�) + per(�). Then, due to

the periodicity lemma the periodic parts PerPart(�), PerPart(�) have the same minimal period.

Consequently subperiod(�) = subperiod(�). 2

11

6.1 The Proof of Point B of Lemma 2.1.

Due to Lemma 6.3 the HP-Runs Lemma is reduced to a slightly weaker statement:

For a given p > 1 there are at most two occurrences of hp-runs with subperiod p in any interval

of length p.

The proof of this fact is by contradiction. Assume we have three distinct hp-runs �
1

� �

2

� �

3

with the same subperiod p such that dist(�
i

; �

j

) � p for 1 � i; j � 3. Then all of them are

neighbors. We show that �
2

= �

3

. Both �

2

; �

3

should be left-periodic since their subperiods

extend to the left at least to first(�
1

).

Therefore the runs �
2

; �

3

are h-periodic and they are neighbors. Due to Lemma 6.2 enter(�
2

) =

enter(�

3

). Consequently periodic parts of �
2

and �

3

have occurrences starting at the same po-

sition enter(�

2

). If two words start at a same position then one should be a prefix of another.

Consequently PerPart(�

3

) is a prefix of PerPart(�
2

). Now, due to Lemma 6.1, if �
2

6= �

3

then

first(�

3

)-first(�

2

) � p. However first(�
3

)-first(�

2

) < p. This implies that all of �
1

; �

2

; �

3

cannot be pairwise distinct. This contradicts the assumption and completes the proof of this fact and

of Point B of Lemma 2.1.

References

[1] M. Crochemore, An optimal algorithm for computing the repetitions in a word, Inf. Proc. Letters

42:5(1981) 244-250

[2] F. Franek, R.J.Simpson, W.F.Smyth, The maximum number of runs in a string, Proc. 14-th Australian

Workshop on Combinatorial Algorithms, M.Miller, K. Park (editors) (2003) 26-35

[3] M. Crochemore, W.Rytter, Jewels of stringology: text algorithms, World Scientific 2003

[4] Kangmin Fan, William F. Smyth, R. J. Simpson: A New Periodicity Lemma. CPM 2005: 257-265

[5] F. Franek, A. Karaman, W.F.Smyth, Repetitions in Sturmian strings, TCS 249-2 (2000) 289-303

[6] C. Iliopoulos, D. Moore, W.F.Smyth, A characterization of the squares in a Fibonacci string, TCS 172

(1997) 281-291

[7] R.Kolpakov, G.Kucherov, On maximal repetitions in words, Journal of Discr. Algorithms 1 (2000) 159-

186

[8] R.Kolpakov, G.Kucherov, Finding maximal repetitions in a word in linear time, FOCS (1999) 596-604

[9] Lothaire, Algebraic combinatorics on words, Cambridge University Press

[10] M.G.Main, R.J.Lorentz, An O(n logn) algorithm for finding all repetitions in a string, Journal of Al-

gorithms 5 (1984) 422-432

[11] W.Rytter, The structure of subword graphs and suffix trees of Fibonacci words, in Colloquium on Im-

plementation and Application of Automata, CIAA (2005)

[12] W.Rytter, The number of runs in a string: improved analysis of the linear upper bound, STACS 2006,

LNCS 3884

[13] W.F.Smyth, Computing patterns in strings, Addison-Wesley (2003)

[14] W.F.Smyth, Repetitive perhaps, but certainly not boring, TCS 249-2 (2000) 343-355.

