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a b s t r a c t

The article is an overview of basic issues related to repetitions in strings, concentrating on
algorithmic and combinatorial aspects. This area is important both from theoretical and
practical points of view. Repetitions are highly periodic factors (substrings) in strings and
are related to periodicities, regularities, and compression. The repetitive structure of strings
leads to higher compression rates, and conversely, some compression techniques are at
the core of fast algorithms for detecting repetitions. There are several types of repetitions
in strings: squares, cubes, and maximal repetitions also called runs. For these repetitions,
we distinguish between the factors (sometimes qualified as distinct) and their occurrences
(also called positioned factors). The combinatorics of repetitions is a very intricate area,
full of open problems. For example we know that the number of (distinct) primitively-
rooted squares in a string of length n is nomore than 2n−Θ(log n), conjecture to be n, and
that their number of occurrences can be Θ(n log n). Similarly we know that there are at
most 1.029 n and at least 0.944 nmaximal repetitions and the conjecture is again that the
exact bound is n. We know almost everything about the repetitions in Sturmian words, but
despite the simplicity of thesewords, the results are nontrivial. One of themainmotivations
for writing this text is the development during the last couple of years of new techniques
and results about repetitions. We report both the progress which has been achieved and
which we expect to happen.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Repetitions and periods in strings constitute one of the most fundamental areas of string combinatorics. They have been
studied already in the papers of Axel Thue [46], considered as having founded stringology. While Thue was interested in
finding long sequences with few repetitions, in recent times a lot of attention has been devoted to the algorithmic side of
the problem.
Periods are ubiquitous in string and pattern matching algorithms. Knuth–Morris–Pratt string matching algorithm uses

the border table of the pattern, which is equivalent to using the periods of all its prefixes. Periods are implicitly computed
when preprocessing the pattern in the as well famous Boyer–Moore algorithm (see [9,26]). The basic reason why periods
show up in this question is that stuttering is likely to slow down any string matching algorithm. The analysis of periods is
even more important in constant-space optimal pattern matching algorithms because the only information on the patterns
that is precomputed and stored is related to global and local periods of the pattern: perfect factorisation [23], critical
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factorisation [15], or sampling method [24]. By the way, the difficulties in extending string matching techniques to image
pattern matching methods are essentially due to different and more complex structures of 2D-periodicities.
Periodicities and repetitions in strings have been extensively studied and are important both in theory and practice. The

strings of the type ww and www, where w is a nonempty string, are called squares and cubes, respectively. They are well
investigated objects in combinatorics of strings [33] and in string matching with small memory [16].
Detecting repetitions in strings is an important element of several questions: pattern matching, text compression, and

computational biology to quote a few. Pattern matching algorithms have to cope with repetitions to be efficient as these
are likely to slow down the process; the large family of dictionary-based text compression methods (see [47]) use a weaker
notion of repeats (like the software gzip); repetitions in genomes, called satellites or Simple SequenceRepeats, are intensively
studied because, for example, some over-repeated short segments are related to genetic diseases [35]; some satellites are
also used in forensic crime investigations.
In this survey, we recall some of the most significant achievements in the area over the past three decades or so, as

well as point out several central open questions. We focus on algorithms for finding repetitions and, as a key component,
on counting various types of repetitions. The main results concern fast if not optimal algorithms for computing squares
occurrences and runs, as well as combinatorial estimation on the number of the corresponding objects. Section 2 is devoted
to properties of squares, Section 3 to that of runs, and finally the last two sections investigate repetitions in Fibonacci words
and in Sturmian words.

2. Squares

Let A be an alphabet of size a and A∗ the set of all finite strings over A. We denote by |w| the length of a string or word
w, its ith letter by w[i], and its factor (substring) w[i]w[i + 1] . . . w[j] by w[i . . j]. Note that w = w[1 . . |w|]. We say that
w has period p if w[i] = w[i + p], for all i, 1 ≤ i ≤ |w| − p. The period of w is its smallest period and is denoted by
period(w). The ratio between the length and the period of w is called the exponent of w. The string u is said to be periodic
if period(u) ≤ |u|/2. A repetition in w is an interval [i . . j] ⊆ [1 . . |w|] for which the associated factor w[i . . j] is periodic. It
is an occurrence of a periodic stringw[i . . j], sometimes called a positioned repetition in the literature. A string can contain
many repetitions, see Fig. 3.
In the following, we analyse squares in a string x of length n.
The simplest but most investigated type of repetition is the square. A square is a string of the form ww, where w is

nonempty. Indeed, to avoid counting redundant elements, the root w of the square is assumed to be primitive, that is, it is
not itself the power of another string. This is equivalent to say that the exponent ofww is 2. Note that the same square may
appear several times in the same string and then we talk about square occurrences or equivalently positioned squares. As we
shall see, counting distinct squares, i.e. squares that are distinct strings, or squares occurrences gives very different results.

2.1. Square occurrences

Initially people investigated mostly squares occurrences, but their number can be as high as Θ(n log n) [6], hence
algorithms computing all of them cannot run in linear time, due to the potential size of the output. Indeed the same result
holds for any type of repetitionhaving an integer exponent greater than 1 [8]. The optimal algorithms reporting all positioned
squares or just a single square were designed in [6,1,37,7].

Theorem 1 (Crochemore [6], Apostolico–Preparata [1], Main–Lorentz [37]). There exists an O(n log n) worst-case time algo-
rithm for computing all the occurrences of primitively-rooted squares in a string of length n.

Techniques used to design the algorithms are based on partitioning, suffix trees, and naming segments, respectively. A
similar result has been obtained by Franek, Smyth, and Tang using suffix arrays [22]. The key component of the algorithm
of Theorem 3 is the function described in the following lemma. We say that an occurrence of a square ww in uv is centred
in u (resp. v) if its position i satisfies i+ |w| < |u| (resp. i+ |w| ≥ |u|).

Lemma 2 (Main–Lorentz [37]). Given two square-free strings u and v, reporting if uv contains a square centred in u can be done
in worst-case time O(|u|).

Using suffix trees or suffix automata together with the function derived from the lemma, the following fact has been
shown.

Theorem 3 (Crochemore [7], Main–Lorentz [37]). Testing if a string of length n is square-free can be done in worst-case time
O(n log a), where a is the size of the alphabet of the string.

Another interesting result concerning periodicities is the following lemma and its fairly immediate corollary.

Lemma 4 (Three Square Prefixes, Crochemore–Rytter [16]). If u, v, andw are three strings such that u is primitive, uu is a proper
prefix of vv, and vv is a proper prefix ofww, then |u| + |v| ≤ |w|.



M. Crochemore et al. / Theoretical Computer Science 410 (2009) 5227–5235 5229

Fig. 1. Three squares that are prefixes of each other: u2 < v2 < w2 with |w| ≤ 2|u|. In this case none of the strings u, v, w is primitive.

Fig. 2. The string w4 = 021011021 031021031 041031041 051041051 contains many squares. The rightmost occurrence of each square is displayed. The
numbers in the bottom sequence give the number of squares whose rightmost occurrence starts at that position.

A couple of proofs of this important lemma, different from the original, were given. A short one appears in [33, page 281].
A very simple proof of a slightly weaker result, where 2|u| < |w|, is given in [34, page 433]. We recall here the simplest such
proof, due to Ilie [28],which yields two results: aweaker version of Lemma4 (2|u| < |w| if any of the three strings is assumed
primitive) and Corollary 2. For the former, assume 2|u| ≥ |w|; see Fig. 1 where ui = u, 1 ≤ i ≤ 3. Set u−1v = xp with x
primitive. The overlap between u1 and u2 gives that u = xrx′, for a prefix x′ of x. Synchronisation of primitive powers of x in
u3 with those in u2 and the suffix xp of v implies that x′ is empty and hence none of u, v, andw is primitive, a contradiction.
A fairly immediate consequence of Lemma 4 is the next corollary.

Corollary 1. Any nonempty string of length n possesses less than logΦ n prefixes that are squares, where Φ is the golden mean
(1+
√
5)/2.

2.2. Distinct squares

Unlike their number of occurrences discussed above, it is known that only O(n) (distinct) squares can appear in a string
of length n [19].
In the configuration of Lemma 4, a second consequence is that uu is a prefix ofw. Therefore, a position in a string x cannot

be the largest (rightmost) position of more than two squares, which yields the next corollary. As mentioned earlier, a simple
proof of it, bypassing Lemma 4 and due to Ilie [28], is illustrated by Fig. 1. If three squares u2, v2, and w2 start at the same
position, then the shortest of those, u2 appears again later. Indeed, this is obvious if 2|u| ≤ |w|. Otherwise, u2 appears again
|x| positions later. Therefore, at most two squares can have their last (rightmost) occurrences starting at the same position.
The claim follows.

Corollary 2 (Fraenkel and Simpson [19]). Any string of length n contains at most 2n (distinct) squares.

The structure of all squares and of unpositioned runs has been also computed within the running time O(n log a) in
[36,27].
Based on numerical evidence, it has been conjectured that the number of (distinct) squares in a string of length n is at

most n. The best bound to date, 2n−Θ(log n), was given in [29].
Proving the conjecture is probably difficult due to the following example from [19]. Consider the family of strings

wm =
⊙m
i=1 0

i+110i10i+11, for all m ≥ 1 (
⊙
denotes the concatenation). Then, the length of wm is |wm| = 3

2m
2
+
13
2 m

and the number of squares it contains is very close to it: 32m
2
+ 4m− 3+ odd(m)

2 , that is, |wm| − o(|wm|).
Fig. 2 displays w4 and the last occurrences of all its squares. It is interesting to note that, although the string has many

squares, this bottom sequence contains very few 2’s.

3. Runs

The concept of maximal repetitions, called runs in [30], has been introduced to represent all repetitions in a succinct
manner. The crucial property of runs is that there are only O(n)many of them in a string of length n [32,42,10,40].
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Fig. 3. The structure of runs in the string baababaababbabaababaab = bz2(zR)2b, where z = aabab and zR = babaa.

Table 1
Maximum number of runs in binary strings of length n, 5 ≤ n ≤ 31 (from [32]).

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

runs 2 3 4 5 5 6 7 8 8 10 10 11 12 13 14 15 15 16 17 18 19 20 21 22 23 24 25

Fig. 4. The f-factorisation of the string baababaababbabaababaab of Fig. 3 and the set of its internal runs; all other runs overlap factorisation points.

A run in a stringw is an interval [i . . j] such that both the associated stringw[i . . j] has period p ≤ (j− i+ 1)/2, and the
periodicity cannot be extended to the right nor to the left:w[i− 1] 6= w[x+ p− 1] andw[j− p+ 1] 6= w[j+ 1]when these
elements are defined. When the period p of a run is known, we call it a p-run. An example is displayed in Fig. 3.
As a consequence of the algorithms and of the estimation on the number of squares, the most important result related

to repetitions in strings can be formulated as follows.

Theorem 5 (Kolpakov–Kucherov [32], Rytter [42], Crochemore–Ilie [10]).

(i) All runs in a string of length n over an alphabet of size a can be computed in time O(n log a).
(ii) The number of all runs is linear in the length of the string.

The point (ii) is very intricate and of purely combinatorial nature. The algorithm for (i) executes in time proportional to
the number of runs (on a fixed-size alphabet) which, by (ii), is linear. Indeed, with an reasonable hypothesis on the alphabet,
the running time of (i) can be reduced to O(n) as stated in Theorem 6.
Let ρ(n) be themaximal number of runs in a string of length n. By item (ii) we have ρ(n) < cn for some constant c. Based

on the results in Table 1, Kolpakov and Kucherov [32] conjectured that c = 1 for binary alphabets. A stronger conjecture
was proposed in [21] where a family of strings is given with the number of runs equal to 3

2Φ = 0.927 . . . (Φ is the golden
ratio), thus proving c ≥ 0.927 . . .. The authors of [21] conjectured that this bound is optimal, but the best-known lower
bound for c has been shown to be 0.944more recently by Matsubara et al. [38]. Some reasons which might indicate that the
optimal bound may be less than n are discussed in Section 6.

3.1. Computing runs

Next, we sketch shortly the basic components of the proof of the point (i) of Theorem 5. The main idea is to use, as for
the previous Theorem 3, the f-factorisation of the input string 1 (see [7]): a stringw is decomposed into factors u1, u2, . . . , uk,
where ui is the longest segment which appears before its position in w, i.e. in u1u2 . . . uiA−1, possibly with overlapping the
present occurrence of ui; if the segment is empty ui is a single letter (see Fig. 4).
The runs which fit in a single factor of the f-factorisation are called internal runs, other runs are called here overlapping

runs. Fig. 4 shows the f-factorisation and the internal runs of an example string.
There are three crucial facts:

• all overlapping runs can be computed in linear time,
• each internal run is a copy of an earlier overlapping run,
• the f-factorisation can be computed in linear time under some hypothesis on the alphabet of the string (see Theorem 6).

It follows easily from the definition of the f-factorisation that if a run overlaps two (consecutive) factors uk−1 and uk then
its size is at most twice the total size of these two factors.
Fig. 5 shows the basic idea for computing runs that overlap uk−1 and uk in time O(|uk−1| + |uk|). Using similar tables as

in the Morris–Pratt algorithm (border and prefix tables, see [9,17]) we can test the continuation of a period p, to the left and
to the right. The corresponding tables can be constructed in linear time in a preprocessing phase.
After computing all overlapping runs the internal runs can be copied from their earlier occurrences by processing the

string from left to right. Recall that, by (ii), there are only linearly many.
The above process is offline and computing all runs in linear time online, i.e. sequentially while reading the input string,

is an open question. This might be of great interest when processing streams of data.

1 This factorisation plays an important role in data compression algorithms and has many other applications. Its combinatorial properties have been
investigated in [3,5]; see the latter for a number of open problems.
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Fig. 5. If an overlapping run with period p starts in uk−1 , ends in uk , and its part in uk−1 is of size at least p, then it is easily detectable by computing
continuations of the period p in the two directions, left and right.

Fig. 6. This string of length 116 contains 99 runs (99/116 > 0.85). It has 27 1-runs, 26 2-runs, 27 3-runs, 6 5-runs, 5 8-runs, 6 13-runs, 1 21-run, and the
whole string is a 55-run.

Fig. 7. Several runs starting at the same position. Their periods grow exponentially.

Fig. 8. Several runs with the same centre. Their periods grow only linearly. Above the string, strong local periodicities are shown.

The f-factorisation of a string is commonly computed with the suffix tree or the suffix automaton of the string. When
the alphabet of the string has a fixed size thanks to the efficient algorithms for building these data structures, the whole
process can be carried on in linear time. Two recent algorithms, due to [12,4] (see also [13]), use the suffix array of the string
to provide linear time algorithms for integer alphabets. The hypothesis means that the alphabet of the string of length n is
in the interval [0, nd], for some constant d, which implies that letters can be sorted in linear time.
Theorem 6 (Crochemore–Ilie [12], Chen–Puglisi–Smyth [4]). On an integer alphabet, the f-factorisation of a string and its runs
can be computed in linear time.

3.2. Counting runs

Themost intriguing question remains the asymptotically tight bound for themaximumnumber of runs ρ(n) in a string of
length n. The first proof (by painful induction) was quite difficult and has not produced any concrete constant coefficient in
the O(n) notation. This subject has been studied in [21,20,44,45]. The exact number of runs has been considered for special
types of strings (see Sections 4 and 5): Fibonacci strings and more generally Sturmian strings [18,30,42]. The best-known
lower bound of approximately 0.944 n is from [38].2 Fig. 6 gives a sample of string containing many runs.
The first explicit upper bound for general stringswas given by Rytter [42], that is, ρ(n) ≤ 5n, and improved in a structural

and intricate manner in [43], ρ(n) ≤ 3.44 n, by introducing a sparse-neighbour technique. Another improvement of the ideas
of [42] was done in [40] where the bound 3.48 n is obtained. The neighbours are runs for which both the distance between
their starting positions is small and the difference between their periods is also proportionally small according to some fixed
coefficient of proportionality. The occurrences of neighbours satisfy certain sparsity properties which imply the linear upper
bound. Several variations for the definitions of neighbours and sparsity are possible. Considering runs having close centres
(the beginning position of the second period) the bound has been lowered to 1.6 n in [10,11], improved to 1.52 n in [25],
and further to 1.029 n as a result of computations (see [14]).3
It is interesting to note that the approach of [10,11] is somewhat counterintuitive. On the one hand, Corollary 1 states

that there can be only logarithmically many runs starting at the same position and this is how they are counted in [42]; see
Fig. 7 for an example. On the other hand, there can be linearly many runs with the same centre, see the example in Fig. 8,
and still counting them this way in [10,11] yields a better bound. This is essentially due to the fact that many runs with the
same centre implies strong local periodicities in the string, thus eliminating many other potential runs.

2 See the Web page http://www.shino.ecei.tohoku.ac.jp/runs/.
3 See the Web page http://www.csd.uwo.ca/∼ilie/runs.html for the results of latest computations.
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Fig. 9. The structure of runs in the Fibonacci word F11 . The arrows show endpoints of its prefixes which are the Fibonacci words f4 , f5, . . . , f11 . The string
contains 65 runs. There are 21 = F8 1-runs (occurrences of aa), 12 = F7 − 1 2-runs, 13 = F7 3-runs, 8 = F6 5-runs, 5 = F5 8-runs, 3 = F4 13-runs, 2 = F3
21-runs, and 1 = F2 34-run.

4. The structure of runs in Fibonacci words

The structure of runs is well understood for the class of Fibonacci words. Let us denote by fn the n-th Fibonacci word (f0
is the empty word, f1 = b, f2 = a, and fn = fn−1fn−2 for n > 2), by Fn = |fn| the nth Fibonacci number, and byF∞ the infinite
Fibonacci word.
Kolpakov and Kucherov (see [34, Chapter 8]) have shown the following two properties of runs occurring in Fibonacci

words.

Theorem 7 (Kolpakov–Kucherov [34]).

(i) There are exactly 2Fn−2 − 3 runs in the n-th Fibonacci word fn.
(ii) The sum of exponents of runs in Fibonacci words is hFn + o(n), where 1.922 ≤ h ≤ 1.926.

Property (i) shows in particular that the asymptotic ratio of runs in Fibonacci words is (Φ is the goldenmean (1+
√
5)/2)

lim
n→∞

2 Fn−2 − 3
|fn|

=
2

1+ Φ
≈ 0.76.

In fact we can compute the number of p-runs for a specific period p. We say that the p-run w is short if |w| < 3p, and
long otherwise. Let also gn be the n-th Fibonacci word fn with the last two letters removed. We have:

Lemma 8. Every run of F∞ with a period larger than two is of one of the two types: either a short β-run, i.e. of the form
βk = f 2k−1gk−2, or a long α-run, i.e. of the form αk = f

3
k−2gk−3, for some integer k.

An immediate corollary follows from the structure of runs.

Corollary 3 (Karhumäki [31]). There is no nonempty factor of the formw4 in the infinite Fibonacci word F∞.

Indeed, it appears that maximal-exponent repetitions in F∞ correspond to long α-runs. Their exponent, for a given k, is
then:

|αk|

period(αk)
=
|f 3k−2gk−3|
|fk−2|

=
3Fk−2 + Fk−3 − 2

Fk−2
=
Fk−1 − 2
Fk−2

+ 2,

whose limit is:

lim
k→∞

Fk−1 − 2
Fk−2

+ 2 = Φ + 2.

Therefore, if we define the repetition order of the (finite or infinite) string x, denoted by rep(x), as

rep(x) = sup{|w|/period(w) | w is a finite factor of x},

we get the stronger following corollary (see [33, Chapter 8]).

Corollary 4 (Mignosi–Pirillo [39]). The repetition order of the infinite Fibonacci word F∞ is rep(F∞) = Φ + 2.

Counting runs occurring in Fibonacci words by their period yields the next result illustrated by Fig. 9. This provides an
alternative proof for the number of all runs in Fibonacci words.

Theorem 9 (Rytter [41]). The Fibonacci word fn, n ≥ 6, contains Fn−3 1-runs, Fn−4 − 1 2-runs, and Fn−k Fk-runs for any k
satisfying 4 ≤ k ≤ n− 2.
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5. Maximal repetitions in Sturmian words

The standard Sturmian words are generalization of Fibonacci words and similarly as Fibonacci words are described by
recurrences. We denote by S the class of standard Sturmian words.
The recurrence for a standard word is related to its so-called directive sequence: an integer sequence of the form

γ = (γ0, γ1, . . . , γn), where γ0 ≥ 0 and γi > 0 for 0 < i ≤ n. The standard word corresponding to γ , denoted by
S(γ ) = xn+1, is defined by the recurrence relations:

x−1 = b, x0 = a, x1 = x
γ0
0 x−1, x2 = x

γ1
1 x0,

x3 = x
γ2
2 x1, . . . , xn = x

γn−1
n−1 xn−2, xn+1 = xγnn xn−1.

For example, a Fibonacci word is generated by a directive sequence of the form (1, 1, . . . , 1).
The number N = |xn+1| is the (real) length of the word, while n can be thought as its compressed size. It happens that N

can be exponential with respect to n, and computations on the word in time O(n) are often rather nontrivial.
To state the next result, we introduce a zero-one function, called unary, for testing if its argument equals 1:

if x = 1 then unary(x) = 1 else unary(x) = 0.

We also denote by |x|a the number of occurrences of letter a in the word u. The next statement gives a precise count of the
number of runs in a Sturmian word.

Theorem 10 (Baturo–Piatkowski–Rytter [2]). Let γ = (γ0, . . . , γn) be the directive sequence and n ≥ 3. Then the number of
runs in S(γ ) equals:

ρ(S(γ )) =


2 A+ 2 B+∆(γ )− 1 if γ0 = γ1 = 1
(γ1 + 2) A+ B+∆(γ )− odd(n) if γ0 = 1; γ1 > 1
2A+ 3B+∆(γ )− even(n) if γ0 > 1; γ1 = 1
(2 γ1 + 1) A + 2 B + ∆(γ ) otherwise

where

A = |S(γ2, γ3 . . . , γn)|a, B = |S(γ3, γ4 . . . , γn)|a
∆(γ ) = n− 1− (γ1 + . . .+ γn)− unary(γn).

The theorem yields the two next corollaries by the same authors.

Corollary 5.

(a) ρ(w) ≤ 4
5 |w| for eachw ∈ S

(b) Letwk = S(1, 2, k, k). Then limk→∞ ρ(wk)
|wk|
=

4
5 .

Corollary 6. Counting the number of runs in the standard Sturmian word S(γ0, . . . , γn) can be achieved in time O(n).

6. Conclusion and further research

One of the main motivations for writing this text was the development during the last couple of years of new techniques
and results about repetitions. In this survey, we reported both the progress which has been achieved and which we expect
to happen. We recalled some of the most significant achievements, as well as pointed out several central open questions,
like the conjectures on the maximal number of (distinct) squares occurring in a string and the maximal number of runs. We
focused on algorithms for finding repetitions and, as a key component, on counting various types of repetitions.
Although the Kolpakov and Kucherov’s conjecture on the maximum number of runs in a string is still unsolved, from

the practical point of view of the analysis of algorithms depending on this number, its very tight approximation is largely
sufficient. A possible research track to attack the question is to study the compressibility of run-rich strings in addition to
their combinatorial properties.
Aside from the above-mentioned open questions, we discuss here several other related problems.

Distinct runs. Inspired by the square problem, we may look at the strings associate with runs and count only the number of
runs associated with different strings. Notice that the number of nonequivalent runs and that of squares do not seem to be
obviously related to each other. The same run may contain several distinct squares (e.g., ababa contains the squares abab
and baba) but we can have also distinct runs corresponding to a single square (e.g., aa and aaa are distinct runs but only the
square aa is involved).

(2+ε)+-repetitions. Away toweaken the conjecture on the number of squares is to increase the exponent of the repetition.
Given a non-negative ε, one could count only the number of repetitions of exponent 2+ ε or higher. We need first to make
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it precise what we are talking about. We count primitively-rooted repetitions of exponent at least 2+ ε and having distinct
roots. That is, xα and yβ , x and y primitive, α ≥ 2+ ε, β ≥ 2+ ε, are different if and only if x 6= y.
This conjecture might be easier to prove. At least for 2 + ε = 1 + Φ (where Φ is the golden ratio) we can prove it

immediately. We count each square at the position where its rightmost occurrence starts and show that no two distinct
squares can have the same rightmost starting position. Assume x1+Φ is a prefix of y1+Φ and denote |x| = p < q = |y|. Then
necessarily |x1+Φ | = (1 + Φ)p > Φq = |yΦ | as otherwise x1+Φ would have another occurrence to the right. That means
Φ2p = (1 + Φ)p > Φq, or Φp > q. Therefore, the overlap between the two runs has the length |x1+Φ | = (1 + Φ)p =
p+Φp > p+ q. By Fine and Wilf’s lemma, this means x and y are powers of the same string and therefore not primitive, a
contradiction.

(2− ε)+-repetitions. This is similar to the previous problem except that now we consider repetitions of exponent 2− ε or
higher. Is the number of such maximal repetitions still linear? If this is false for any ε > 0, then 2 is the optimal threshold.
Otherwise, the optimal threshold needs to be found.
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