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I .  INTRODUCTION 

When traversing a graph it is frequently necessary to ask "was a given vertex 

visited before?". If the set of vertices is known in advance and if the graoh is 

labelled (i.e. we know What is i-th vertex) then using an array representation we 

can answer this question in constant time. However, there are situations when this 

is not so simple. We present a family of graphs, called plane labyrinths whose 

vertices are not known expiicitely at the beginning of the traversai: Thus, initi- 

ally we know only the starting vertex and some rules describing the neighbourhoods 

of vertices. 

By a plane l a b y r i n t h  ( b r i e f l y  l a b y r i n t h )  we mean a f i v e - t u p l e  L = ( s t a r t ,  east ,  

west, south, north) where start is an i n tege r  p o i n t  o f  the n lane and east, west, 

south and north are predicates which, for a given node, v, inform us whether there 

is a passage from v in the corresponding direction. Imagine a mouse tranversing 

the labyrinth. It can see only locally and it does not know the global structure 

of the labyrinth. At any moment, it only knows the part of the labyrinth traversed 

up to this moment, The labyrinth is an undirected connected graph whose vertices 

are integer points of the plane and such that if two vertices are adjacent then one 

can be obtained from the other by a versor (unit vector) move. Assume that we know 

the number of vertices which we denote by n and call the size of the labyrinth. 

Note that the number of the edges of L is O(n). The problem is to visit each node 

of L. The size of the problem is n. 

Suppose tha t  our  method o f  t r a v e r s i n g  the l a b y r i n t h  is d e p t h - f i r s t  search.  

f o l l o w i n g  orocedure t ranverses  the l a b y r i n t h .  The i n i t i a l  va lue  o f  v ( cu r ren t  

ve r tex )  is equal to s t a r t .  

The 



224 

procedure search; 

var d: direction 

begin 

for each direction d do 

i_f_f open (v,d) then 

begin 

forward move: v:= v+d; 

checking: if not visited before then search; 

return move: v:= v-d 

end 

end 

The procedure requires some comments. The possible values of d are east, west, 

south, north. We can treat them as versors. Hence -d denotes the direction reverse 

to d. We can treat also every vertex v as a point and the assignment v:=v+d shifts 

v in the direction d. If we want to implement this algorithm in linear time then 

we must check that the vertex v was not visited before using only constant time on 

the average. We denonte by ol~n(v,d) the relation which is true whenever there is 

a passage from v in direction d. 

The total number of executed assignment statements v:=v+d and v:=v-d is linear 

with respect to n because if the vertex v was visited before then~at this stage, we 

do not call the procedure search. Each of these statements is executed at most 

once for each value of v and its direction d. 

To check quickly if v was visited before we embed the labyrinth L into the bigger 

labyrinth P. We call P the pyramidal labyrinth. It is not a plane labyrinth but 

an agglomeration of plane labyrinths. 

2. TRAVERSING A PYRAMIDAL LABYRINTH. 

For a particular plane labyrinth [ of size n. The pyramidal labyrinth (briefly 

pyramid) ~ consists of interconnected nlane labyrinths Lo, L] .... ,L k , where 

k = log2n and L ° = [. If v = (x,g) then by Iv/2] we denote the point (Ix/2J, [y/2]). 

For m > 0 Lm = (Vm'Em) where Vm is the set of vertices of Lm " Vm = { Iv/2] Iv~Vm_l } 

and E m is the set of edges, Em = {(Iv~2] , [w/2J)I (v,w)~ Em_]]. 

Fioures l and 2 show a plane labyrinth and its pyramid. Observe that L k has 

always at most four vertices. In addition to horizontal connections we have also 
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Figure 1. The labyrinth i 

Figure 2. The corresponding to Figure 1 pyramidal labyrinth 
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vertical connections (edges) between each v in Lm_ 1 and [v/2J in L m for m (k. At 

the outset we know only the starting vertex in ahe nyramid which is the same as the 

starting vertex in L. The pyramidal structure was used in automata theory [2] We 

present here a simpler algorithm which possesses a recursive structure corresoonding 

naturally to the recursive structure of the pyramid. 

We design procedure MOVE which shifts the vertex v of the labyrinth L ]n the 
m 

direction d (executing v:=v+d) and creates some new nodes in the ~yramid. At each 

stage, uoon termination of ~OVE, the pyramid will contain the oart of the labyrinth 

traversed at this stage, the parts of the compressed labyrinths traversed at this 

stage and edges of labyrinths and interconnections between plane labyrinths. Assume 

that at the bottom of the pyramid is L ° and at the top is L k. The plane labyrinths 

are connected in a bottom un manner. The edges leading from ~/2J to v we call 

down edges. There are at most four down edges from a given vertex. Hence, with 

every vertex is associated information about the small labyrinth lying below it and 

containing at most four edges. Hence, trivially there exists a constant time pro- 

cedure MOVE1 which makes a move in Lk. 

procedure MOVE (v,d,m) ; 

var vl: vertex 

begin 
if m=k then ~OVE1 (v) 

else 

if: the edge from v in the direction d is already created 

then v:=v+d 

else 

beg i n 
vl:= [v/zJ ; 

i f :  vl ~ [(v+d)/2J then MOVE(vl,d,m+l) 

if: there exists a created edge ]eadina from vl down to v+d 

then find the vertex corresoonding to v+d using this edge 

else 

begin 

create a vertex corresponding to v+d; 

vislted := false 

end 

v:= v+d; 

create a transversed edge and all necessary connections between 

v and [v/2J if these connections were not crea~ed before 

end 

~nd 



227 

W 

E 

S 

N 

E 

E 
W 

W / W 

E / I  " I '" I W 

\ 

I 

Start. 

E E N 

S W 

Figure 3. A computer view of the pyramid P 
represented by two labelled pointers 
denote, respectively, the directions 

Each horizontal edge is 
The labels E, W, N, S 

east, west, north and south. 
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In this procedure v has a double meaning. It is a vertex of the labyrinth and it is 

also the name of a node in the data structure which represents this vertex. The 

pyramid is created during the traversal. Edges and connections of the pyramid are 

represented in the data structure created by pointers and this data structure is a 

computer representation of the pyramid. Figure 3 shows a computer view of the 

pyramid P. Using MOVE we transform the procedure to search to the fo]lowing ~roce- 

dure SEARCH. 

procedure SEARCH; 

var d: direction 

begin 

for each direction d do 

i f  open(v,d) t h e n  

beoin 

visited:: true ; 

f o re ,  a i d  move :  MOVE (v,d~O), 

c h e c k i n g  : i._f.f n o t  v is i ted  t h e n  SEARCH; 
r e t u r n  move : MOVE (v,-d,O) 

end 

end 

Let M(m) denote the number of calls MOVE(v,d,m) executed. 

LEMMA. Let m < k. 

M(m+l) ~ a M(m) + before some a < 1 and a constant b. 

Proof. 

Note that every five calls to MOVE in L m contain at most four calls to MOVE in 

Lm+ l . Hence we can take a = 4/5 and b = 4. This ends the proof. 

THEOREM. The time complexity of traversing a labyrinth of size n is O(n). 

Proof. 

We use the procedure SEARCH with v initially equal to the starting vertex. The 

time complexity is proportional to the number of calls to the orocedure MOVE. 

l og  n oo 
T(n) ~ c ~ M(i) ~ c M(O) ~ a i + cb log n = O(n) 

i=O i=0 

because in L ° we traverse each edge at most twice and we have O(n)edges. 

com~le~es the proof. 

Imagine again a mouse traversing the labyrinth. 

This 

I 

It can not contain in its memory 
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the square containing all the labyrinth because this leads to O(n2)-time algorithm. 

The pyramid from the 0oint of view of the mouse (or a comouter) consists only of the 

vertices and edges created. In this way we have proved that the size of the 0yramid 

P is O(n). Let P(n) denote the number of vertices of the pyramid P. What is the 

minimal constant c such that P(n) ~ cn? 
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