
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Information and Computation 205 (2007) 1459–1469

www.elsevier.com/locate/ic

The number of runs in a string�

Wojciech Rytter1

Institute of Informatics, Warsaw University, 02–097 Warsaw, Banacha 2, Poland

Received 14 June 2006; revised 15 January 2007
Available online 8 February 2007

Abstract

A run in a string is a nonextendable (with the same minimal period) periodic segment in a string. The set of runs
corresponds to the structure of internal periodicities in a string. Periodicities in strings were extensively studied and are
important both in theory and practice (combinatorics of words, pattern-matching, computational biology). Let �(n) be the
maximal number of runs in a string of length n. It has been shown that �(n) = O(n), the proof was very complicated and
the constant coefficient in O(n) has not been given explicitly. We demystify the proof of the linear upper bound for �(n) and
propose a new approach to the analysis of runs based on the properties of subperiods: the periods of periodic parts of the
runs We show that �(n) ≤ 3.44 n and there are at most O.67n runs with periods larger than 87. This supports the conjecture
that the number of all runs is smaller than n. We also give a completely new proof of the linear bound and discover several
new interesting “periodicity lemmas”.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Run; String; Periodicity

1. Introduction

We consider finite strings over a finite arbitrary alphabet. The set of all runs in a string corresponds to the
structure of its regularities. Initial interest was mostly in repetitions of the type xx (so called squares), [1, 12]. The
number of squares, with primitive x, is �(n log n), hence the number of periodicities of this type is not linear.
Then, it has been discovered that the number of runs (also called maximal repetitions or repeats) is linear and
consequently linear time algorithms for runs were investigated [10,9]. The result of [10] was one of the deepest
results related to combinatorics and algorithmics of strings. However, the most intriguing question remained
the asymptotically tight bound for the number of runs. The first bound was quite complicated and has not
given any concrete constant coefficient in O(n) notation. This subject has been studied in [15,16,2]. A beautiful
construction showing the lower bound of approximately 0.927 n has been given in [2].

� The preliminary version of this paper appeared in [14] Symposium on Theoretical Aspects of Computer Science, STACS 2006, with the
weaker result.

Email address: rytter@mimuw.edu.pl
1 The research was supported by the Grant KBN N206 004 32/0806.

0890-5401/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2007.01.007

Author's personal copy

1460 W. Rytter / Information and Computation 205 (2007) 1459–1469

The exact number of runs has been considered for special strings: Fibonacci words and (more generally)
Sturmian words, [8,7,13]. In this paper, we make a step towards better understanding of the structure of runs.
The proof of the linear upper bound is simplified and small explicit constant coefficient is given inO(n) notation.

A period p of a wordw is any positive integer p such thatw[i] = w[i + p] whenever both sides of this equation
are defined. Let per(w)denote the size of the smallest period ofw. We say that a wordw is periodic iff per(w) � |w|

2 .
A word w is said to be primitive iff w is not of a form zk , where z is a finite word and k � 2 is a natural number.

A run in a string w is an interval � = [i . . . j] such that w[i . . . j] is a periodic word with the period p =
per(w[i . . . j]) and this period is not extendable to the left or to the right of [i . . . j]. In other words, [i . . . j] is
a run iff |j − i + 1| � 2p , i = 1 or w[i − 1] /= w[i − 1 + p] and j = n or w[j + 1] /= w[j + 1 − p]. A run � can be
properly included as an interval in another run �, but in this case per(�) < per(�).

The value of the run � = [i . . . j] is val(�) = w[i . . . j]. When it creates no ambiguity we identify sometimes
runs with their values although two different runs could correspond to the identical subwords, if we disregard
positions of these runs. Hence runs are also called maximal positioned repetitions.

Denote by RUNS(w) the set of runs of w, see Fig. 1 for an example.
Denote: �(n) = max{|RUNS(w)| : |w| = n}. The most interesting and open conjecture about the runs is:

�(n) < n.
We make a small step towards proving validity of this conjecture and show that �(n) � 3.44 n. The proof of

linear upper bound in [10] does not give any explicit constant coefficient at all.
Components of a run.

Each value of the run � is a string xky = w[i . . . j], where |x| = per(�) � 1, k � 2 is an integer and y is a
proper prefix of x (possibly empty).
The subword x is called the periodic part of the run and denoted by PerPart(�) = x. Denote

SquarePart(�) = w[i . . . i + 2 per(�)− 1], center(�) = i + |x|
The position i is said to be the occurrence of this run and is denoted by first(�). We write � ≺ � iff first(�) <

first(�).
Define also dist(�,�) = |first(�))− first(�)|.

Example. In Fig. 2wehave: first(�) = 2, first(�) = 4, PerPart(�) = (aba)4ab; and center(�) = 22, center(�) =
center(�) = 21

In the paper, the crucial role is played by the runs � with highly periodic PerPart(�). Denote subperiod(�) =
per(PerPart(�)).

Example. In Fig. 2 we have:
subperiod(�) = subperiod(�) = subperiod(�) = 3.

We say that a word w is highly periodic (h-periodic) if per(w) � |w|
4 . A word which is not highly periodic is

said to be weakly periodic.
Observe that a word can be periodic but at the same time weakly periodic. Also, according to the definition,

weakly periodic word can be not periodic.

Algorithmic aspects An efficient algorithm for the computation of all runs was given in [10]. Its basic component is
a special decomposition of the string into blocks using a version of Lempel-Ziv compression (see [3,4]) Essentially

a a b a b a a b a b b a b a a b a b a a

Fig. 1. The structure of RUNS((aabab)2(babaa)2).

Author's personal copy

W. Rytter / Information and Computation 205 (2007) 1459–1469 1461

b a a b a a b a a b a a b a a b ab a ab b a a b a a b a a b a a b a a b a a b a

α
22

γ

4
β 21

Fig. 2. Example of three runs � = [2..26], � = [4..28], � = [7..31] with subperiod 3. We have � ≺ � ≺ � and dist(�,�) = 2. The runs �, �
are left-periodic (the subperiod 3 continues to the left), � is not. The runs �,� (as well as �, �) are “neighbors” in sense of Lemma 1. The
occurrences (starting positions) of very large runs can be very close. The periodic parts are indicated by the arcs.

the algorithm does not differ very much from the algorithm computing squares in strings. The main problem in
the analysis of the efficieny of this algorithm is the estimation of the number of runs, which is the subject of this
paper.

2. Two classes of runs and their sparsity properties

Our main approach is to explore sparsity properties of runs, however two very long runs can start at very
close positions, so the set of all runs do not have good sparsity property. The key idea is to partition the set of
all runs into two classes, for each of them we will have a sparsity property which will be good in different senses.

A run � is said to be a highly periodic run (an hp-run, in short) iff PerPart(�) is h-periodic. The run which is not
h-periodic is called a weakly-periodic run (wp-run).

In Fig. 2 �,�, � are hp-runs, in Fig. 1 all runs are wp-runs.

Example. In order to understand better the structure of hp-runs we show that the number of hp-runs is�(1
2n−

o(n)), though we are interested mainly in the upper bound. Let xk ,l = ((01)k0)l, see Fig. 3. The string xk ,k has
approximately 1

2n hp-runs. The exact formula for its number of hp-runs is (k − 1)(k − 4)+ 1 with the length of
xk ,k equal to n = (2k + 1) · k . Possibly it is asymptotically the maximal number of hp-runs in a string of length
n.

Denote � = 5
4

. We define two partitions of the set of runs of a given word:

L(k) = {first(�) : � is a wp-run of w, �k � per(�) < �k+1}
R(k) = {first(�) : � is a hp-run of w, k � subperiod(�) < 2k }

We say that a set X ⊆ {1, 2, . . . , n} is p-sparse iff in any interval of size at most p there are at most two positions
in X .

0 0 0 0 0 0 0 01 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 00 1 0 1 0 1 0 1 0 1 010 0 1 0

Fig. 3. The string xk ,l = ((01)k0)l for k = 6, l = 4, and its 7 hp-runs (the general fomula or the number of hp-runs of xk ,l is
(l− 1)(k − 4)+ 1).

Author's personal copy

1462 W. Rytter / Information and Computation 205 (2007) 1459–1469

We assume, to abbreviate the terminology, that we have a fixed word w of length n. Hence, in the notation we
omit the dependance on the input word. A tedious proof of the following lemma is given in the last two sections
of the paper.

Lemma 1. [Key-Lemma]

(A) For each k � 1 the set L(k) is � 1
4�

k�-sparse.
(B) For each p > 1 the set R(p) is p-sparse.

Example.

(a) In Fig. 5 the runs �,� are in L(11) (since ��11� = 12 and the lengths of periodic parts of �,� are 12, 13,
respectively). At the same time they start in the same interval of length � 1

4�
11� = 3.

(b) In Fig. 2 the runs �,� are in R(3) (since both have subperiod 3) and they start in the same interval of
length 3.

Denote by HP(n, p) the maximal number of hp-runs � with subperiod(�) � p , and by WP(n, p) the maximal
number of wp-runs � with period(�) � p , maximized over strings of length n.

The Key-Lemma implies in a simple way the following fact.

Lemma 2.
HP(n, p) � 4

p · n; WP(n, ��r�) � 40 ·�−r · n
Proof.

Point 1. Denote by hp(n, p) the maximal number of hp-runs � with p � subperiod(�) < 2p , maximized over
strings of length n.

It follows directly from Lemma 1 that hp(n, p) � 2
p n. Hence the number of hp-runs with subperiod at least

p is bounded from above by:

hp(n, p)+ hp(n, 2p)+ hp(n, 4p)+ hp(n, 8p)+ . . .

� 2n ·
(

1
p

+ 1
2p

+ 1
4p

+ 1
8p

+ . . .
)

� 4
p
n

Point 2. It follows directly from Lemma 1 that

|L(k)| � 2 ·
(

1/�k · 1
4

)
· n = 8�−k · n

Consequently, we have

WP(n, ��r�) �
∞∑
k=r

|L(k)| �
∞∑
k=r

8 ·�−k · n = 8�−r × 1
1 −�−1 · n = 40 ·�−r · n �

Observe that HP(n, 1) = 0 and �(n) = HP(n, 2)+ WP(n, ��0�). Consequently, we have directly the following
corollary of Lemma 1.

Corollary 1. �(n) � 42n.

In this way we have a very simple (if we disregard technicalities of the proof of Lemma 2.1) proof of a linear
upper bound for �(n) with an explicit coefficient.

In the next section, we reduce the coefficient from 42 to 3.44. The reduction is done by estimating separately
runs with small periodic part.

Author's personal copy

W. Rytter / Information and Computation 205 (2007) 1459–1469 1463

3. Estimating number of runs with small periodic part

We say that a run � is large iff per(�) > 86. Otherwise the run is called a small run. We estimate now the
number of small runs. Let �(n, k) be the maximal number of all runs � with per(�) � k , in a string of length n.
We estimate the number of runs with small PerPart(�) in a rather naive way using the following lemma.

Lemma 3. For any given k � 1 there are at most 1
k+1 n runs with per(�) = k or per(�) = 2k.

Proof. The proof of the following simple fact is illustrated in Fig. 4.

Claim 1. If u, v are primitive words and |u| = 2|v|, then vv is not contained in uu as a subword.

Assume that � ≺ � are two different runs with periods k or 2k .

If per(�) = per(�) = k then �,� can have an overlap of size at most k − 1, otherwise �,� could be merged
into a single run. Hence, first(�)− first(�) � k + 1.

If per(�) = k and per(�) = 2k then it is possible that first(�)− first(�) = 1. Due to the claim the distance
from first(�) to the occurrence of the next run � with period k or 2k is at least 2k + 1. Then, two consecutive
distances give together (first(�)− first(�)+ (first(�)− first(�)) � 2k + 2, and “on average” the distance is
k + 1. Therefore, there are at most n

k+1 runs with a period k or 2k . �
The last lemma motivates the introduction of the infinite set�, generated by the following algorithm (which

never stops).

� := ∅; 	 := {1, 2, 3, . . .};
repeat forever

k := min 	; insert k into �;
remove k and 2k from 	;

Define the set �(p) = {k ∈ � : k � p}. For example:

�(34) = {1, 3, 4, 5, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 25, 27, 28, 29, 31, 33}

For p � 1 define the numbers:

H(p) = ∑
k∈�(p) 1

k+1 .

The next lemma follows directly from Lemma 3 and from the structure of the set�. We have, by straightforward
brute-force calculations, that H(86) � 2.77.

Lemma 4.

(a) �(n, p) � H(p)× n.
(b) There are at most 2.77n small runs.

v v v

β δ β δ

Fig. 4. An occurrence of a square text vv inside a square text uu, where u = �
. The condition |u| = 2|v| implies that |v| is a period of uu,
consequently u is not primitive.

Author's personal copy

1464 W. Rytter / Information and Computation 205 (2007) 1459–1469

4. Estimating the number ρ(n) of all runs

The analysis of the number of large runs is based on the sparsity properties of hp-runs and wp-runs. We
estimate separately the number of runs in four disjoint classes:

• large hp-runs with subperiod larger than 21 (at most 2
11n);• large hp-runs with subperiod smaller than 22 (at most 1

45n);• large wp-runs; (at most 0.4612 · n)
• small runs (at most 2.77n, due to Lemma 4).

Denote by hp(n, p) the maximal number of hp-runs � with p � subperiod(�) < 2p , maximized over strings
of length n.

We use the following well known fact, see for example [5] for the proof.

Lemma 5. [Periodicity Lemma] Let p and q be two periods of the word x. If p + q � |x|, then the greatest common
divisor of p , q is also a period of x.

Lemma 6.

(a) There are at most 2
11n hp-runs with subperiod larger than 21.

(b) There are at most 1
45n large hp-runs with subperiod smaller than 22.

Proof. Point (a) follows directly from Lemma 2.

We show now Point (b). Two occurrences of two hp-runs with subperiods not exceeding 21 and with periods
larger than 86 have to at least at distance 87 − 2 · 21 = 45, otherwise they have large overlap implying that these
two runs merge into a single one (due to Lemma 5). Hence we have at most 1

45n large hp-runs with subperiod
smaller than 22. �
Lemma 7. There are at most 0.4612 · n large wp-runs.

Proof. If we choose r = 20 then
�r� = 86 and ��r� = 87.

Now it follows from Lemma 2 that the number of large runs is bounded from above by

40 ·
(

5
4

)−20

· n � 0.4612 · n �

4.1. Main Result

We can now combine all estimation together and proof the main result which gives a concrete constant
coefficient in O(n) notation for �(n).

Theorem 1. [Main Result]

(1) �(n) � 3.44 n;
(2) There are at most 0.67n large runs in a string of size n.

Proof. According toLemma7,Lemmas4and6wehaveatmost 2.77 small runs, andatmost
(

2
11 + 1

45 + 0.4612
)

·
n � 0.67n large runs.

Putting all together we get: �(n) � (2.77 + 0.67n) · n = 3.44n. �

Author's personal copy

W. Rytter / Information and Computation 205 (2007) 1459–1469 1465

5. The proof of point A of Lemma 2.1

We introduce a useful terminology of neighboring runs. We say that two different runs �, � are neighbors iff
there is a positive number � such that:

dist(�,�) � 1
4
� and � � per(�), per(�) � � �

Informally, two runs are neighbors iff they have similar periods and are positioned close to each other relatively
to their sizes, in particular this means that

per(�), per(�) � 4 |dist(�,�)|.

Example. In Fig. 5 we have two runs �,� which are neighbors with � = 12, per(�) = 13, per(�) = 12 and
dist(�,�) = 2.

5.1. The three meighbors lemma

If � ≺ � and the square part of � is not contained in the square part of � then we write � ≺≺ � (see Fig. 7).
More formally:

��� iff SquarePart(�) is contained in SquarePart(�) as an interval

� ≺≺ � iff [� ≺ � and not (���)]
Lemma 8.

(a) If ��� are distinct neighbors then � is an hp-run.
(b) If � ≺≺ � are distinct neighbors then the prefix of � of size per(�)−
 has a period |q− p |, where
 =

first(�)− first(�) and p = per(�), q = per(�).

b b a a a a a a a a a a b b a a a a a a a a a a a b b a

α

β

Fig. 5. Two weakly periodic runs �,� which are neighbors with � = 12. We have: �,� ∈ L(11) and dist(�,�) < � 1
4�

11� = 3.

δ

q

p

q

p

α

β

Fig. 6. Two neighbors with ���, a case center(�) > center(�). The square part of � is contained in the square part of �. The periodic part
of � is h-periodic, so it should have a period p − q, where p = per(�), q = per(�).

Author's personal copy

1466 W. Rytter / Information and Computation 205 (2007) 1459–1469

δ

α
β

δ q

q

p

p

Fig. 7. Two neighbors with � ≺≺ �, the case p < q. The shaded part has the period |q− p |, where p = per(�), q = per(�).

Proof.

Point (a) We refer the reader to Fig. 6, where the case center(�) > center(�) is illustrated. Obviously p > q. It
is easy to see that the whole PerPart(�) has a period per(�)− per(�).

Let � be the constant from the definition of neighbors, then

per(�)− per(�) � 1
4
� and |PerPart(�)| � � ,

hence PerPart(�) is h-periodic. The case center(�) � center(�) can be considered similarly.

Point (b) We refer to Fig. 7, when only the case p < q is shown. For each position i in the shaded area we
have w[i] = w[i + p] = w[i + p − q]. The opposite case p > q can be considered similarly. This completes the
proof. �

Lemma 9. [The three-neighbors lemma] If we have three distinct runs �1,�2,�3 which are pairwise neighbors with
the same number � then at least one of them is h-periodic.

Proof. If for some i, j �i � �j then the point (a) of the previous lemma can be applied.

Assume now that we have three runs �1 ≺ �2 ≺ �3 which are pairwise neighbors, with periods p1, p2, p3, respec-
tively. Let
1 = first(�2)− first(�1), and
2 = first(�3)− first(�2). Then, due to Lemma 8 the periodic part of

1

δ 2p2

δ p1 p2

α1

p1

α2

α31δ

2δ

Fig. 8. The three-neighbors lemma, a situation when �1 ≺≺ �2 ≺≺ �3. �2 should be h-periodic, since both its large suffix and large prefix
have small periods.

Author's personal copy

W. Rytter / Information and Computation 205 (2007) 1459–1469 1467

the “middle” run �2 has a suffix �2 of size p2 −
2 with a period |p3 − p2| and a prefix �1 of size p1 −
1 with a
period |p2 − p1| , see Fig. 8.

Let � be the number from the definition of neighbors. We have

1 +
2 � 1
4�, p1 � �, and |�1 ∪ �2| = p2.

Hence:

|�1 ∩ �2| � (p2 −
2)+ (p1 −
1)− p2 = p1 −
1 −
2 � 3
4
�

We have |p3 − p2|, |p2 − p1| � 1
4�, hence per(�1), per(�2) � 1

4�. Due to the periodicity lemma �1 ∩ �2 has a pe-
riod which divides periods of �1 and �2, and the periodic part of �2 has a period of size not larger than 1

4�.
Consequently, the run �2 is h-periodic. This completes the proof. �

5.2. The proof of point A of lemma 21

If we take � = ��k� then, as a direct corollary of Lemma 9 we obtain Point A of Lemma 1.

6. The proof of point B of Lemma 2.1.

First we prove the following lemma.

Lemma 10. Assume we have two distinct hp-runs �,� with the same subperiod p and such that periodic part of
one of them is a prefix of the periodic part of another. Then, dist(�,�) � p.

Proof. The proof is by contradiction. Assume that id = dist(�,�) < p . Denote by w the common prefix of these
runs of size 4p . Such a prefix exists due to high periodicity of these runs. Consequently, w has periods p and
d < p . Then, due to the periodicity lemma (Lemma 5), w has a period which is a proper divisor of p . This implies
that the periodic parts of these runs would have subperiod smaller than p , which contradicts the assumption
that p is the smallest subperiod. �

We say that a hp-run � = [i . . . j] of a string w is left-periodic iff w[i − 1] = w[i − 1 + subperiod(�)]. The runs
�, � in Fig. 2 are left-periodic. We also say that a position i in a wordw breaks period p iffw[i] /= w[i + p]. Hence
a hp-run � of a word w is left-periodic iff first(�)− 1 does not break subperiod(�). In other words the subperiod
of PerPart(�) continues to the left.

Example. In Fig. 2 the runs �,�, � are shown, the first one is not left periodic and the other two are. The position
center(�)− 1 = center(�)− 1 = 20 breaks subperiod 3. The periodic part of � is a prefix of a periodic part of � .

Lemma 11. Assume two neighbors �,� with the same subperiod are left-periodic. Then, center(�) = center(�).

Proof. We first prove that positions center(�)− 1, center(�)− 1 break subperiod(�), see Fig. 9. The proof is by
contradiction. If it is not true then one of these runs can be extended one position to the left. This contradicts
the definition of the run as a left non-extendible segment. The positions center(�) and center(�) are positions in
the same h-periodic segment �, see Fig. 9. They should be equal to the first position of this segment, because the
next position to the left breaks the period. Hence, they should be the same position, consequently center(�) =
center(�). �
Lemma 12. If �,� are two hp-runs of a string w and satisfy for a given p > 1 the inequality

dist(�,�) < p and �,� ∈ R(p)

then subperiod(�) = subperiod(�).

Author's personal copy

1468 W. Rytter / Information and Computation 205 (2007) 1459–1469

α)

a a a a a b a a a a a

PerPart(

 λ

PerPart(β)center(α)

p
β

α

Fig. 9. Two left-periodic runs. The position center(�)− 1 = center(�)− 1 breaking subperiod p is placed in a small square.
subperiod(�) = subperiod(�) = p , center(�) = center(�). The second occurrences of periodic parts of � and � start at the same position
center(�), consequently, PerPart(�) is a prefix of PerPart(�).

Proof. Assume that first(�) � first(�).
If dist(�,�) < p and p � subperiod(�), subperiod(�) < 2p then periodic parts of hp-runs �,� have an overlap
of size at least subperiod(�)+ subperiod(�). Then, due to the periodicity lemma the periodic parts PerPart(�),
PerPart(�) have the same minimal period. Consequently, subperiod(�) = subperiod(�). �

6.1. The proof of point B of lemma 2.1.

Due to Lemma 12 the hp-runs Lemma is reduced to a slightly weaker statement:
For a given p > 1 there are at most two occurrences of hp-runs with subperiod p in any interval of length p .
The proof of this fact is by contradiction. Assume we have three distinct hp-runs �1 ≺ �2 ≺ �3 with the same

subperiod p such that dist(�i ,�j) � p for 1 � i, j � 3. Then, all of them are neighbors. We show that �2 = �3.
Both �2,�3 should be left-periodic since their subperiods extend to the left at least to first(�1).

Therefore, �2,�3 are hp-runs and they are neighbors. Due to Lemma 11 we have:
center(�2) = center(�3).

Consequently, periodic parts of �2 and �3 have occurrences starting at the same position center(�2). If two
words start at a same position then one should be a prefix of another. Consequently, PerPart(�3) is a prefix of
PerPart(�2). Now, due to Lemma 10, if �2 /= �3 then first(�3)− first(�2) � p . However, first(�3)− first(�2) <

p . This implies that all of �1,�2,�3 cannot be pairwise distinct. This contradicts the assumption and completes
the proof of this fact and of Point B of Lemma 2.1.

Acknowledgement

The author thanks an anonymous referee for numerous helpful comments.

References

[1] M. Crochemore, An optimal algorithm for computing the repetitions in a word, Inf. Proc. Lett. 42 (5) (1981) 244–250.
[2] F. Franek, R.J. Simpson, W.F. Smyth, The maximum number of runs in a string, in: M. Miller, K. Park (Eds.) Proceeding of 14th

Australian Workshop on Combinatorial Algorithms, (2003), 26–35.
[3] M. Crochemore, Recherche linéaire d’un carré dans un mot, Comptes Rendus Acad. Sci. Paris Sér. I Math 296 (1983) 781–784.
[4] M. Crochemore, Transducers and repetitions, Theoret. Comput. Sci. 45 (1) (1986) 63–86.
[5] M. Crochemore, W. Rytter, Jewels of stringology: text algorithms, World Scientific (2003).
[6] Kangmin Fan, William F. Smyth, R.J. Simpson, A new periodicity lemma, CPM (2005) 257–265.
[7] F. Franek, A. Karaman, W.F. Smyth, Repetitions in Sturmian strings, TCS 249-2 (2000) 289–303.
[8] C. Iliopoulos, D. Moore, W.F. Smyth, A characterization of the squares in a Fibonacci string, TCS 172 (1997) 281–291.

Author's personal copy

W. Rytter / Information and Computation 205 (2007) 1459–1469 1469

[9] R. Kolpakov, G. Kucherov, On maximal repetitions in words, J. Discr. Algorithms 1 (2000) 159–186.
[10] R. Kolpakov, G. Kucherov, Finding maximal repetitions in a word in linear time, FOCS 1 (1999) 596–604.
[11] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, 2003.
[12] M.G. Main, R.J. Lorentz, An O(n log n) algorithm for finding all repetitions in a string, J. Algorithms 5 (1984) 422–432.
[13] W. Rytter, The structure of subword graphs and suffix trees of fibonacci words, in colloquium on implementation and application of

automata, TCS 363–2 (2006) 211–223.
[14] W. Rytter, The number of runs in a string: improved analysis of the linear upper bound, STACS 2006, LNCS 3884.
[15] W.F. Smyth, Computing Patterns in Strings, Addison-Wesley, 2003.
[16] W.F. Smyth, Repetitive perhaps, but certainly not boring, TCS 249-2 (2000) 343–355.

