Efficient Enumeration of Non-Equivalent Squares in Partial Words with Few Holes

Panagiotis Charalampopoulos^{1(⊠)}, Maxime Crochemore^{1,2}, Costas S. Iliopoulos¹, Tomasz Kociumaka³, Solon P. Pissis¹, Jakub Radoszewski^{1,3}, Wojciech Rytter³, and Tomasz Waleń³

Department of Informatics, King's College London, London, UK {panagiotis.charalampopoulos,maxime.crochemore, costas.iliopoulos,solon.pissis}@kcl.ac.uk ² Université Paris-Est, Marne-la-Vallée, France ³ Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland {kociumaka,jrad,rytter,walen}@mimuw.edu.pl

Abstract. A word of the form WW for some word $W \in \Sigma^*$ is called a square, where Σ is an alphabet. A partial word is a word possibly containing holes (also called don't cares). The hole is a special symbol $\emptyset \notin \Sigma$ which matches (agrees with) any symbol from $\Sigma \cup \{\emptyset\}$. A p-square is a partial word matching at least one square WW without holes. Two p-squares are called equivalent if they match the same set of squares. We denote by psquares(T) the number of non-equivalent p-squares which are factors of a partial word T. Let $PSQUARES_k(n)$ be the maximum value of psquares(T) over all partial words of length n with at most k holes. We show asymptotically tight bounds:

$$c_1 \cdot \min(nk^2, n^2) \le \text{PSQUARES}_k(n) \le c_2 \cdot \min(nk^2, n^2)$$

for some constants $c_1, c_2 > 0$. We also present an algorithm that computes psquares(T) in $\mathcal{O}(nk^3)$ time for a partial word T of length n with k holes. In particular, our algorithm runs in linear time for $k = \mathcal{O}(1)$ and its time complexity near-matches the maximum number of non-equivalent p-square factors in a partial word.

1 Introduction

A word is a sequence of letters from a given alphabet Σ . By Σ^* we denote the set of all words over Σ . A word of the form $U^2 = UU$, for some word U, is called a square. For a word W, a square factor is a factor of W which is a square. Enumeration of

P. Charalampopoulos—Supported by the Graduate Teaching Scholarship scheme of the Department of Informatics at King's College London.

T. Kociumaka—Supported by Polish budget funds for science in 2013–2017 as a research project under the 'Diamond Grant' program.

J. Radoszewski, W. Rytter and T. Waleń—Supported by the Polish National Science Center, grant no. 2014/13/B/ST6/00770.

[©] Springer International Publishing AG 2017

Y. Cao and J. Chen (Eds.): COCOON 2017, LNCS 10392, pp. 99-111, 2017.

square factors in words is a well-studied topic, both from a combinatorial and from an algorithmic perspective. Obviously, a word W of length n may contain $\Theta(n^2)$ square factors (e.g. $W = a^n$), however, it is known that such a word contains only $\mathcal{O}(n)$ distinct square factors [14,17]; currently the best known upper bound is $\frac{11}{6}n$ [12]. Moreover, all distinct square factors of a word can be listed in $\mathcal{O}(n)$ time using the suffix tree [15] or the suffix array and the structure of runs (maximal repetitions) in the word [10].

A partial word is a sequence of letters from $\Sigma \cup \{\emptyset\}$, where \emptyset denotes a hole, that is, a don't care symbol. We assume that Σ is non-unary. Two symbols $a, b \in \Sigma \cup \{\emptyset\}$ are said to match (denoted as $a \approx b$) if they are equal or one of them is a hole; note that this relation is not transitive. The relation of matching is extended in a natural way to partial words of the same length.

A partial word UV is called a p-square if $U \approx V$. Like in the context of words, a p-square factor of a partial word T is a factor being a p-square; see [2,7]. Alongside [2,6,7], we define a solid square (also called a full square) as a square of a word, and a square subword of a partial word T as a solid square that matches a factor of T.

We introduce the notion of equivalence of p-square factors in partial words. Let sq-val(UV) denote the set of solid squares that match the partial word UV:

$$sq\text{-}val(UV) = \{WW : W \in \Sigma^*, WW \approx UV\}.$$

Example 1. $sq\text{-}val(a \diamond b \ a \diamond \diamond) = \{(aab)^2, (abb)^2\}, \text{ with } \Sigma = \{a, b\}.$

Then p-squares UV and U'V' are called equivalent if sq-val(UV) = sq-val(U'V') (denoted as $UV \equiv U'V'$). For example, $a \diamond b \ a \diamond b \equiv a \diamond b \diamond b$, but $a \diamond b \ a \diamond b \not\equiv a \diamond b \diamond b \diamond b$.

Note that two p-square factors of a partial word T are equivalent in this sense if and only if they correspond to exactly the same set of square subwords. The number of non-equivalent p-square factors in a partial word T is denoted by psquares(T). Our work is devoted to the enumeration of non-equivalent p-square factors in a partial word with a given number k of holes.

We say that $X^2 = XX$ is the representative (also called general form; see [6]) of a p-square UV, denoted as repr(UV), if $XX \approx UV$ and sq-val(XX) = sq-val(UV). (In other words, X is the "most general" partial word that matches both U and V.) It can be noted that the representative of a p-square is unique. Then $UV \equiv U'V'$ if and only if repr(UV) = repr(U'V').

Example 2.
$$repr(a \diamond b \ a \diamond \diamond) = (a \diamond b)^2, repr(a \diamond \diamond \diamond ab) = (aab)^2.$$

Previous studies on squares in partial words were mostly focused on combinatorics. They started with the case of k = 1 [6], in which case distinct square subwords correspond to non-equivalent p-square factors. It was shown that a partial word with one hole contains at most $\frac{7}{2}n$ distinct square subwords [4] (3n for binary partial words [16]). Also a generalization of the three squares lemma (see [11]) was proposed for partial words [5]. As for a larger number of holes, the existing literature is devoted mainly to counting the number of distinct

square subwords of a partial word [2,6] or all occurrences of p-square factors [2,3]. On the algorithmic side, [21] proved that the problem of counting distinct square subwords of a partial word is #P-complete and [13,20] and [7] showed quadraticand nearly-quadratic-time algorithms for finding all occurrences of p-square factors and primitively-rooted p-square factors of a partial word, respectively.

Our combinatorial results. We prove that a partial word of length n with k holes contains $\mathcal{O}(nk^2)$ non-equivalent p-square factors. We also construct a family of partial words that contain $\Omega(nk^2)$ non-equivalent p-square factors, for $k = \mathcal{O}(\sqrt{n})$. This proves the aforementioned asymptotic bounds for $PSQUARES_k(n)$. Our work can be viewed as a generalization of the results on partial words with one hole [4,6,16] to $k \geq 1$ holes.

Our algorithmic results. We present an algorithm that reports all non-equivalent p-square factors in a partial word of length n with k holes in $\mathcal{O}(nk^3)$ time. In particular, our algorithm runs in linear time for $k = \mathcal{O}(1)$ and its time complexity near-matches the maximum number of non-equivalent p-square factors. We assume integer alphabet $\Sigma \subseteq \{1, \ldots, n^{\mathcal{O}(1)}\}$. The main tool in the algorithm are two new types of non-standard runs in partial words and relations between them. We also use recently introduced advanced data structures from [18].

2 Preliminary Notation for Words and Partial Words

For a word $W \in \Sigma^*$, by |W| = n we denote the length of W, and by W[i], for $i = 1, \ldots, n$, the ith letter of W. For $1 \le i \le j \le n$, W[i..j] denotes the factor of W equal to $W[i] \cdots W[j]$. A factor of the form W[1..j] is called a prefix, a factor of the form W[i..n] is called a suffix, and a factor that is both a prefix and a suffix of W is called a border of W. A positive integer q is called a period of W if W[i] = W[i+q] for all $i = 1, \ldots, n-q$. In this case, W[1..q] is called a string period of W. W has a period q if and only if it has a border of length n-q; see [8]. Two equal-length words V and W are called cyclic shifts if there are words X, Y such that V = XY and W = YX. A word W is called primitive if there is no word U and integer k > 1 such that $U^k = W$. Note that the shortest string period of W is always primitive. Every primitive word W has the following synchronization property: W is not equal to any of its non-trivial cyclic shifts [8].

For a partial word T we use the same notation as for words: |T| = n for its length, T[i] for the ith letter, T[i..j] for a factor. If T does not contain holes, then it is called solid. The relation of matching on $\Sigma \cup \{\phi\}$ is defined as: $a \approx a$, $\phi \approx a$, and $a \approx \phi$ for all $a \in \Sigma \cup \{\phi\}$. We define an operation \wedge such that $a \wedge a = a \wedge \phi = \phi \wedge a = a$ for all $a \in \Sigma \cup \{\phi\}$, and otherwise $a \wedge b$ is undefined. Two equal-length partial words T and S are said to match (denoted as $T \approx S$) if $T[i] \approx S[i]$ for all $i = 1, \ldots, n$. In this case, by $S \wedge T$ we denote the partial word $S[1] \wedge T[1], \ldots, S[n] \wedge T[n]$. If $U \approx T[i..i + |U| - 1]$ for a partial word U, then we say that U occurs in T at position i. Also note that if UV is a p-square, then $repr(UV) = (U \wedge V)^2$. A quantum period of T is a positive integer q such that

 $T[i] \approx T[i+q]$ for all $i=1,\ldots,n-q$. A deterministic period of T is an integer q such that there exists a word W such that $W \approx T$ and W has a period q. T is called quantum (deterministically) periodic if it has a quantum (deterministic) period q such that $2q \leq n$.

An integer j is an ambiguous length in the partial word T if there are two holes in T at distance j/2. A p-square is called ambiguous if its representative is non-solid. Note that if a p-square factor in T is ambiguous, then the p-square has an ambiguous length (the converse is not always true). The p-square factors of T of non-ambiguous length have solid representatives.

Example 3. Let $T = ab \diamond \diamond ba \diamond aaba \diamond b$. For T, 4 is a non-ambiguous length. T contains four non-equivalent classes of p-squares of length 4: $a\diamond aa$ with representative $(aa)^2$, $ab \diamond \diamond aba \diamond aba$

3 Combinatorial Bounds

3.1 Lower Bound

We say that a set A of positive integers is an (m, t)-cover if the following conditions hold:

(1) For each $d \geq m$, A contains at most one pair of elements with difference d;

$$(2) |\{|j-i| \ge m : i, j \in A\}| \ge t.$$

For a set $A \subseteq \{1, ..., n\}$ we denote by $w_{A,n}$ the partial word of length n over the alphabet Σ such that $w_{A,n}[i] = \emptyset \Leftrightarrow i \in A$, and $w_{A,n}[i] = a$ otherwise.

Lemma 4. Assume that $A \subseteq \{1, ..., n\}$ is an (m, t)-cover such that $m = \Theta(n)$, |A| = k, and $t = \Omega(k^2)$. Let $\Sigma = \{a, b\}$ be the alphabet. Then

$$psquares(a^{n-2} \cdot w_{A,n} \cdot a^{n-2}) = \Omega(n \cdot k^2).$$

Proof. Each even-length factor of $a^{n-2} \cdot w_{A,n} \cdot a^{n-2}$ is a p-square. Let \mathcal{Z} be the set of these factors X which contain two positions i,j containing holes with $|j-i| \geq m$ and |X| = 2|j-i|. As A is an (m,t)-cover, i and j are determined uniquely by d = |j-i|. Then all elements of \mathcal{Z} are pairwise non-equivalent p-squares. The size of \mathcal{Z} is $\Omega(nt)$ which is $\Omega(n \cdot k^2)$. This completes the proof. \square

Example 5. Let n = 5, m = 4, and t = 1. $aaa \diamond aaa \diamond aaa$ has 4 non-equivalent p-square factors of length 8 if $\Sigma = \{a, b\}$. If $\Sigma = \{a\}$, all of them are equivalent.

Theorem 6. For every positive integer n and $k \leq \sqrt{2n}$, there is a partial word of length n with k holes that contains $\Omega(nk^2)$ non-equivalent p-square factors.

Proof. Due to Lemma 4, it is enough to construct a suitable set A. By monotonicity, we may assume that k and n are even. We take:

$$A = \{1, \dots, \frac{k}{2}\} \cup \{j \cdot \frac{k}{2} + \frac{n}{2} : 1 \le j \le \frac{k}{2}\}.$$

We claim that A is an $(\frac{n}{2}, \frac{k^2}{4})$ -cover for $t = \Omega(k^2)$. Indeed, take any $i \in \{1, \dots, \frac{k}{2}\}$ and j satisfying the above condition. Then $j \cdot \frac{k}{2} + \frac{n}{2} - i \geq \frac{n}{2}$ and all such values are distinct; hence, $t = \frac{k^2}{4}$. The thesis follows from the claim.

3.2 Upper Bound

Let T be a partial word of length n with k holes. The proof of the upper bound for ambiguous lengths is easy.

Lemma 7. There are at most nk^2 p-square factors of ambiguous length in T.

Proof. The number of ambiguous lengths is at most $\binom{k}{2}$, since we have $\binom{k}{2}$ possible distances between k holes. Consequently, the number of p-squares with such lengths is at most nk^2 .

Each of the remaining p-square factors of T has a solid representative. We say that a solid square W^2 has a solid occurrence in T if T contains a factor equal to W^2 . By the following fact, there are at most 2n non-equivalent p-square factors of T with solid occurrences.

Fact 8 ([12,14,17]). Every position of a (solid) word contains at most two right-most occurrences of squares.

We say that a solid square is a *u-square* in T if it occurs in T, does not have a solid occurrence in T, and has a non-ambiguous length. We denote by \mathcal{U} the set of u-squares for T.

Observation 9. Each u-square in T corresponds in a one-to-one way to an equivalence class of p-square factors of T which have non-ambiguous length and do not have a solid occurrence in T.

Thus it suffices to bound $|\mathcal{U}|$. This is the essential part of the proof. Let $\alpha = \frac{1}{2k+2}$ and

$$\mathcal{U}(\ell) = \{ W^2 \in \mathcal{U} : 2\ell \le |W|^2 \le 2(\ell + \lfloor \ell \alpha \rfloor) \}.$$

Also denote by $\mathcal{U}_i(\ell)$ (and $\mathcal{U}last_i(\ell)$) the set of words of $\mathcal{U}(\ell)$ which have an occurrence (the last occurrence, respectively) at position i in T. The next lemma follows from the pigeonhole principle and periodicity of (solid) words.

Lemma 10. Suppose that $\ell \geq \frac{1}{\alpha}$ and $|\mathcal{U}_i(\ell)| \geq 2$. Let $\Delta = \lfloor \ell \alpha \rfloor$. There exist positions s, s' such that:

 $\begin{array}{l} - \ s \in [i, i + \ell - 2\Delta], \\ - \ s' \in [s + \ell, s + \ell + \Delta], \\ - \ T[s..s + 2\Delta - 1] = T[s'..s' + 2\Delta - 1] \ is \ solid \ and \ periodic. \end{array}$

Proof. Let T[i..i+2d-1] be a u-square from $\mathcal{U}_i(\ell)$. Consider positions $x_j=i+2j\Delta$ and $y_j=x_j+d$ for $0\leq j\leq k$. Note that factors $X_j=T[x_j..x_j+2\Delta-1]$ and $Y_j=T[y_j..y_j+2\Delta-1]$ match; see Fig. 1. Moreover, factors X_0,\ldots,X_k and Y_0,\ldots,Y_k are disjoint because $2(k+1)\Delta\leq 2(k+1)\frac{\ell}{2k+2}=\ell$. By the pigeonhole principle, we can choose j so that X_j and Y_j are solid, i.e., $X_j=Y_j$. We set $s=x_j$ and $s'=y_j$.

It remains to prove that $X_j = Y_j$ is periodic. Let T[i..i+2d'-1] (with $d' \neq d$) be another u-square in $\mathcal{U}_i(\ell)$, and let $Y_j' = T[x_j + d'..x_j + d' + 2\Delta - 1]$. Note that $Y_j' \approx X_j = Y_j$ and factors Y_j and Y_j' have an overlap of $2\Delta - |d - d'|$ positions being a border of Y_j . Consequently, $|d - d'| \leq \lfloor \ell \alpha \rfloor = \Delta$ is a period of Y_j . \square

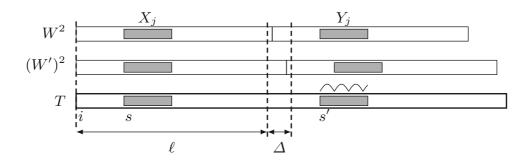


Fig. 1. Situation from the proof of Lemma 10; W^2 , $(W')^2 \in \mathcal{U}_i(\ell)$. Occurrences of $X_j = Y_j$ are denoted by dark rectangles. $\mathcal{U}_i(\ell)$ is the set of all u-squares having an occurrence in i with center in the window of size Δ .

We denote by $\mathcal{I}_{i,\ell}$ the interval $[i,i+2(\ell+\lfloor\ell\alpha\rfloor)-1]$. Let $\#_{\Diamond}([a,b])$ denote the number of holes in T[a..b]. Our upper bound for partial words is based on the following key lemma; it is a property of partial words similar to Fact 8.

Lemma 11. $|\mathcal{U}last_i(\ell)| = \mathcal{O}(\#_{\Diamond}(\mathcal{I}_{i,\ell})).$

Proof. Denote $k' = \#_{\Diamond}(\mathcal{I}_{i,\ell})$. If k' = 0, then $|\mathcal{U}last_i(\ell)| = 0$. From now we assume that $k' \geq 1$. Assume that $|\mathcal{U}last_i(\ell)| \geq 2$. Let p be the shortest period of the equal periodic factors $X = T[s..s + 2\Delta - 1]$ and $Y = T[s'..s' + 2\Delta - 1]$ from the previous lemma. We consider three types of u-squares $W^2 \in \mathcal{U}last_i(\ell)$:

Type (a): W^2 has period p;

Type (b): W has period p but W^2 does not have period p;

Type (c): W does not have period p.

At most 1 u-square of type (a). Observe that the length of W is a multiple of its shortest period p (this is due to the synchronization property for the string period of W). Consequently, if we have two u-squares of type (a) occurring at position i and with the same shortest period p, then the shorter u-square also occurs at position i + p. This contradicts the definition of $Ulast_i(\ell)$.

At most k'+1 u-squares of type (b). Suppose to the contrary that there are at least k'+2 u-squares of type (b), of lengths $d_1 < ... < d_{k'+2}$. Note that $Y'_j := T[s+d_j..s+d_j+2\Delta-1]$ matches X=Y due to a u-square of length $2d_j$. Moreover, the factors Y and Y'_j have an overlap of at least $\Delta \geq p$ positions, so the string periods of Y'_j and Y must be synchronized. Consequently, the values d_j mod p are all the same (and non-zero, as these are not squares of type (a)).

Consider the shortest W^2 and the longest $(W')^2$ of these u-squares and the factor $Z = T[i+d_1..i+d_{k'+2}-1]$. It matches a prefix P of length $d_{k'+2}-d_1$ of W and a suffix S of the same length of W'. Both P and S have period p; however, their string periods of length p are not equal (again, due to synchronization property), as p does not divide d_1 . Consequently, in every factor of length p in Z there must be a hole. This yields $\lfloor |Z|/p \rfloor = (d_{k'+2}-d_1)/p \geq k'+1$ holes in total, a contradiction.

At most 4k' + 2 u-squares of type (c). Let d = |W|. Let us extend the occurrence of X in W at position s - i + 1 to a maximal factor W[j'..j] with period p. Note that j' > 1 or j < d as W^2 is not of type (b). Below, we assume j < d; the other subcase is handled in an analogous way. Consider the positions $j_1 = i + j$ and $j_2 = i + d + j$ of T. We will show that there are at most 2k' + 1 possible pairs (j_1, j_2) across the u-squares $W \in \mathcal{U}last_i(\ell)$, i.e., at most 2k' + 1 corresponding u-squares, as $d = j_2 - j_1$.

Positions $T[j_1]$ and $T[j_2]$ cannot both contain holes, as 2d is a non-ambiguous length. If $T[j_1]$ is not a hole, then it is determined uniquely as the first position where the deterministic period p breaks, starting from the position s, i.e., j_1 is the smallest index such that $T[s..j_1]$ does not have deterministic period p. The same holds for j_2 and s'; this is also due to the fact that Y and the occurrence of X at position s+d have an overlap of at least $\Delta \geq p$ positions, so they are synchronized. Hence, if neither $T[j_1]$ nor $T[j_2]$ is a hole, then (j_1, j_2) is determined uniquely. Otherwise, if $T[j_1]$ or $T[j_2]$ is a hole, then the other position is determined uniquely, so there are at most 2k' choices. This concludes the proof.

Theorem 12. The number of non-equivalent p-square factors in a partial word T of length n with k holes is $\mathcal{O}(\min(nk^2, n^2))$.

Proof. The $\mathcal{O}(n^2)$ bound is obvious. Due to Lemma 7 there are at most nk^2 p-squares of ambiguous length in T. Let us consider p-squares of non-ambiguous lengths. By Fact 8, among them there are $\mathcal{O}(n)$ non-equivalent p-squares with a solid occurrence. From now on we count only non-equivalent non-ambiguous p-squares without a solid occurrence, i.e., different u-squares.

Clearly, there are $\mathcal{O}(nk)$ different u-squares of length smaller than $\frac{2}{\alpha}$. Let $\ell \geq \frac{1}{\alpha}$ and $r = 2(\ell + \lfloor \ell \alpha \rfloor)$. By Lemma 11:

$$|\mathcal{U}(\ell)| = \sum_{i=1}^{n} |\mathcal{U}last_i(\ell)| = \mathcal{O}\left(\sum_{i=1}^{n} \#_{\Diamond}(\mathcal{I}_{i,\ell})\right) = \mathcal{O}(k\ell). \tag{1}$$

The last equality is based on the fact that each of the k holes in T is counted in at most 2r terms $\#_{\Diamond}(\mathcal{I}_{i,\ell})$.

Let us consider a family of endpoints $r_j = \left\lceil \frac{n}{(1+\alpha)^j} \right\rceil$ for $j \geq 0$ and let $t = \max\{j : r_j > 1\}$. One can check that $\mathcal{U} = \bigcup_{j=0}^t \mathcal{U}(r_{j+1})$.

By (1), the total number of u-squares of length at least $\frac{2}{\alpha}$ in T is at most:

$$\sum_{j=1}^{t+1} |\mathcal{U}(r_j)| = \mathcal{O}\left(\sum_{j=1}^{t+1} k r_j\right) = \mathcal{O}\left(k \sum_{j=1}^{t+1} \left(1 + \frac{n}{(1+\alpha)^j}\right)\right)$$

$$= \mathcal{O}\left(k \log_{1+\alpha} n + \sum_{j=0}^{\infty} \frac{nk}{(1+\alpha)^j}\right) = \mathcal{O}\left(\frac{k \log n}{\alpha} + \frac{nk}{1 - \frac{1}{1+\alpha}}\right) = \mathcal{O}(nk^2). \quad \Box$$

4 Runs Toolbox for Partial Words

A run (also called a maximal repetition) in a word W is a triple (a, b, q) such that W[a..b] is periodic with period q $(2q \le b - a + 1)$ and the interval [a, b] cannot be extended to the left nor to the right without violating the above property, that is, $W[a-1] \ne W[a+q-1]$ and $W[b-q+1] \ne W[b+1]$, provided that the respective positions exist. The exponent of a run is defined as $\frac{b-a+1}{q}$. A word of length n has $\mathcal{O}(n)$ runs and they can all be computed in $\mathcal{O}(n)$ time [1,19].

From a run (a, b, q) we can produce all triples (a, b, kq) for integer $k \ge 1$ such that $2kq \le b - a + 1$; we call such triples generalized runs. That is, the period of a generalized run need not be the shortest period. The number of generalized runs is also $\mathcal{O}(n)$ as the sum of exponents of runs is $\mathcal{O}(n)$ [1,19].

For a partial word T, we call a triple (a, b, q) a quantum generalized run (Q-run, for short) in T if T[a..b] is quantum periodic with period q and none of the partial words T[a-1..b] and T[a..b+1] (if it exists) has the quantum period q; for an example see Fig. 2.



Fig. 2. A partial word together with all its Q-runs.

Generalized runs in words are strongly related to squares: (1) a square of length 2q belongs to a generalized run of period q and, moreover, (2) all factors of length 2q of a generalized run with period q are squares being each other's cyclic shifts. Unfortunately, Q-runs in partial words have only property (1). However, we introduce a type of run in partial words that has a property analogous to (2). A pseudorun is a triple (a, b, q) such that:

- (a) T[a..b] is quantum periodic with period q,
- (b) $T[i-q] \wedge T[i] = T[i] \wedge T[i+q]$ for all i such that $i-q, i+q \in [a,b]$,
- (c) none of the partial words T[a-1..b] and T[a..b+1] (if exists) satisfies the conditions (a) and (b).

We say that a p-square factor T[c..d] is *induced* by the pseudorun (a, b, q) if d - c + 1 = 2q and $[c, d] \subseteq [a, b]$.

Example 13. The partial word from Fig. 2 contains two Q-runs with period 2: (1,9,2) that corresponds to factor $ab\diamond ba\diamond aa$ and (9,12,2) that corresponds to factor $aba\diamond$. The partial word contains five pseudoruns with this period: (1,4,2): $ab\diamond ba\diamond ab$, (2,5,2): $bb\diamond bb$, (3,8,2): $bba\diamond ab$, (6,9,2): abaa, and (9,12,2): abaa. All but one of these pseudoruns induce exactly one p-square; the pseudorun (3,8,2) induces two non-equivalent p-squares: babaa and babaa.

Observation 14. (1) Every p-square factor in T is induced by a pseudorun. (2) All factors of length 2q of a pseudorun with period q are p-squares and their representatives are each other's cyclic shifts.

5 The Algorithm

We design an $\mathcal{O}(nk^3)$ -time algorithm for enumerating non-equivalent p-squares in a partial word T of length n with k holes. We assume that Σ is an ordered integer alphabet and that ϕ is smaller than all the letters from Σ . Then any two factors of T can be lexicographically compared using the suffix array of T in $\mathcal{O}(1)$ time after $\mathcal{O}(n)$ -time preprocessing [8]. The first two steps of the algorithm are computing all Q-runs in T and decomposing Q-runs into pseudoruns. The final phase consists in grouping pseudoruns in T by the representatives of induced p-squares, which lets us enumerate non-equivalent p-squares.

5.1 Computing Q-Runs

We classify Q-runs into solid Q-runs that do not contain a hole and the remaining non-solid Q-runs. A solid Q-run is a generalized run in a maximal solid factor of T that is not adjacent to a hole in T. Thus all solid Q-runs can be computed in $\mathcal{O}(n)$ time using any linear-time algorithm for computing runs in words [1,19].

The length of the longest common compatible prefix of two positions i, j, denoted lccp(i,j), is the largest ℓ such that $T[i..i + \ell - 1] \approx T[j..j + \ell - 1]$. Symmetrically, we can define lccs(i,j) as the length of the longest common

compatible suffix of T[1..i] and T[1..j]. After $\mathcal{O}(nk)$ -time preprocessing, queries for lccp (hence, queries for lccs) can be answered on-line in $\mathcal{O}(1)$ time [9].

For every position i containing a hole and integer $q \in \{1, ..., n\}$, we can use the lccp- and lccs-queries to check if there is a Q-run with period q containing the position i. If the Q-run is to contain i anywhere except for its last q positions, we can compute a = i - lccs(i, i + q) + 1, b = i + q + lccp(i, i + q) - 1 and check if $b - a + 1 \ge 2q$; if so, the sought Q-run is (a, b, q). A symmetric test with i - q and i can be used to check for a Q-run containing i among its last q positions.

Clearly, this procedure works in $\mathcal{O}(nk)$ time. Therefore, the number of Q-runs is at most $\mathcal{O}(nk)$. The same Q-run may be reported several times; therefore, in the end we remove repeating triples (a, b, q) via radix sort. Together with the $\mathcal{O}(n)$ -time computation of solid Q-runs we arrive at the following lemma.

Lemma 15. A partial word of length n with k holes contains $\mathcal{O}(nk)$ Q-runs and they can all be computed in $\mathcal{O}(nk)$ time.

5.2 Computing Pseudoruns

Q-runs correspond to maximal factors of T that satisfy only the condition (a) of a pseudorun. Hence, every pseudorun is a factor of a Q-run.

A position i inside a Q-run $\beta = (a, b, q)$ is called a *break point* if $a \le i - q < i + q \le b$ and $T[i - q] \land T[i] \ne T[i] \land T[i + q]$.

Observation 16. i is a break point for (a, b, q) if and only if $a \le i - q < i + q \le b$, $T[i] = \emptyset$, and $T[i - q] \ne T[i + q]$.

By $\Gamma(\beta)$ we denote the set of all break points of a Q-run β . The Q-run can be decomposed into $|\Gamma(\beta)| + 1$ pseudoruns: if i is the first break point in β , then we have a pseudorun (a, i+q-1, q) and continue the decomposition for (i-q+1, b, q). Consecutive pseudoruns in the decomposition overlap by 2p-1 positions. See Fig. 3 for an abstract illustration.

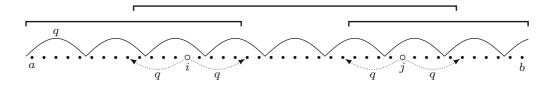


Fig. 3. A Q-run (a, b, q) with break points at positions i and j is decomposed into three pseudoruns: (a, i + q - 1, q), (i - q + 1, j + q - 1, q), and (j - q + 1, b, q).

Lemma 17. $\sum_{\beta \in Q\text{-}runs(T)} |\Gamma(\beta)| \leq nk$.

Proof. Consider all Q-runs β of period q. Every two overlap by at most q-1 positions, so the $\Gamma(\beta)$ sets are pairwise disjoint and their sizes sum up to at most k. Summing up over all $q=1,\ldots,n/2$, we arrive at the conclusion. \square

Lemma 17 shows that there are $\mathcal{O}(nk)$ pseudoruns (we use the fact that, by Lemma 15, there are $\mathcal{O}(nk)$ Q-runs). They can be computed in $\mathcal{O}(nk^2)$ time by inspecting all the holes inside each Q-run β and checking which of them are break points in β .

Lemma 18. A partial word of length n with k holes contains $\mathcal{O}(nk)$ pseudoruns and they can all be computed in $\mathcal{O}(nk^2)$ time.

5.3 Grouping Pseudoruns and Reporting Squares

We define the representative of a pseudorun $\beta = (a, b, q)$ as

$$repr(\beta) = lex-min\{repr(T[i..i + 2q - 1]) : a \le i \le b - 2q + 1\}.$$

First, let us show how to group pseudoruns by equal representatives. This part of our algorithm builds upon the methods for grouping runs in words from [10].

We use a separate approach for solid and for non-solid pseudoruns. Each solid pseudorun corresponds to a solid Q-run. Hence, there are $\mathcal{O}(n)$ of them and they can all be grouped using the approach of [10] in $\mathcal{O}(n)$ time.

We say that a partial word U is a d-fragment of T if U is a factor of T with symbols at d positions substituted with other symbols. Obviously, a d-fragment can be represented in $\mathcal{O}(d)$ space. The following lemma is a consequence of Observation 18 from [18] and Theorem 23 from [18].

Lemma 19 ([18]). For a word of length n, after $\mathcal{O}(n)$ -time preprocessing:

- (a) Any two d-fragments can be compared lexicographically in $\mathcal{O}(d)$ time;
- (b) The minimal cyclic shift of a d-fragment can be computed in $\mathcal{O}(d^2)$ time.

Lemma 20. After $\mathcal{O}(n)$ -time preprocessing, for any pseudorun β , repr (β) represented as a k-fragment can be computed in $\mathcal{O}(k^2)$ time.

Proof. Let $\beta = (a, b, q)$. Knowing the positions of holes in T, we can represent $repr(T[a..a+2q-1]) = U^2$ as a k-fragment (the positions with holes of the p-square are filled with single symbols). By Lemma 19(b), we can find the minimal cyclic shift of the k-fragment in $\mathcal{O}(k^2)$ time. The cyclic shift can be represented as a k-fragment as well. We apply this to find $(U')^2$, the minimal cyclic shift of U^2 . Then $repr(\beta) = (U')^2$.

We group non-solid pseudoruns by their periods first; let \mathcal{R}_q be the set of non-solid pseudoruns with period q. From what we have already observed, we see that every pseudorun from \mathcal{R}_q can overlap with at most six other pseudoruns from \mathcal{R}_q : two that come from the same Q-run and two that come from each of the neighbouring Q-runs with period q. Hence, each hole position is contained in at most seven pseudoruns from \mathcal{R}_q , and $|\mathcal{R}_q| \leq 7k$. The representatives of pseudoruns from \mathcal{R}_q can be sorted using $\mathcal{O}(k)$ -time comparison (Lemma 19(a)). Thus the time complexity for sorting and grouping all pseudoruns from \mathcal{R}_q is $\mathcal{O}(k^2 \log k)$, which gives $\mathcal{O}(nk^2 \log k)$ in total.

By Observation 14, the representatives of all p-squares induced by a pseudorun β are cyclic shifts of $repr(\beta)$. Thus only pseudoruns from the same group may induce equivalent p-squares. For each pseudorun β we can specify an interval $I(\beta)$ of cyclic shift values of induced p-squares. Then all non-equivalent p-squares induced by pseudoruns in the same group can be reported by carefully processing the intervals $I(\beta)$ as in [10]. This processing takes time linear in the number of all intervals from all groups and n, i.e., $\mathcal{O}(nk)$ time. This concludes the algorithm.

Theorem 21. All non-equivalent p-squares in a partial word of length n with k holes can be reported (as factors of the partial word) in $\mathcal{O}(nk^3)$ time.

Proof. Lemma 18 shows that there are $\mathcal{O}(nk)$ pseudoruns in a partial word and they can all be computed in $\mathcal{O}(nk^2)$ time. Solid pseudoruns can be handled separately in $\mathcal{O}(n)$ time. Lemma 20 lets us find the representatives of non-solid pseudoruns in $\mathcal{O}(nk^3)$ time. In the end, we group those pseudoruns by the representatives in $\mathcal{O}(nk^2 \log k)$ time and use the approach from [10] to report all non-equivalent p-squares induced by each group in $\mathcal{O}(nk)$ time.

References

- 1. Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: A new characterization of maximal repetitions by Lyndon trees. In: Indyk, P. (ed.) 26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pp. 562–571. SIAM (2015)
- 2. Blanchet-Sadri, F., Bodnar, M., Nikkel, J., Quigley, J.D., Zhang, X.: Squares and primitivity in partial words. Discrete Appl. Math. **185**, 26–37 (2015)
- 3. Blanchet-Sadri, F., Jiao, Y., Machacek, J.M., Quigley, J., Zhang, X.: Squares in partial words. Theor. Comput. Sci. **530**, 42–57 (2014)
- 4. Blanchet-Sadri, F., Mercaş, R.: A note on the number of squares in a partial word with one hole. Inform. Theor. Appl. **43**(4), 767–774 (2009)
- 5. Blanchet-Sadri, F., Mercaş, R.: The three-squares lemma for partial words with one hole. Theor. Comput. Sci. **428**, 1–9 (2012)
- 6. Blanchet-Sadri, F., Mercaş, R., Scott, G.: Counting distinct squares in partial words. Acta Cybern. **19**(2), 465–477 (2009)
- 7. Blanchet-Sadri, F., Nikkel, J., Quigley, J.D., Zhang, X.: Computing primitively-rooted squares and runs in partial words. In: Kratochvíl, J., Miller, M., Froncek, D. (eds.) IWOCA 2014. LNCS, vol. 8986, pp. 86–97. Springer, Cham (2015). doi:10. 1007/978-3-319-19315-1-8
- 8. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge University Press, Cambridge (2007)
- 9. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Langiu, A., Radoszewski, J., Rytter, W., Szreder, B., Waleń, T.: A note on the longest common compatible prefix problem for partial words. J. Discrete Algorithms **34**, 49–53 (2015)
- 10. Crochemore, M., Iliopoulos, C.S., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: Extracting powers and periods in a word from its runs structure. Theor. Comput. Sci. **521**, 29–41 (2014)

- 11. Crochemore, M., Rytter, W.: Squares, cubes, and time-space efficient string searching. Algorithmica **13**(5), 405–425 (1995)
- 12. Deza, A., Franck, F., Thierry, A.: How many double squares can a string contain? Discrete Appl. Math. **180**, 52–69 (2015)
- 13. Diaconu, A., Manea, F., Tiseanu, C.: Combinatorial queries and updates on partial words. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 96–108. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03409-1_10
- 14. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Comb. Theory, Ser. A 82(1), 112–120 (1998)
- 15. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the tandem repeats in a string. J. Comput. Syst. Sci. **69**(4), 525–546 (2004)
- 16. Halava, V., Harju, T., Kärki, T.: On the number of squares in partial words. RAIRO Theor. Inform. Appl. 44(1), 125–138 (2010)
- 17. Ilie, L.: A simple proof that a word of length n has at most 2n distinct squares. J. Comb. Theory, Ser. A 112(1), 163-164 (2005)
- 18. Kociumaka, T.: Minimal suffix and rotation of a substring in optimal time. In: Grossi, R., Lewenstein, M. (eds.) Combinatorial Pattern Matching, CPM 2016. LIPIcs, vol. 54, pp. 28:1–28:12. Schloss Dagstuhl (2016)
- 19. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, pp. 596–604. IEEE Computer Society (1999)
- 20. Manea, F., Mercaş, R., Tiseanu, C.: An algorithmic toolbox for periodic partial words. Discrete Appl. Math. 179, 174–192 (2014)
- 21. Manea, F., Tiseanu, C.: Hard counting problems for partial words. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 426–438. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13089-2_36