
Remarks on the pyramidal structure

Wojciech Rytter,

Institute of Informatics,Warsaw University,

PKiN VIII p, 00-901Warszawa,Poland

1.introduction

pyramidal structure was invented by A.Schonhage [7] as a special The

structure of the memory of a storage modification machine simulating

a Turing machine. In this paper we modify the original Schonhage's

construction and we present the pyramidal structure in a more general

setting as a data structure which implements efficiently some special

sequences of the operations of storing and retrieving an information.

The keys ~ are k-tuples of nonnegative integers. We introduce the

operation find(~,v), which generalizes the dictionary operations

member and insert. The value of find(~,v) is a node (or a record con-

sisting of some consecutive registers of RAM) with the key 2, if the-

re is no such a node then a new node with the key ~ is created and

the value of find is set to the created node. The second argument is

a node v (called a finger or a point of reference) and we can start

searching ~ from v. The pyramidal structure implements in linear time

and space sequences of operations find(~,v) such that the distance

between ~ and the key of the finger is bounded. The number of fingers

is unbounded (while in the Shonhage's construction is only one finger)

The distance between keys is defined as follows. If ~=(Xl,...,x k)

and ~=(yl,...,yk) then k

dist(x,y) = 7, 1 I i=I xi-Yi

The distance is not defined in the terms of a linear order, hence

we do not use sorted lists or any other method based on the linear

order. We use a variation of digital search trees instead. Our model

of the computation is a random access machine with the uniform cost

criterion. The pyramidal structure can be applied to maintain effi-

ciently sparse tables. We consider two-way deterministic pushdown

automata with k input heads (2dpda(k)'s, for short). We simulate

a given 2dpda(k) by a recursive program and then we apply the exact

tabulatdon method (this gives a new simple 0(n k) time simulation of

2dpda(k) disregarding the pyramidal structure).

368

Using the pyramidal structure we simulate 2dpda(k)'s in O(m) time

and space, where m is the number of reachable surface configurations°

If the computation of a 2dpda(k) is "sparse" then m is an improvement

upon n k. This generalizes the result of [4]. We obtain a similar re-

sult for nondeterministic two-way pushdown automata. The pyramidal

structure can also serve to traverse efficiently a labyrinth whose

nodes (which are integer points) are not given explieite!y [6].

2.The pyramida,1 structure

The universe of possible keys is the set U = ~..~k of k-tuples ~ of

integers from the interval ~..n] . For ~=(x I x k) we define

compress(~) = ([xi/2] [Xk/2j). (If x i are written in binary then

oompress(~) results by deleting the last digits of x i s.) Let r=

rlog2(n+1)~. We say that the set S of keys is connected iff for every

two elements ~,y ~S there is a path X=Xl,X2,...,~s=~ such that ~i e S

and dist(~i,~i+ I)~ I for each I gi <s. Let S be a connected subset

of U.

The pyramidal structure P over the set S is the tree named pyramid

(S) with the set V of nodes satisfying the conditions:

I) The keys are assigned to every node of V, key(v) is the key assi-

gned to the node v;

2) The depth of all leaves is equal to r;

3) For every ~ S there is a leaf with the key x;

4) If the nodes v,w lying on the same level (having the same depth)

have the same key then v=w (the nodes on a given level are identi-

fied by their keys);

5) If the node v is the father of w (we write v=father(w)) then

key(v)=compress(key(w));

6) With every node v there are associated informations sons(v) and

neighbours(v) such that

sons(v) = {w~ v Jfather(w)=v} (v is not a leaf),

neighbours(v) = ~w e V lw lies on the same level as v and

dist(key(v),key(w))~ I~.

Observe that v~ neighbours(v) and observe that the condition (5)

implies that key(root)=(O,..,O). Denote by ground(P) the set of leaves

of P (this set is also called the ground level). The ground level re-

presents the set S. Fig.1 presents an example of the pyramidal stru-

cture.

369

0 , 0

1 , 0 1 , 1 " 0 , 0 0 , 1

2 t l 2 2 1 , 1 0 , 1 - - - 0 , 2

5 , . 3 4 , 3 4 , 4

1
3 , , 3 - - - , 3 - - - 1 , 4

Fig. 1. pyramid({(5,3),(4,3),(4,4),(3,3),(2,3),(1,3),(1,4)~).

The keys are placed in the nodes. The horizontal links correspond to

the sets neighbours(v). The computation of find((3,4),v), where

v is a leaf and key(v)=(3,3), leads to the computation of FIND(

(3,4),v), FIND((!,2),Vl), FIND((O,I),v2). Here v1=father(v) and

v2=father(vl). Two new nodes are created with the keys (3,4),(1,2).

The computation of FIND((O,I),v 2) does not produce new nodes beca-

use there is already a neighbour of v 2 with the key (0,1).

370

Let ISJ demote the cardinality of the set S and compress(S) =

~ompress(~) !~e S}. The number k is t reated as a constant.

Lemma I. (key lemma)

Let S be a connected subset of U. Then

a) Icompress(S)I~CkiSl+l, where c k is a constant, O~c k< I;

b) the size of pyramid(S) is O(}S~) if JSi ~ log n.

Proof.

a) Take Ok=(2k-1)/2 k. We prove (a) by induction on ISi. If ISI~ 2 k

then the thesis follows from the fact that in this case CkISi+1 ~ iSl-

Assume now that !SI ~ 2 k and the thesis holds for all connected subsets

with the cardinality less than iSi. It can be proved that if S is co-

nnected and ~SI > 2 k then there are two distinct elements ~,~ S such

that compress(~)=compress(~). We partition S into two disjoint conne-

cted subsets SI,S 2 , where S I is the maximal connected subset of S

such that ~ ~S I and ~S I , and S 2 = S-S I. The connectivity of S 2 fo-

llows from the connectivity of S. The cardinalities of SI,S 2 are less

than ISI , hence (a) holds for SI,S 2. Icompress(S1)~ compress(S2)l~ I

because compress(~)=compress(~). We have

Icompress(S~ =Icompress(S1)l+Icompress(S2) I- Icompress(S1)~ compress

($2) I~ c klS11 +I +c klS21+I -I : c klSl+1. This completes the proof of

(a). The point (b) follows easily from (a). This completes the proof.

Let P=pyramid(S)~ where S is a connected subset of U, and let

6U, v~ ground(P). We consider the operation find(~,v) which returns

the found or created node we ground(P) with the key x. After computing

find(x,v) P=pyramid(Su {x}). It is easier to design the function

F!ND(~,v), which has almost the same effect as find, however v is not

necessarily contained in the ground level. FIND treates the level of

v as a ground level. It is assumed that S is connected and dist(~,

key(v)) g I whenever FIND(~,v) is called.

The operation FIND is easy if there is already a node with the key

on the same level as v. If such a node is to be created then we can

use the following property of the pyramidal structure.

Assume that w~root. Then

neighbours(w) ~ ~ sons(wl) (~)
w1~ neighbours(father(w))

This property a!lowes to design the function FIND recursively.

371

function FIND(~,v); ~ , U , dist(X,key(v)) ~ I~
va__~r w,wl,w2: node

be~in

if there is a node w~ neighbours(v) such that key(w)=~

then FIND:=w

else

b e~in ~insertion~

create a new node w with the key ~;

FIND:= w;

father(w):= FIND(compress(~),father(v);

add w to sons(father(w));

neighbours(w):= empty_set;

for each wl ~ neighbours(father(w)) do

for each w2~ sons(wl) do

if dist(key(w2),~)~ I then

add w2 to neighbours(w) and add w to neighbours(w2)

end

en__~d function;

Lemma 2.

Let S be a connected subset of U and P=pyramid(S). If v ~ ground(P)

and dist(~,key(v)) ~ 1 then after executing w:=FIND(E,v) we have

P=pyramid(S~xl), w~ ground(P) and key(w)=~ (in this case the effect

of FIND is the same as the effect of find).

Proof.
If initially ~ ~ U and v ~ ground(P) then later in the moment when

FIND(~,v) is called and v is the root we have x=(O,...,O) (in this

case the result is set to the root and the call terminates). Hence

FIND terminates. When the resulting node w is to be created then the

information associated with w is to be computed. The key of father(w)

is equal to compress(~), hence father(w) can be computed using FIND

which treats now the level of father(v) as a ground level and sear-

ches compress(x) starting from the finger father(v). After computing

father(w) the information associated with father(w) can be used.

The crucial point is the correctness of the computed sets neighbours

(w). This follows from the property (~). This completes the proof.

Theorem 1.

Assume that initially P=pyramid(~), where ~o E U and ground(P)=~vJ

Assume also that a given sequence @ of m operations

= find(Xl,Vl),find(~2,v2),...,find(~m,V m) satisfies for I ~ig m :

372

a) dist(key(vi),~i)g o7 where ~i ~ U and o is a constant;

b) vi~ ground(P) after executing the first i-I operations find.

Then the sequence ~ can be executed on-line in O(m) time and space.

Proof.

Each operation find(~,v) such that dist(~,key(v))~ c can be implemen-

ted by a sequence of at most c operations of the f~rm FIND(~,w), where

dist(~,key(w))4 I. Hence we can assume that c=I. Observe that the cost

of computing PiND is constant or it is proportional to the number of

created nodes. Hence time and space complexity of computing g is li-

near or it is proportional to the size of pyramid(~o,~l, _xm~)"

However if c=I then it follows from (a) that ~Xo' _.xm~ is connected.

Hence if m ~log n then the thesis follows from Lemma 1(b).

If m < log n then we can use the cutted pyramidal structure. If a

level contains less than 2k+I nodes then we can link all these nodes

directely to the root. If the root is linked to more than 2 k nodes

then we create the next upper level. We leave the details to the re-

ader. This completes the proof.

Remark.

Observe that the number of fingers is unbounded. The assumption that

the bound n is known in advance can be dropped at the cost of more

complicated algorithms. In any case it is not a major improvement.

There are possible many variations of the pyramidal structure. If we

label all edges of the tree representing the pyramidal structure with

k-tuples of binary digits then we can delete keys from internal nodes

and we obtain the digital search tree.

3. Regursive programs and the tabulation method.

We consider recursive programs given in the following form:

f(~) = if p(~) then ~ else f(a(~, f(b(~)))),

where x = (xl,...~x k) is the vector of integer variables and p,a,b

are given functions computable in constant time and space. Let V(x o)

be the set of all values of ~ for which f(x) is called during the com-

putation of f(~o). Denote m =IV(~o) I (m is the number of nodes in the

dependancy graph oi the computation of f(~o) and it is the natural

size of the input when we consider the exact tabulation [8]).

373

We are given an initial value Xo of ~ and a natural number n. Assume

that:

(a) f(~o) is defined; (b) V(~o)~ ~..n] k = U; (c) for each ~,~ ~V(Xo)

dist(b(~),x)~c and dist(a(X,~),~)~ c, where c is a constant.

The problem consists in the computation of f(~o). The numbers n,m

characterize the size of the input. Applying the tabulation method

we can compute f(~o) in 0(n k) time (observe that the straightforward

computation can require exponential time). However we are interested

in 0(m) time and space which can be much less than n k. We begin with

0(n k) time computation. We store the computed values of f(~) in the

table T of the size 0(nk). Initially each entry of T contains the

special value "undefined".

function f1(~);

if T(~)="undefined" then

T(~):= if p(~) then ~ else f1(a(~,f1(b(~))));

f1:= T(£)
end;

The cost of computing f1(~o) is proportional to the size of the table

T, which is o(nk). We say that the computation of f(x o) is sparse iff

the table T is sparse (during the computation the most part of T con-

tains the value "undefined"). The initialization of T can be omitted

using the trick from [8]. However this trick does not reduce space

complexity. We show that f(~o) can be computed in O(m) time and space

if the conditions (a-c) are satisfied.

Theorem 2.

f(~o) can be computed in 0(m) time and space if f and Xo satisfy the

conditions (a-c).

Proof.

We modify the function fl. The role of the table T will play now the

ground level of the pyramidal structure P. With every node vE ground

(P) there is associated an additional information T(v) , where T(v)

=(x~w) for some w~ ground(P), key(w)=~, or T(v)="undefined". When a

new node v is created then initially T(v)="undefined". Initially

P=pyramid(~Xo~) and ground(P)=~Vo~ , where T(Vo)=',undefined,,. At the

end T(Vo)=(~,w), where ~=f(~o),key(w)=~. Instead of storing the compu-

ted results in the table we store them in the ground level of P.

The actual parameters ~,v always satisfy key(v)=~, veground(P).

374

The designed function f2(~,v) returns as a result a pair (~,w) such

that y=f(~), key(w)=~, w ~ ground(P).

function f2(~,v); Ikey(v)=~, v~ ground(P)~

va_~r ~:key; w:node

begin

i~f T(v)="undefined '' the___~

be~iq

i_~f p(~) then T(v):= (~,v)

else

~:=b(~); w:=find(y,v); {dist(~,key(v))g c}

(y,w):= f2(~,w); {y=f(b(2))}

~::a(~,~); ~dist(~,key(w))~ c~

w:= find(~,w);

T(v):= f2(y,w)
en__~d;

en__~d;

f2:= T(v)

en__dd;

The correctness of f2 follows from the correctness of fl. Similarly

the number of executed assignments statements is O(m). Now the thesis

follows from Theorem !. This ends the proof.

Remark

Theorem 2 is also valid for recursive programs of another form

(for example t~e one defined in [8]) if it is satisfied a condition

analogous to (c). It will be seen in the next section why we have

chosen such a form of the recursive program.

4. Two-wa# pushdown automata

Let A be a 2dpda(k) and let w=al..°a n be the input string of the

length n. By a surface configuration (configuration, for short) we

mean a vector ~=(d,S,hl,h2,...,hk), where d is a top element of the

stack, s is a state and h1,...,h k are positions of the input heads.

In the computation of A we look only at the sequence of consecutive

(surface) configurations.

375

We say that a configuration ~ is reachable (for a given input w) iff

occures in the computation of A on w. Let m denote the number of

different reachable configurations. Assume that m~ n (A scans all the

iput string). The number m is our size of the input.

Theorem 3.

Each 2dpda(k) can be simulated in O(m) time and space.

Proof.

We can assume without the loss of generality that the next move of A

is always defined if the stack is nonempty, each move is a pop or a

push move, and when A accepts then the stack is one element and the

next move is a pop move. Assume also that top symbols and states are

numbered, hence configurations ~ are elements of the set U= [O..n] k+2

for n sufficiently big. We define the functions popf, pushf, terminal

and terminator as follows:

I) if ~ is a push configuration and ~ results from ~ in one step

then ~=pushf(E);

2) if ~ is a pop configuration, ~ results from ~ by a pop move and

top element of ~ is the same as the top element of ~ then

~=popf(~,y);
3) pop(~)=true iff ~ is a pop configuration;

4) terminator(~)=~ iff pop(~) and there is a computation of A star-

ting with the configuration~ and one element stack and ending with

and one element stack.

The simulation of A (on w) can be reduced to the computation of

terminator(~o), where Xo is the initial configuration [2]. The func-

tion terminator can be computed recursively:

terminator(~)= if pop(~) then ~ else terminator(popf(~,terminator

(pushf(~))))

If we know that A does not loop (terminator(~ o) is defined) then the

thesis follows directely from Theorem 2 taking the functions

f=terminator, p=pop, b=pushf, a=popf. The condition c follows from

the fact that in one step the input heads move to neighbouring posi-

tions. The functions pop, popf, pushf can be computed in constant

time from the description of the automaton.

When we do not know if A loops then we have to detect looping of

A during the computation. This can be done by assigning to the nodes

v ~ ground(P) boolean values onstack(v) which inform whether before

a given moment of the computation f2(~,v) was called and this call

is still not terminated.

376

If we call f2(~,v] and in this moment onstack(v)=true then we know

that the function loops and a rejecting procedure is to be called.

We leave the details to the reader. The bound on the complexity foll-

ows from Theorem 2. This completes the proof.

It could be proved that Theorem 5 holds if the model of the computat-

ion ia a storage modification machime [7].

In ~] (p,q)-dpda was defined as a deterministic pushdown automaton

with p two-way input heads and q one-way heads. The total number of

moves of one-way heads is O(n), hence m=O(nP+1), if A is a (p,q)-

dpda. Now the result of [4] follows directely from Theorem 3.

Corollary.

Each (p,q)-dpda can be simulated in O(n p+I) time and space.

Let A be a two-way nondeterministic pushdown automaton. We say

that A is loop-free iff there is no possible an infinite computation

of A on any input string. The looping of nondeterministic pushdowq

automata is much more complicated than the looping of deterministic

ones. The following theorem can be proved.

Theorem 4,

Each loop-free nondeterministic multihead two-way pushdown automaton

can be simulated in O(m 3 time and space.

Proof.

The (lengthy) proof is slmilar to that of Theorem 3.

References.

[I~ Aho A.V,Hopcroft J.E,Ullman J.D. Time and tape complexity of push-

down automaton languages. Inf.and Control 13:3 (1968)

2] Aho A.V,Hopcroft J.E,Ullman J.D. The design and analysis of compu-

ter algorithms. Section 9.4. Addison-Wesley (1976)

[3] Cook S.A. Linear time simulation of deterministic two-way push-

down automata. ?roc. IFIP Congress 1971.

4] Rytter W. An efficient simulation of deterministic pushdown auto-

mata with many two-way and one-way heads. Inf. Proc.Letters 12:5 (1981)

[5] Rytter W. The dynamic simulation of recursive and stack manipula-

ting programs. Inf. Proc.Letters 15:2 (1981)

[6] Rytter W. A note on the complexity of traversing a labyrinth.

Graph Theory Conf. Lagov,Poland, february 1981

7] A. modification machines. SIAM J.Comp. august1981 Schonhage Storage

8] Bird R. Tabulation techniques for recursive programs. ACM Comp.

Surveys 12:4 (1980)

