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Abstract. Suffix arrays provide a powerful data structure to solve sev-
eral questions related to the structure of all the factors of a string. We
show how they can be used to compute efficiently three new tables stor-
ing different types of previous factors (past segments) of a string. The
concept of a longest previous factor is inherent to Ziv-Lempel factoriza-
tion of strings in text compression, as well as in statistics of repetitions
and symmetries. The longest previous non-overlapping factor, for a given
position i, is the longest factor starting at ¢ which has an exact copy
occurring entirely before, while The longest previous non-overlapping
reverse factor for a given position i is the longest factor starting at i,
such that its reverse copy occurs entirely before. The previous copies of
the factors are required to occur in the prefix ending at position ¢ — 1.
The longest previous (possibly overlapping) reverse factor is the longest
factor starting at i, such that its reverse copy starts before 1.

We design algorithms computing the table of longest previous non-overlapping
reverse factors (LPnrF table), the table of longest previous reverse factors
(LPrF table) and and the table of longest previous non-overlapping fac-
tors (LPnF table). The last table is useful to compute repetitions while
the other two are useful tools for extracting symmetries. Moreover, the
LPnrF table can be used to compress sequences containing repeated pos-
sibly reversed fragments.

These tables are computed, using two previously computed read-only
arrays (SUF and LCP) composing the suffix array, in linear time on any
integer alphabet. The tables have not been explicitly considered before,
but they have several applications and they are natural extensions of
the LPF table which has been studied thoroughly before. Our results
improve on the previous ones in several ways. The running time of the
computation no longer depends on the size of the alphabet, which drops
a log factor. Moreover the newly introduced tables store additional in-
formation on the structure of the string, helpful to improve, for example,
gapped palindrome detection and text compression using reverse factors.
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1 Introduction

In this paper we show new algorithmic results which exploit the power of suffix
arrays [5]. Two useful new tables related to the structure of a string are computed
in linear time using additionally the power of data structures for Range Minimum
Queries (RMQ), in short) [7]. We assume throughout the paper we have an integer
alphabet, sortable in linear time. This assumption implies we can compute the
suffix array in linear time, with constant coefficient independent of the alphabet
size.

The first problem is to compute efficiently, for a given string y, the LPnrF
table, that stores at each index i the maximal length of factors (substrings) that
both start at position ¢ in y and occur reverse entirely before position 4.

The LPrF table is a concept close to the LPF table for which the previous
occurrence is not reverse (see [6] and references therein). The latter table extends
the Ziv-Lempel factorization of a text [18] intensively used for conservative text
compression (known as LZ77 method, see [1]). In the sense of the definition,
the LPnrF table resembles the LPF table a little bit less, however, if we consider
positions of the corresponding characters, it turns out that both tables are more
related. In the sense of the definition the LPnF table differs very slightly from
LPF (because the latter allows overlaps between the considered occurrences while
the former does not), but the LPF table is a permutation of the LCP array, while
LPnF usually is not, and the algorithms for LPnF differ much from those for LPF.

The LPnrF table generalises a factorization of strings used by Kolpakov and
Kucherov [13] to extract certain types of palindromes in molecular sequences.
These palindromes are of the form uvw where v is a short string and w is the
complemented reverse of u (complement consists in exchanging letters A and U,
as well as C and G, the Watson-Crick pairs of nucleotides). These palindromes
play an important role in RNA secondary structure prediction because they
signal potential hair-pin loops in RNA folding (see [3]). In addition the reverse
complement of a factor has to be considered up to some degree of approximation.

An additional motivation for considering the LPnrF table is text compres-
sion. Indeed, it may be used, in connection with the LPF table, to improve the
Ziv-Lempel factorization (basis of several popular compression software) by con-
sidering occurrences of reverse factors as well as usual factors. The feature has
already been implemented in [10] but without LPnrF and LPF tables, and our
algorithm provides a more efficient technique to compress DNA sequences under
the scheme.

As far as we know, the LPnrF table of a string has never been considered
before. Our source of inspiration was the notion of LPF table and the optimal
methods for computing it in [6]. It is shown there that the LPF table can be
derived from the Suffix Array of the input string both in linear time and with
only a constant amount of additional space.



The second problem, computation of the LPnF table of non-overlapping pre-
vious factors, emerged from a version of Ziv-Lempel factorization. An alternative
algorithm solving this problem was given in [17]. The factorization it leads to
plays an important role in string algorithms because the work done on an el-
ement of the factorization is skipped since already done on one of its previous
occurrences. A typical application of this idea resides in algorithms to compute
repetitions in strings (see [4, 14, 12]). It happens that the algorithm for the LPnF
table computation is a simple adaptation of the algorithm for LPnrF. It may be
surprising, because in one case we deal with exact copies of factors and in the
second with reverse copies.

The problem of computing the LPrF table has been included for the sake of
completeness — this way we cover all possible combinations of previous factors:
reversed or not, and overlapping or not. The LPrF table, when compared to
LPnrF, has no known applications, yet.

In this article we show that the computation of the LPnrF, LPrF and LPnF
tables of a string can be done in linear time from its Suffix Array. So, we get
the same running time as the algorithm described in [13] for the corresponding
factorization although our algorithm produces more information stored in the
table and ready to be used. Based on it, the factorizations of strings used for
designing string algorithms may be further optimised.

In addition to the Suffix Array of the input string, the algorithm makes use
of the RMQ data structure, that yields constant-time queries answers, and the
Manacher’s algorithm to recognize palindromes [15]. The question of whether
for integer alphabets a direct linear-time algorithm not using all this machinery
exists is open. Its solution would open an exciting path of novel techniques for
text processing.

2 Preliminaries

Let us consider a string y = y[0..n — 1] of length n. By y we denote the reverse
of y, that is y®* = y[n — 1]y[n — 2]...y[0]. The LPF table (see [6] and references
therein), and the three other tables we consider, LPnrF, LPrF and LPnF, are
defined (for 0 <14 < n) as follows (see Figure 2):

LPFi] = max{j : Jo<n<i 1 ylk. . k+j—1] =yli..i+j5—1]}
LPnrF[i] = max{j : Jo<ki—j:ylk. . k+j - YT =yli..i+j—1]}
LPrF[i] = max{j : Jo<r<i:ylk..k+j— 1]R =yli..i+5—1]}
LPnF[i| = max{j : Jo<p<i—j i ylk. . k+j—1] =yli..i+j—1]}

It can be noted that in the definition of the LPF and LPrF tables the occurrences
of y[k..k+j—1] and y[i..i+j— 1] may overlap, while it is not the case with the
other above concepts. For example, the string y = abbabbaba has the following
tables:



positions 0 1 2 3 4 5 6 7 8
yi] a b b a b b a b a
LPFi) 0 0 1 5 4 3 2 2 1

LPneFip O 0 2 1 3 3 2 2 1
LPrF[g 0 6 5 5 4 3 2 2 1
LPnF[i;] 0 0 1 3 3 3 2 2 1
[abbabbab al [abbabbab al

LPF[4]=4 LPnF[4]=3
[abbabbabal [abbabbabal

(2bb)

LPrF[4]=4 LPnrF[4]=3

Fig. 1. Illustration of LPF[4], LPnF[4], LPrF and LPnrF[4] for the string abbabbaba.

We start the computation of these arrays with computation of the Suffix Array
for the text y. It is a data structure used for indexing the text. It comprises three
tables denoted by SUF, RANK and LCP, and is defined as follows. The SUF array
stores the list of positions in y sorted according to the increasing lexicographic
order of suffixes starting at these positions. That is, the SUF table is such that:

y[SUF[0]..n — 1] < y[SUF[1]..n—1] < ... < y[SUF[n —1]..n — 1]

Thus, indices of SUF are ranks of the respective suffixes in the increasing lexico-
graphic order. The RANK array is the inversion of the SUF array, that is:

SUF[RANK[{]] =4 and RANK[SUF[r]]=7r
The LCP array is indexed by the ranks of the suffixes, and stores the lengths
of the longest common prefixes of consecutive suffixes in SUF. Let us denote by
lcp(7, j) the length of the longest common prefix of y[i..n — 1] and y[j..n — 1]
(for 0 <4,j < n). Then, we set LCP[0] = 0 and, for 0 < r < n, we have:
LCP[r] = lep(SUF[r — 1], SUFIr])

For example, the Suffix Array of the text y = abbabbaba is:



i s[i] RANK]] rank » SUF[r] LCP[r] suf(SUF[r])
0 a 3 0 8 0 a
1 b 8 1 6 1 aba
2 b 6 2 3 2 abbaba
3 a 2 3 0 5 abbabbaba
4 b 7 4 7 0 ba
5 b 5 5 5 2 baba
6 a 1 6 2 3 babbaba
7 b 4 7 4 1 bbaba
8§ a 0 8 1 4 bbabbaba
The Suffix Array can be built in time O(n) (see [5]).
LPnrF
alb[blalalblblalalalb] LPrF
a[p[b[ala] LPnF
LPF

[blb[blaa]b[b[alaJa[b[b[a]a[b]b[a[a[b[b[a]a]a]b] ¥

[alb[blala[b[b[a]a] LPF

LPnF
[blaJaJa[b[b]a|a[b[b[a] LPrF
LPnrF

Fig. 2. Comparison of LPF, LPnF, LPrF and LPnrF tables; it shows differences between
LPF and LPnF, and between LPrF and LPnrF.

In the algorithms presented in this paper we use the Minimum (Maximum)
Range Query data-structure (RMQ, in short). Let us assume, that we are given
an array A[0..n — 1] of numbers. This array is preprocessed to answer the
following form of queries: given an interval [¢..r] (for 0 < £ < r < n), find the
minimum (maximum) value A[k] for £ < k <.

The problem RMQ has received much attention in the literature. Bender and
Farach-Colton [2] presented an algorithm with O(n) preprocessing complexity
and O(1) query time, using O(nlogn)-bits of space. The same result was previ-
ously achieved in [9], albeit with a more complex data structure. Sadakane [16],
and recently Fischer and Heun [8] presented a succinct data structures, which
achieve the same time complexity using only O(n) bits of space.

3 The technique of alternating search

At the heart of our algorithms for computing the LPnrF and LPnF tables, there
is a special search in a given interval of the table SUF for a position k (the best
candidate) which gives the next value of the table (LPnrF or LPnF). This search



is composed of two simple alternating functions, so we call it here the alternating
search.

Assume we have an integer function Val(k) which is non-increasing for k > 1.
Our goal is to find any position k in the given range [i..j], which maximises
Val(k) and satisfies some given property Candidate(k) (we call values satisfying
Candidate(k) simply candidates). We assume, that Val(k) and Candidate(k) can
be computed in O(1) time. Let us also assume, that the following two functions
are computable in O(1) time:

— FirstMin(i, j) — returns the first position k in [i..j] with the minimum
value of Val(k),

— NextCand(i, j) — returns any candidate k from [i .. j) if there are any, oth-
erwise it returns some arbitrary value not satisfying Candidate(k).

Without loss of generality, we can assume that j is a candidate — otherwise, we
can narrow our search to the range [i.. NextCand(i, j)]. Please, observe, that:

Val(k) > Val(j) for i < k < FirstMin(i, j)

Hence, if FirstMin(i,j) > i and NextCand(i, FirstMin(i, j)) is a candidate,
then we can narrow our search to the interval [i.. NextCand(i, FirstMin(i, j))].
Otherwise, j is the position we are looking for.

Consequently, we can iterate FirstMin and NextCand(i, k) queries, increasing
with each step the value of Val(j) by at least one unit. This observation is crucial
for the complexity analysis of our algorithms.

Algorithm 1: Alternating-Search(i, j)

k := initial candidate in the range [i..j], satisfying Candidate;
while Candidate(k) do

Ji=k;
k := NextCand(i, FirstMin(i, j));
return j;

Lemma 1. Let k = Alternating-Search(i, j). The execution time of Alternating-
Search(i, j) is O(Val(k) — Val(j) + 1).

Proof. Observe, that each iteration of the while loop, except the last one, in-
creases Val(k) by at least one. The last iteration assigns the value of k to j,
which is then returned as a result. Hence, the number of iterations performed
by the while loop is not greater than Val(k) — Val(j) + 1. Each iteration requires
O(1) time, what concludes the proof. O

In the following sections, we apply the Alternating-Search algorithm to compute
the LPnrF and LPnF tables. Our strategy is to design the algorithm in which, in



each invocation of the Alternating-Search algorithm, the initial value of Val(k)
is smaller than the previously computed element of the LPnrF/LPnF table by at
most 1. In other words, we start with a reasonably good candidate, and the cost
of a single invocation of the Alternating-Search algorithm can be charged to the
difference between two consecutive values. The linear time follows from a simple
amortisation argument. The details are in the following sections.

4 Computation of the LPnrF table

This section presents how to calculate the LPnrF table, for a given string y of
size n, in O(n) time. First, let us create a string + = y#y® of size N = 2n + 1
(where # is a character not appearing in y). For the sake of simplicity, we set
that y[n] = # and y[—1] = x[-1] = x[N] are defined and smaller than any
character in z[0.. N — 1].

Let SUF be the suffix array related to 2, RANK be the inverse of SUF (that
is SUF[RANK]Ji]] = i, for 0 < i < N), and LCP be the longest common prefix
table related to z. Let 7 and 7, 0 < 4,5 < N be two different positions in x, and
let ¢/ = RANK]i] and j* = RANK]j]. Observe, that:

lep(4, 7) = min{LCP[min(i’, j') + 1..max(i’, j')]}
LPnrF[i] = max{lcp(i,j) : j > N —i}

Let us define two auxiliary arrays: LPnrFs and LPnrF_, which are variants
of the LPnrF array restricted to the case, where the first mismatch character in
the reversed suffix is greater (smaller) than the corresponding character in the
suffix. More formally, using x:

g j:ﬂj_1§k<i:y[k—j+1..k] y[ Z+j—1
LPnrF [i] = max{ and ylk —j] > yli +

]

]
{j23j1<k<iiy[k—j+1--k?] yli. H‘J_l]}

]

LPnrF_[i] = max and y[k — j] < yli + j

or equivalently, using x:

4 j o3 —i<k<N—j ' T [k k+ —1]—%[ 1+ —1]
LPan>M—maX{‘7 N—isksN zjmd x[k+]]>xﬁz+]]}
}

]

{j:ElN—ingN—j: [k k‘i’]*l]*l‘[ Z+]1}

and z[k+j] < z[i +j
The following lemma, formulates an important property of the LPnrF array,
which is extensively used in the presented algorithm.

LPnrF.[i] = max

Lemma 2. For0 < i < n, we have LPnrFs[i]| > LPnrFs[i—1]—1 and LPnrF.[i] >
LPnrF_[i — 1] — 1.



LPnrF, [1]

y=‘bababaabaabaabaababaa‘
[abaab] [baaba]

LPnrF_[i] i
=y #yR
‘bababaabaabaabaababaa‘#‘aababaabaabaabaababab‘

Fig. 3. Examples of LPnrFs and LPnrF values, in the text y and in « = y#y~.

Proof. Without loss of generality, we can limit the proof to the first property.
Let LPnrF.[i — 1] = j. So, there exists some k < ¢ — 1, such that:

ylk—j+1. . K® =yli—1..i+5—-2] and ylk—j]>yli+j—1]
Omitting the first character, we obtain:

ylk—j+1..k=1F=yli..i+j—2] and ylk—j]>yli+j—1]
and hence LPnrF<[i] > j —1=LPnrF5[i — 1] — 1. O

In the algorithm computing the LPnrF array, we use two data structures for
RMQ queries. They are used to answer, in constant time, two types of queries:

— FirstMinPos(p, ¢, LCP) returns the first (from the left) position in the range
[p..q] with minimum value of LCP,
— MaxValue(p, ¢, SUF) returns the maximal value from SUF[p..q]|.

Lemma 3. The MaxValue(p, q, SUF) and FirstMinPos(p, q, LCP) queries require
O(n) preprocessing time, and then can be answered in constant time.

Proof. Clearly, the SUF and LCP arrays can be constructed in O(n) time (see
[5]). The MaxValue(p, ¢, SUF) and FirstMinPos(p, ¢, LCP) queries are applied to
the sequence of O(n) length. Hence they require O(n) preprocessing time and
then can be answered using Range Minimum Queries in constant time (see [7]).
Note that, in the FirstMinPos query we need slightly modified range queries, that
return the first (from the left) minimal value, but the algorithms solving RMQ
problem can be modified to accommodate this fact. a

Algorithm 2 computes the LPnrF array from left to right. In each iteration it
also computes the value k;, which is the position of the substring (in the second
half of z), that maximizes LPnrF [i]. Namely, if LPnrF.[i] = j, then:

ylici+j—1)=afki. . ki+j—1]=y[N—ki —j+1..N —Fk]?



Algorithm 2: Compute-LPrF-
initialization: LPnrF+[0] := 0; ko := 0 ;
fori=1ton—1do
r; := RANK(z) { start Alternating Search } ;
k := InitialCandidate(k;—1,LPnrFs[i — 1]) ;
while £ > N — ¢ do
ki:=k;
ri ;= RANK(k) ;
7}, := FirstMinPos(r; + 1, 7%, LCP) ;
LPnrFs[i] := LCP[ry] ;
if r; +1 < 7}, then
k := MaxValue(r; + 1, r, — 1, SUF)
else break;
return LPnrF;

Function InitialCandidate (k,1)
if [ > 0 then
return k + 1

else
return N;

Lemma 4. Algorithm 2 works in O(n) time.

Proof. We prove this lemma using amortized cost analysis. The amortization
function equals LPnrF+ [i]. Initially we have LPnrF<[0] = 0.
Observe, that the body of the for loop is an instance of the Algorithm 1, with:

Val(k) = lep(i, k)
Candidate(k) =k > N —i
FirstMin(i, k) = FirstMinPos(RANK([i] + 1, RANK[&], LCP)
NextCand(i, 7) = MaxValue(RANK]i] + 1, j — 1, SUF)

Hence, by Lemmata 1 and 2, each iteration of the for loop takes O(LPnrF[i] —
LPnrFs [i — 1] +2) time, and the overall time complexity of Algorithm 2 is O(n +
LPnrF[n — 1] — LPnrF[0]) = O(n).

The correctness of the algorithm follows from the fact that (for each ¢) the body
of the while loop is executed at least once (as a consequence of Lemma 2). 0O

Theorem 1. The LPnrF array can be computed in O(n) time. For (polynomially
bounded) integer alphabets the complexity does not depend on the size of the
alphabet.

Proof. The table LPnrF. can be computed using similar approach in O(n) time.
Then, LPnrF[i] = max(LPnrF_[i], LPnrF.[d]). O



FirstMinPos

MaxValue
Suffix array m

i ki |

Ti  optimal €1 €o

Fig. 4. Iterations of the while loop of Algorithm 2.

5 Computation of the LPrF table

This section presents how to calculate the LPrF table, for a given string y of
length n, in O(n) time. We will show, how to reduce it to a new problem of the
longest previous overlapping reverse factor. This new problem is to compute a
LPorF table, defined as follows:

LPorFli] = max{j : j =0 or J;_jcpei:ylk..k+j—1F=yli..i+5—1]}

Let us consider the longest previous reversed factor of y[i..n — 1] for some
1 =20,...,n— 1. There are two possible cases: either it occurs not overlapping
position ¢, or it overlaps it. In the first case, its length equals LPnrF[i], and in
the latter one it equals LPorF[i]. Hence:

LPrF[i] = max(LPnrF[é], LPorF[i])

We have already shown how to compute the LPnrF table in O(n) time. Now, we
will show how to compute the LPorF table in the same time complexity.

Let ¢ be a position in y, 0 < ¢ < n, and let j = LPorF[i] > 0. Since LPorF|i]
cannot be equal 1, we have LPorF[i] > 2. Let us consider an overlapping reversed
occurrence of y[i . .i+j—1] and let k be its starting position. We have i—j < k < i
and:

ylk. k+j—10%=yli..i+j—1]

Note, that:

yli. k+j—1]=yli..k+j—1)7
and:

yk+j.i+j—1=ylk..i— 1"
Hence:

ylk.itj—1=ylk..i+j—1"

That is, y[k . .3+ j—1] is a palindrome (see Fig. 5). The center of this palindrome
is at %, where halves denote positions between characters.
The reverse implication is also valid. Let y[b..e| be a palindrome, where

0 < b < e < n. The center of the palindrome is at bge. For any such integer i,

that b < i < %€, we have: y[i..e] = y[b..b+e—i]". Hence, LPorF[i] > e—i+1.

Moreover, taking into account all such palindromes, we obtain:

LPorF[i]:maX{e—i+1:b<i§b+e and y[b..e]:y[b..e]R} (1)



1

i i+j—1
Yo ! E I !

]

]

1

k+j—1

Fig. 5. Previous overlapping reversed factor and related palindrome.

Information about all the palindromes in y can be obtained in O(n) time using
Manacher’s algorithm [15]. The output from this algorithm has a form of a table
DI0..2(n — 1)], such that D[] is the maximum length of a palindrome with a

center at position § (where halves denote positions between characters). More

formally, the maximal palindrome with a center at position § is:

y[c—QD[c]“c—FQD[c]}

Having computed array D, we can reformulate equation 1, as:

LPorF[i]—maX{CZD[C]_i+1;C_2D[C]<i§§}_

D
_max{cz[c]:c—D[c]<2i§c}—i+l

Array D can be processed from right to left, and each of the above maxima can
be computed in a constant amortized time. With each index ¢, two new elements,
D[2i] and D[2i 4 1], should be considered. On the other hand, all such values
Dlc] considered in the previous step, for which ¢ — D[c] = 24, can be discarded
in further computations. Moreover, we can use the following two observations to
further limit the number of values D][c] needed to compute LPorF[i].

Lemma 5. Let ¢; and co be two such indices, that 0 < ¢; < co <2(n—1) and
¢1 — Dle1] > ¢a — Dlea], then Dlci] does not influence the computation of the
LPorF array.

Proof. If i is such an index, that ¢; — D[c;] < 2i < ¢, then also ¢3 — D[es] <
2¢ < ¢g. Moreover, D]co] > D[c1] and hence Cz+§[02] > CIHS[CI]. O

Lemma 6. Let ¢c; and ca be two such indices, that 0 < ¢; < ¢ < 2(n—1) and
¢1+ Dl[e1] > ¢ + Dies], then Dlcs] does not influence the values of LPorF[i], for
i<4.

)

Proof. 1f i is such an index, that 2i < ¢y. Even if 2 > ¢3 — D]ca], then %D[Cl] >

co+Dles]
— - O

As an immediate consequence of Lemmata 5 and 6, we obtain the following fact:



Lemma 7. When computing LPorFlo..i], instead of considering all the values
DI[2i..2(n—1)], one can limit considerations to D[ci], Dlca], ..., D[cy], where
C1,C9,...,Cm 1S the mazimal sequence satisfying the following properties:

—1<c1<ca< ... < Cmy,
— ¢1 — Dle1] < ea — Dleg) < ... < ¢y — Diep] < 24,
—c¢1+ Dler] <ca+ Dlea] < ... < ¢m + Dlem].

Due to Lemma 7, we can use a two-sided queue to store all relevant indices

€1,Ca, ..., Cm. Moreover, if the queue is empty, thenLPorF[i] = 0, and otherwise:
m+ Dlem]
LPorF[i] = Sm ™ Zloml +2 lem] 5 41

Algorithm 4 exploits the above observations, calculating the LPorF array.

Algorithm 4: Compute-LPorF
initialization: ¢ := empty ;
for i =n — 1 downto 0 do
Insert(q,2i + 1) ;
Insert(q, 2i) ;

LPorF[i] = GetMax(q) ;
return LPorF;

Function Insert (q,c)
if empty(q) or ¢ — D|c] < g¢.first — D[q.first] then
while not empty(q) and ¢+ D|[c] > g.first + D][q.first] do
remove._first(q);
insert_first(q, c);

Function GetMax (q,1)

while not empty(q) and g.last — D[g.last] > 2i do
remove_last(q) ;

if empty(q) then
return 0

else
return (g.last + D[g.last])/2 — i + 1

Total number of elements inserted into queue ¢ does not exceed 2n — 1. Since
each element can be removed only once, the amortized running time of Insert



and GetMax functions is constant. Hence, the total running time of Algorithm 4
is O(n). As a consequence, we obtain the following theorem:

Theorem 2. The LPrF array can be computed in O(n) time.

6 Longest previous non-overlapping factor

This section presents how to calculate the LPnF table in O(n) time. First, let us
investigate the values of the LPnF array. For the sake of simplicity, we set that
y[n] is defined and smaller than any character in y[0..n — 1]. For each value
j = LPnF[i], let us have a look at the characters following the respective factors
of length j. Let 0 < k < 4 be such that y[k..k+j— 1] =yli..i+ j — 1]. There
are two possible reasons, why these factors cannot be extended:

— either the following characters do not match (that is, y[k + j] # y[i + j]), or
— they match, but if the factors are extended, then they would overlap (that
is, ylk +j] =yli+j] and k4 j =19).

We divide the LPnF problem into two subproblems, and (for 0 < i < n) define:

Miq Ji k< iylk. k+j—1=yli..i+j—1],
LPnF M‘max{ ylk + 7] % yli +J] and k+ j < i

LPnFOfi] = max{j : Jpej :ylk. . k+j—1)=yli..i+j—1] and k+j =i}

It is easy to see that LPnF[i] = max{LPnF™[i], LPnF?[i]}. The LPnF°][i] is,
in fact, the maximum radius of a square that has its center between positions
1 — 1 and 4. Such array can be easily computed in linear time from runs, using
approach proposed in [12].

We have to show how to compute the LPnF array. Following the same
scheme we have used for the LPnrF problem, we reduce this problem to the
computation of two tables, namely LPnF]>VI and LPnF]Z[, defined as LPnFM with
the restriction that the mismatch character in the previous factor y[k + j] is
greater (smaller) than y[i + j]. More formally:

|

Clearly, LPnFM[i] = max(LPnFY[i], LPnFY[i]). Without loss of generality, we
can limit our considerations to computation of LPnFi/[ . Just like LPnrF, the
LPnF]>” array has the property, that for any 7, 1 <1i < n, LPnFi/[[z’] > LPnF];/[[i —
1]-1.

Mo — JiJo<k<i—jiylk. k+j—-1=yli..i+j—1
LPnF [l]—max{ T ke o
M _ j:Fockaioj ylk. k+j—1=yli..i+j—1
LPnF [l]max{ Tyl o

Lemma 8. For 0 < i < n, we have LPnFM[i] > LPnFY[i — 1] — 1.



Proof. Let LPnF]>V[ [i — 1] = j. So, there exists some 0 < k < i — j — 1, such that:
ylk..k+j—-1l=yli—1..i+5—-2] and ylk+j]l>yli+j—1]

If we omit the first characters, then we obtain:
ylk+1.. k+j—1]=vyli..i+j—-2] and ylk+j]l>yli+j—1]

and hence LPnFY[i] > j — 1 = LPnFY[i —1] - 1. O

Algorithm 7: Compute-LPnF~
initialization: LPnFY[0] := 0; ko =0 ;
fori=1ton—1do
r; := RANKJ{] ;
(k,1) = InitialCandidate(k;—1, LPnF¥[i — 1]) ;
whilel =0or k+1<ido

ki = k‘;

rr := RANK[k] ;

7}, := FirstMinPos(r; + 1,7, LCP) ;
LPnFY (i) :=1;

if [r; +1 <7, —1] # 0 then
k := MinValue(r; + 1, 7, — 1, SUF) ;
l :=lep(r;, RANKIE]) ;
else break;
return LPnFY;

Function InitialCandidate (k,1)
if [ > 0 then
return (k+ 1,1 —1)
else
return (n,0);

In the algorithm computing the LPnFJy array, we use two data structures
for RMQ queries. They are applied to answer, in constant time, two types of
queries:

— FirstMinPos(p, ¢, LCP) returns the first (from the left) position in the range
[p..q] with minimum value of LCP,
— MinValue(p, ¢, SUF) returns the minimal value from SUF[p..q].

Lemma 9. Algorithm 7 works in O(n) time.



Proof. We prove this lemma using amortized cost analysis. The amortization
function equals LPnFY []. Initially we have LPnF2[0] = 0. Please observe, that
the body of the for loop is an instance of the Algorithm 1, with:

Val(k) = lep(i, k)
Candidate(k) =k +1<iorl=0
FirstMin(i, k) = FirstMinPos(RANK]i] + 1, RANKIk], LCP)
NextCand(i, j) = MinValue(RANK[i] + 1,5 — 1, SUF)

Hence, by Lemmata 1 and 8, each iteration of the for loop takes O(LPnF];/[[i] —
LPnFY[i —1] 4 2) time, and the overall time complexity of Algorithm 7 is O(n +
LPnFY [n — 1] — LPnFY[0]) = O(n).

The correctness of the algorithm follows from the fact that (for each i) the
body of the while loop is executed at least once (as a consequence of 8). a

Theorem 3. The LPnF array can be computed in O(n) time (without using the
suffix trees). For (polynomially bounded) integer alphabets the complexity does
not depend on the size of the alphabet.

Proof. The table LPn Ff can be computed using similar approach in O(n) time.

As already mentioned, the LPnF® array can also be computed in O(n) time.
Then, LPnF[i] = max(LPnFY [i], LPnFY[i], LPnF©[4]). 0

7 Applications to text compression

Several text compression algorithms and many related software are based on
factorizations of input text in which each element is a factor of the text occurring
at a previous position possibly extended by one character (see [1] for variants of
the scheme). We assume, to simplify the description, that the current element
occurs before as it is done in LZ77 parsing [18], which is related a notion of
complexity of strings.

Algorithm 9: AbstractSemiGreedyfactorization(w)

i=1;j=0;n=lwl;
while i < n do

J=J+1;
if w[i] doesn’t appear in w[l.. (i —1)] then f; = w[i;
else

f; = u such that uv is the longest prefix of w[i..n| for which u appears
before position ¢ and v appears before position 7 + |u|.
i=i+|[fi];
return (fi...f;)

An improvement on the scheme, called optimal parsing, has been proposed in
[11]. Tt optimises the parsing by utilising a semi-greedy algorithm. The algorithm



reduces the number of elements of the factorization. Algorithm 9 is an abstract
semi-greedy algorithm for computing factorization of the word w. At a given
step, instead of choosing the longest factor starting at position ¢ and occurring
before, which is the greedy technique, the algorithm chooses the factor whose
next factor goes to the furthest position. The semi-greedy scheme is simple to
implement with the LPF table. We should also note, that LPnrF array can be
used to construct reverse Lempel-Ziv factorization described in [13] in O(n) time,
while in [13] authors present O(nlog X') algorithm.

Combining reverse and non-reverse types of factorization is a mere applica-
tion of the LPF (or LPnF) and LPnrF tables as shown in Algorithm 10. We get
the next statement as a conclusion of the section.

Theorem 4. The optimal parsing using factors and reverse factors can be com-
puted in linear time independently of the alphabet size.

Algorithm 10: LinearTimeSemiGreedyfactorization(w)

i=1;j=0;n=w;

compute LPF and LPnrF arrays for word w ;
let MAXF[¢] = max{LPF[é],LPnrF[:]} ;

let MAXF™T[i] = MAXF[i] + 1 ;

prepare MAXF™T for range maximum queries ;
while i <n do

J=J+1;
if w[i] doesn’t appear in w[l.. (i — 1)] then f; = w[i;
else

let k = MAXF[i] ;
find i < ¢ <4+ k such that MAXF T [g] is maximal ;
fi=wli..q];

return (f1..f;)
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