

Efficient algorithms for two extensions of LPF table: the power of suffix arrays*

Maxime Crochemore^{1,3}, Costas S. Iliopoulos^{1,4},
Marcin Kubica², Wojciech Rytter^{2,5**}, and Tomasz Waleń²

¹ Dept. of Computer Science, King's College London, London WC2R 2LS, UK

² Institute of Informatics, University of Warsaw, Warsaw, Poland

³ Université Paris-Est, France

⁴ Digital Ecosystems & Business Intelligence Institute, Curtin University of Technology, Perth WA 6845, Australia

⁵ Faculty of Math. and Informatics, Copernicus University, Toruń, Poland

Abstract. Suffix arrays provide a powerful data structure to solve several questions related to the structure of all the factors of a string. We show how they can be used to compute efficiently three new tables storing different types of previous factors (past segments) of a string. The concept of a longest previous factor is inherent to Ziv-Lempel factorization of strings in text compression, as well as in statistics of repetitions and symmetries. The longest previous non-overlapping factor, for a given position i , is the longest factor starting at i which has an exact copy occurring entirely before, while The longest previous non-overlapping reverse factor for a given position i is the longest factor starting at i , such that its reverse copy occurs entirely before. The previous copies of the factors are required to occur in the prefix ending at position $i - 1$. The longest previous (possibly overlapping) reverse factor is the longest factor starting at i , such that its reverse copy starts before i . We design algorithms computing the table of longest previous non-overlapping reverse factors (LPnrF table), the table of longest previous reverse factors (LPrF table) and and the table of longest previous non-overlapping factors (LPnF table). The last table is useful to compute repetitions while the other two are useful tools for extracting symmetries. Moreover, the LPnrF table can be used to compress sequences containing repeated possibly reversed fragments.

These tables are computed, using two previously computed read-only arrays (SUF and LCP) composing the suffix array, in linear time on any integer alphabet. The tables have not been explicitly considered before, but they have several applications and they are natural extensions of the LPF table which has been studied thoroughly before. Our results improve on the previous ones in several ways. The running time of the computation no longer depends on the size of the alphabet, which drops a log factor. Moreover the newly introduced tables store additional information on the structure of the string, helpful to improve, for example, gapped palindrome detection and text compression using reverse factors.

* Research supported in part by the Royal Society, UK.

** Supported by grant N206 004 32/0806 of the Polish Ministry of Science and Higher Education.

Keywords: longest previous reverse factor, longest previous non-overlapping reverse factor, longest previous non-overlapping factor, longest previous factor, palindrome, runs, Suffix Array, text compression.

1 Introduction

In this paper we show new algorithmic results which exploit the power of suffix arrays [5]. Two useful new tables related to the structure of a string are computed in linear time using additionally the power of data structures for Range Minimum Queries (RMQ, in short) [7]. We assume throughout the paper we have an integer alphabet, sortable in linear time. This assumption implies we can compute the suffix array in linear time, with constant coefficient independent of the alphabet size.

The first problem is to compute efficiently, for a given string y , the **LPnrF** table, that stores at each index i the maximal length of factors (substrings) that both start at position i in y and occur reverse entirely before position i .

The **LPrF** table is a concept close to the **LPF** table for which the previous occurrence is not reverse (see [6] and references therein). The latter table extends the Ziv-Lempel factorization of a text [18] intensively used for conservative text compression (known as LZ77 method, see [1]). In the sense of the definition, the **LPnrF** table resembles the **LPF** table a little bit less, however, if we consider positions of the corresponding characters, it turns out that both tables are more related. In the sense of the definition the **LPnF** table differs very slightly from **LPF** (because the latter allows overlaps between the considered occurrences while the former does not), but the **LPF** table is a permutation of the **LCP** array, while **LPnF** usually is not, and the algorithms for **LPnF** differ much from those for **LPF**.

The **LPnrF** table generalises a factorization of strings used by Kolpakov and Kucherov [13] to extract certain types of palindromes in molecular sequences. These palindromes are of the form uvw where v is a short string and w is the complemented reverse of u (complement consists in exchanging letters **A** and **U**, as well as **C** and **G**, the Watson-Crick pairs of nucleotides). These palindromes play an important role in RNA secondary structure prediction because they signal potential hair-pin loops in RNA folding (see [3]). In addition the reverse complement of a factor has to be considered up to some degree of approximation.

An additional motivation for considering the **LPnrF** table is text compression. Indeed, it may be used, in connection with the **LPF** table, to improve the Ziv-Lempel factorization (basis of several popular compression software) by considering occurrences of reverse factors as well as usual factors. The feature has already been implemented in [10] but without **LPnrF** and **LPF** tables, and our algorithm provides a more efficient technique to compress DNA sequences under the scheme.

As far as we know, the **LPnrF** table of a string has never been considered before. Our source of inspiration was the notion of **LPF** table and the optimal methods for computing it in [6]. It is shown there that the **LPF** table can be derived from the Suffix Array of the input string both in linear time and with only a constant amount of additional space.

The second problem, computation of the LPnF table of non-overlapping previous factors, emerged from a version of Ziv-Lempel factorization. An alternative algorithm solving this problem was given in [17]. The factorization it leads to plays an important role in string algorithms because the work done on an element of the factorization is skipped since already done on one of its previous occurrences. A typical application of this idea resides in algorithms to compute repetitions in strings (see [4, 14, 12]). It happens that the algorithm for the LPnF table computation is a simple adaptation of the algorithm for LPnrF . It may be surprising, because in one case we deal with exact copies of factors and in the second with reverse copies.

The problem of computing the LPrF table has been included for the sake of completeness — this way we cover all possible combinations of previous factors: reversed or not, and overlapping or not. The LPrF table, when compared to LPnrF , has no known applications, yet.

In this article we show that the computation of the LPnrF , LPrF and LPnF tables of a string can be done in linear time from its Suffix Array. So, we get the same running time as the algorithm described in [13] for the corresponding factorization although our algorithm produces more information stored in the table and ready to be used. Based on it, the factorizations of strings used for designing string algorithms may be further optimised.

In addition to the Suffix Array of the input string, the algorithm makes use of the RMQ data structure, that yields constant-time queries answers, and the Manacher's algorithm to recognize palindromes [15]. The question of whether for integer alphabets a direct linear-time algorithm not using all this machinery exists is open. Its solution would open an exciting path of novel techniques for text processing.

2 Preliminaries

Let us consider a string $y = y[0 \dots n-1]$ of length n . By y^R we denote the reverse of y , that is $y^R = y[n-1]y[n-2] \dots y[0]$. The LPF table (see [6] and references therein), and the three other tables we consider, LPnrF , LPrF and LPnF , are defined (for $0 \leq i < n$) as follows (see Figure 2):

$$\begin{aligned}\text{LPF}[i] &= \max\{j : \exists_{0 \leq k < i} : y[k \dots k+j-1] = y[i \dots i+j-1]\} \\ \text{LPnrF}[i] &= \max\{j : \exists_{0 \leq k \leq i-j} : y[k \dots k+j-1]^R = y[i \dots i+j-1]\} \\ \text{LPrF}[i] &= \max\{j : \exists_{0 \leq k < i} : y[k \dots k+j-1]^R = y[i \dots i+j-1]\} \\ \text{LPnF}[i] &= \max\{j : \exists_{0 \leq k \leq i-j} : y[k \dots k+j-1] = y[i \dots i+j-1]\}\end{aligned}$$

It can be noted that in the definition of the LPF and LPrF tables the occurrences of $y[k \dots k+j-1]$ and $y[i \dots i+j-1]$ may overlap, while it is not the case with the other above concepts. For example, the string $y = \text{abbabbaba}$ has the following tables:

position i	0	1	2	3	4	5	6	7	8
$y[i]$	a	b	b	a	b	b	a	b	a
$\text{LPF}[i]$	0	0	1	5	4	3	2	2	1
$\text{LPnrF}[i]$	0	0	2	1	3	3	2	2	1
$\text{LPrF}[i]$	0	6	5	5	4	3	2	2	1
$\text{LPnF}[i]$	0	0	1	3	3	3	2	2	1

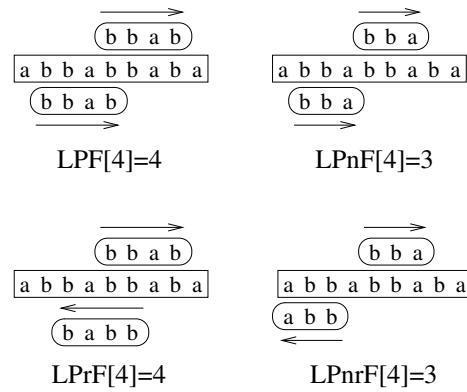


Fig. 1. Illustration of $\text{LPF}[4]$, $\text{LPnF}[4]$, LPrF and $\text{LPnrF}[4]$ for the string `abbabbaba`.

We start the computation of these arrays with computation of the Suffix Array for the text y . It is a data structure used for indexing the text. It comprises three tables denoted by **SUF**, **RANK** and **LCP**, and is defined as follows. The **SUF** array stores the list of positions in y sorted according to the increasing lexicographic order of suffixes starting at these positions. That is, the **SUF** table is such that:

$$y[\text{SUF}[0] \dots n-1] < y[\text{SUF}[1] \dots n-1] < \dots < y[\text{SUF}[n-1] \dots n-1]$$

Thus, indices of **SUF** are ranks of the respective suffixes in the increasing lexicographic order. The **RANK** array is the inversion of the **SUF** array, that is:

$$\text{SUF}[\text{RANK}[i]] = i \quad \text{and} \quad \text{RANK}[\text{SUF}[r]] = r$$

The **LCP** array is indexed by the ranks of the suffixes, and stores the lengths of the longest common prefixes of consecutive suffixes in **SUF**. Let us denote by $\text{lcp}(i, j)$ the length of the longest common prefix of $y[i \dots n-1]$ and $y[j \dots n-1]$ (for $0 \leq i, j < n$). Then, we set $\text{LCP}[0] = 0$ and, for $0 < r < n$, we have:

$$\text{LCP}[r] = \text{lcp}(\text{SUF}[r-1], \text{SUF}[r])$$

For example, the Suffix Array of the text $y = \text{abbabbaba}$ is:

i	$s[i]$	RANK[i]	rank r	SUF[r]	LCP[r]	suf(SUF[r])
0	a	3	0	8	0	a
1	b	8	1	6	1	aba
2	b	6	2	3	2	abbaba
3	a	2	3	0	5	abbabbaba
4	b	7	4	7	0	ba
5	b	5	5	5	2	baba
6	a	1	6	2	3	babbaba
7	b	4	7	4	1	bbaba
8	a	0	8	1	4	bbabbaba

The Suffix Array can be built in time $O(n)$ (see [5]).

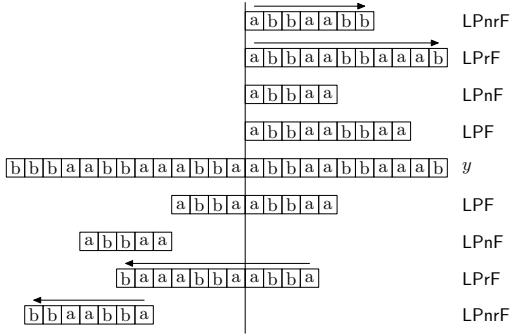


Fig. 2. Comparison of LPF, LPnF, LPrF and LPnrF tables; it shows differences between LPF and LPnF, and between LPrF and LPnrF.

In the algorithms presented in this paper we use the Minimum (Maximum) Range Query data-structure (RMQ, in short). Let us assume, that we are given an array $A[0..n - 1]$ of numbers. This array is preprocessed to answer the following form of queries: given an interval $[\ell..r]$ (for $0 \leq \ell \leq r < n$), find the minimum (maximum) value $A[k]$ for $\ell \leq k \leq r$.

The problem RMQ has received much attention in the literature. Bender and Farach-Colton [2] presented an algorithm with $O(n)$ preprocessing complexity and $O(1)$ query time, using $O(n \log n)$ -bits of space. The same result was previously achieved in [9], albeit with a more complex data structure. Sadakane [16], and recently Fischer and Heun [8] presented a succinct data structures, which achieve the same time complexity using only $O(n)$ bits of space.

3 The technique of alternating search

At the heart of our algorithms for computing the LPnrF and LPnF tables, there is a special search in a given interval of the table SUF for a position k (the best candidate) which gives the next value of the table (LPnrF or LPnF). This search

is composed of two simple alternating functions, so we call it here the *alternating search*.

Assume we have an integer function $Val(k)$ which is non-increasing for $k \geq i$. Our goal is to find any position k in the given range $[i..j]$, which maximises $Val(k)$ and satisfies some given property $Candidate(k)$ (we call values satisfying $Candidate(k)$ simply *candidates*). We assume, that $Val(k)$ and $Candidate(k)$ can be computed in $O(1)$ time. Let us also assume, that the following two functions are computable in $O(1)$ time:

- $FirstMin(i, j)$ — returns the first position k in $[i..j]$ with the minimum value of $Val(k)$,
- $NextCand(i, j)$ — returns any candidate k from $[i..j]$ if there are any, otherwise it returns some arbitrary value not satisfying $Candidate(k)$.

Without loss of generality, we can assume that j is a candidate — otherwise, we can narrow our search to the range $[i..NextCand(i, j)]$. Please, observe, that:

$$Val(k) > Val(j) \text{ for } i \leq k < FirstMin(i, j)$$

Hence, if $FirstMin(i, j) > i$ and $NextCand(i, FirstMin(i, j))$ is a candidate, then we can narrow our search to the interval $[i..NextCand(i, FirstMin(i, j))]$. Otherwise, j is the position we are looking for.

Consequently, we can iterate $FirstMin$ and $NextCand(i, k)$ queries, increasing with each step the value of $Val(j)$ by at least one unit. This observation is crucial for the complexity analysis of our algorithms.

Algorithm 1: Alternating-Search(i, j)

```

 $k :=$  initial candidate in the range  $[i..j]$ , satisfying  $Candidate$ ;
while  $Candidate(k)$  do
     $j := k$  ;
     $k := NextCand(i, FirstMin(i, j))$ ;
return  $j$ ;
```

Lemma 1. *Let $k = Alternating-Search(i, j)$. The execution time of Alternating-Search(i, j) is $O(Val(k) - Val(j) + 1)$.*

Proof. Observe, that each iteration of the while loop, except the last one, increases $Val(k)$ by at least one. The last iteration assigns the value of k to j , which is then returned as a result. Hence, the number of iterations performed by the while loop is not greater than $Val(k) - Val(j) + 1$. Each iteration requires $O(1)$ time, what concludes the proof. \square

In the following sections, we apply the Alternating-Search algorithm to compute the LPnrF and LPnF tables. Our strategy is to design the algorithm in which, in

each invocation of the Alternating-Search algorithm, the initial value of $Val(k)$ is smaller than the previously computed element of the LPnrF/LPnF table by at most 1. In other words, we start with a reasonably good candidate, and the cost of a single invocation of the Alternating-Search algorithm can be charged to the difference between two consecutive values. The linear time follows from a simple amortisation argument. The details are in the following sections.

4 Computation of the LPnrF table

This section presents how to calculate the LPnrF table, for a given string y of size n , in $O(n)$ time. First, let us create a string $x = y\#y^R$ of size $N = 2n + 1$ (where $\#$ is a character not appearing in y). For the sake of simplicity, we set that $y[n] = \#$ and $y[-1] = x[-1] = x[N]$ are defined and smaller than any character in $x[0..N-1]$.

Let SUF be the suffix array related to x , RANK be the inverse of SUF (that is $\text{SUF}[\text{RANK}[i]] = i$, for $0 \leq i < N$), and LCP be the longest common prefix table related to x . Let i and j , $0 \leq i, j < N$ be two different positions in x , and let $i' = \text{RANK}[i]$ and $j' = \text{RANK}[j]$. Observe, that:

$$\begin{aligned}\text{lcp}(i, j) &= \min\{\text{LCP}[\min(i', j') + 1.. \max(i', j')]\} \\ \text{LPnrF}[i] &= \max\{\text{lcp}(i, j) : j \geq N - i\}\end{aligned}$$

Let us define two auxiliary arrays: $\text{LPnrF}_>$ and $\text{LPnrF}_<$, which are variants of the LPnrF array restricted to the case, where the first mismatch character in the reversed suffix is greater (smaller) than the corresponding character in the suffix. More formally, using x :

$$\begin{aligned}\text{LPnrF}_>[i] &= \max \left\{ j : \exists_{j-1 \leq k < i} : y[k-j+1..k]^R = y[i..i+j-1] \right. \\ &\quad \left. \text{and } y[k-j] > y[i+j] \right\} \\ \text{LPnrF}_<[i] &= \max \left\{ j : \exists_{j-1 \leq k < i} : y[k-j+1..k]^R = y[i..i+j-1] \right. \\ &\quad \left. \text{and } y[k-j] < y[i+j] \right\}\end{aligned}$$

or equivalently, using x :

$$\begin{aligned}\text{LPnrF}_>[i] &= \max \left\{ j : \exists_{N-i \leq k \leq N-j} : x[k..k+j-1] = x[i..i+j-1] \right. \\ &\quad \left. \text{and } x[k+j] > x[i+j] \right\} \\ \text{LPnrF}_<[i] &= \max \left\{ j : \exists_{N-i \leq k \leq N-j} : x[k..k+j-1] = x[i..i+j-1] \right. \\ &\quad \left. \text{and } x[k+j] < x[i+j] \right\}\end{aligned}$$

The following lemma, formulates an important property of the LPnrF array, which is extensively used in the presented algorithm.

Lemma 2. *For $0 < i < n$, we have $\text{LPnrF}_>[i] \geq \text{LPnrF}_>[i-1] - 1$ and $\text{LPnrF}_<[i] \geq \text{LPnrF}_<[i-1] - 1$.*



Fig. 3. Examples of $\text{LPnrF}_>$ and $\text{LPnrF}_<$ values, in the text y and in $x = y \# y^R$.

Proof. Without loss of generality, we can limit the proof to the first property. Let $\text{LPnr}_{>}[i-1] = j$. So, there exists some $k < i-1$, such that:

$$y[k-j+1..k]^R = y[i-1..i+j-2] \quad \text{and} \quad y[k-j] > y[i+j-1]$$

Omitting the first character, we obtain:

$$y[k-j+1..k-1]^R = y[i..i+j-2] \quad \text{and} \quad y[k-j] > y[i+j-1]$$

and hence $\text{LPnrF}_>[i] \geq j - 1 = \text{LPnrF}_>[i - 1] - 1$.

In the algorithm computing the LPnR array, we use two data structures for RMQ queries. They are used to answer, in constant time, two types of queries:

- $\text{FirstMinPos}(p, q, \text{LCP})$ returns the first (from the left) position in the range $[p \dots q]$ with minimum value of LCP ,
- $\text{MaxValue}(p, q, \text{SUF})$ returns the maximal value from $\text{SUF}[p \dots q]$.

Lemma 3. *The $\text{MaxValue}(p, q, \text{SUF})$ and $\text{FirstMinPos}(p, q, \text{LCP})$ queries require $O(n)$ preprocessing time, and then can be answered in constant time.*

Proof. Clearly, the SUF and LCP arrays can be constructed in $O(n)$ time (see [5]). The $\text{MaxValue}(p, q, \text{SUF})$ and $\text{FirstMinPos}(p, q, \text{LCP})$ queries are applied to the sequence of $O(n)$ length. Hence they require $O(n)$ preprocessing time and then can be answered using Range Minimum Queries in constant time (see [7]). Note that, in the FirstMinPos query we need slightly modified range queries, that return the first (from the left) minimal value, but the algorithms solving RMQ problem can be modified to accommodate this fact. \square

Algorithm 2 computes the $\text{LPnrF}_>$ array from left to right. In each iteration it also computes the value k_i , which is the position of the substring (in the second half of x), that maximizes $\text{LPnrF}_>[i]$. Namely, if $\text{LPnrF}_>[i] = j$, then:

$$y[i..i+j-1] = x[k_i..k_i+j-1] = y[N-k_i-j+1..N-k_i]^R$$

Algorithm 2: Compute-LPrF_>

```

initialization: LPnrF>[0] := 0; k0 := 0 ;
for i = 1 to n - 1 do
    ri := RANK(i) { start Alternating Search } ;
    k := InitialCandidate(ki-1, LPnrF>[i - 1]) ;
    while k  $\geq$  N - i do
        ki := k ;
        rk := RANK(k) ;
        r'k := FirstMinPos(ri + 1, rk, LCP) ;
        LPnrF>[i] := LCP[r'k] ;
        if ri + 1 < r'k then
            k := MaxValue(ri + 1, r'k - 1, SUF)
        else break;
    return LPnrF>;
```

Function InitialCandidate(k, l)

```

if l > 0 then
    return k + 1
else
    return N;
```

Lemma 4. Algorithm 2 works in $O(n)$ time.

Proof. We prove this lemma using amortized cost analysis. The amortization function equals $LPnrF_{>}[i]$. Initially we have $LPnrF_{>}[0] = 0$.

Observe, that the body of the for loop is an instance of the Algorithm 1, with:

$$\begin{aligned}
Val(k) &= lcp(i, k) \\
Candidate(k) &\equiv k \geq N - i \\
FirstMin(i, k) &= FirstMinPos(RANK[i] + 1, RANK[k], LCP) \\
NextCand(i, j) &= MaxValue(RANK[i] + 1, j - 1, SUF)
\end{aligned}$$

Hence, by Lemmata 1 and 2, each iteration of the **for** loop takes $O(LPnrF_{>}[i] - LPnrF_{>}[i-1] + 2)$ time, and the overall time complexity of Algorithm 2 is $O(n + LPnrF[n-1] - LPnrF[0]) = O(n)$.

The correctness of the algorithm follows from the fact that (for each i) the body of the while loop is executed at least once (as a consequence of Lemma 2). \square

Theorem 1. The $LPnrF$ array can be computed in $O(n)$ time. For (polynomially bounded) integer alphabets the complexity does not depend on the size of the alphabet.

Proof. The table $LPnrF_{<}$ can be computed using similar approach in $O(n)$ time. Then, $LPnrF[i] = \max(LPnrF_{<}[i], LPnrF_{>}[i])$. \square

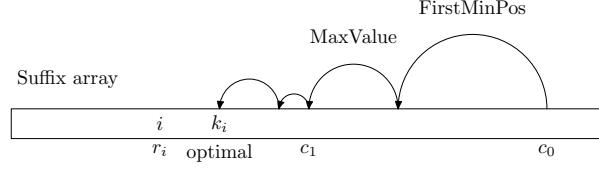


Fig. 4. Iterations of the while loop of Algorithm 2.

5 Computation of the **LPrF** table

This section presents how to calculate the **LPrF** table, for a given string y of length n , in $O(n)$ time. We will show, how to reduce it to a new problem of the longest previous *overlapping* reverse factor. This new problem is to compute a **LPrF** table, defined as follows:

$$\text{LPrF}[i] = \max\{j : j = 0 \text{ or } \exists_{i-j < k < i} : y[k \dots k+j-1]^R = y[i \dots i+j-1]\}$$

Let us consider the longest previous reversed factor of $y[i \dots n-1]$ for some $i = 0, \dots, n-1$. There are two possible cases: either it occurs not overlapping position i , or it overlaps it. In the first case, its length equals **LPnrF**[i], and in the latter one it equals **LPrF**[i]. Hence:

$$\text{LPrF}[i] = \max(\text{LPnrF}[i], \text{LPrF}[i])$$

We have already shown how to compute the **LPnrF** table in $O(n)$ time. Now, we will show how to compute the **LPrF** table in the same time complexity.

Let i be a position in y , $0 \leq i < n$, and let $j = \text{LPrF}[i] > 0$. Since **LPrF**[i] cannot be equal 1, we have **LPrF**[i] ≥ 2 . Let us consider an overlapping reversed occurrence of $y[i \dots i+j-1]$ and let k be its starting position. We have $i-j < k < i$ and:

$$y[k \dots k+j-1]^R = y[i \dots i+j-1]$$

Note, that:

$$y[i \dots k+j-1] = y[i \dots k+j-1]^R$$

and:

$$y[k+j \dots i+j-1] = y[k \dots i-1]^R$$

Hence:

$$y[k \dots i+j-1] = y[k \dots i+j-1]^R$$

That is, $y[k \dots i+j-1]$ is a palindrome (see Fig. 5). The center of this palindrome is at $\frac{k+i+j-1}{2}$, where halves denote positions between characters.

The reverse implication is also valid. Let $y[b \dots e]$ be a palindrome, where $0 \leq b < e < n$. The center of the palindrome is at $\frac{b+e}{2}$. For any such integer i , that $b < i \leq \frac{b+e}{2}$, we have: $y[i \dots e] = y[b \dots b+e-i]^R$. Hence, **LPrF**[i] $\geq e-i+1$. Moreover, taking into account all such palindromes, we obtain:

$$\text{LPrF}[i] = \max \left\{ e-i+1 : b < i \leq \frac{b+e}{2} \text{ and } y[b \dots e] = y[b \dots e]^R \right\} \quad (1)$$

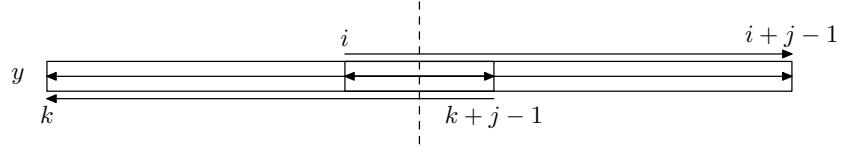


Fig. 5. Previous overlapping reversed factor and related palindrome.

Information about all the palindromes in y can be obtained in $O(n)$ time using Manacher's algorithm [15]. The output from this algorithm has a form of a table $D[0..2(n-1)]$, such that $D[c]$ is the maximum length of a palindrome with a center at position $\frac{c}{2}$ (where halves denote positions between characters). More formally, the maximal palindrome with a center at position $\frac{c}{2}$ is:

$$y \left[\frac{c - D[c]}{2} \dots \frac{c + D[c]}{2} \right]$$

Having computed array D , we can reformulate equation 1, as:

$$\begin{aligned} \text{LPorF}[i] &= \max \left\{ \frac{c + D[c]}{2} - i + 1 : \frac{c - D[c]}{2} < i \leq \frac{c}{2} \right\} = \\ &= \max \left\{ \frac{c + D[c]}{2} : c - D[c] < 2i \leq c \right\} - i + 1 \end{aligned}$$

Array D can be processed from right to left, and each of the above maxima can be computed in a constant amortized time. With each index i , two new elements, $D[2i]$ and $D[2i+1]$, should be considered. On the other hand, all such values $D[c]$ considered in the previous step, for which $c - D[c] = 2i$, can be discarded in further computations. Moreover, we can use the following two observations to further limit the number of values $D[c]$ needed to compute $\text{LPorF}[i]$.

Lemma 5. *Let c_1 and c_2 be two such indices, that $0 \leq c_1 < c_2 \leq 2(n-1)$ and $c_1 - D[c_1] \geq c_2 - D[c_2]$, then $D[c_1]$ does not influence the computation of the LPorF array.*

Proof. If i is such an index, that $c_1 - D[c_1] < 2i \leq c_1$, then also $c_2 - D[c_2] < 2i \leq c_2$. Moreover, $D[c_2] > D[c_1]$ and hence $\frac{c_2 + D[c_2]}{2} > \frac{c_1 + D[c_1]}{2}$. \square

Lemma 6. *Let c_1 and c_2 be two such indices, that $0 \leq c_1 < c_2 \leq 2(n-1)$ and $c_1 + D[c_1] \geq c_2 + D[c_2]$, then $D[c_2]$ does not influence the values of $\text{LPorF}[i]$, for $i \leq \frac{c_1}{2}$.*

Proof. If i is such an index, that $2i \leq c_1$. Even if $2i > c_2 - D[c_2]$, then $\frac{c_1 + D[c_1]}{2} \geq \frac{c_2 + D[c_2]}{2}$. \square

As an immediate consequence of Lemmata 5 and 6, we obtain the following fact:

Lemma 7. *When computing $LPorF[o..i]$, instead of considering all the values $D[2i..2(n-1)]$, one can limit considerations to $D[c_1], D[c_2], \dots, D[c_m]$, where c_1, c_2, \dots, c_m is the maximal sequence satisfying the following properties:*

- $i \leq c_1 < c_2 < \dots < c_m$,
- $c_1 - D[c_1] < c_2 - D[c_2] < \dots < c_m - D[c_m] < 2i$,
- $c_1 + D[c_1] < c_2 + D[c_2] < \dots < c_m + D[c_m]$.

Due to Lemma 7, we can use a two-sided queue to store all relevant indices c_1, c_2, \dots, c_m . Moreover, if the queue is empty, then $LPorF[i] = 0$, and otherwise:

$$LPorF[i] = \frac{c_m + D[c_m]}{2} - i + 1$$

Algorithm 4 exploits the above observations, calculating the $LPorF$ array.

Algorithm 4: Compute-LPorF

```

initialization:  $q := \text{empty}$  ;
for  $i = n - 1$  downto 0 do
   $Insert(q, 2i + 1)$  ;
   $Insert(q, 2i)$  ;
   $LPorF[i] = GetMax(q)$  ;
return  $LPorF$ ;
```

Function $Insert(q, c)$

```

if  $\text{empty}(q)$  or  $c - D[c] < q.\text{first} - D[q.\text{first}]$  then
  while not  $\text{empty}(q)$  and  $c + D[c] \geq q.\text{first} + D[q.\text{first}]$  do
     $\text{remove\_first}(q)$ ;
     $\text{insert\_first}(q, c)$ ;
```

Function $GetMax(q, i)$

```

while not  $\text{empty}(q)$  and  $q.\text{last} - D[q.\text{last}] \geq 2i$  do
   $\text{remove\_last}(q)$ ;
if  $\text{empty}(q)$  then
  return 0
else
  return  $(q.\text{last} + D[q.\text{last}])/2 - i + 1$ 
```

Total number of elements inserted into queue q does not exceed $2n - 1$. Since each element can be removed only once, the amortized running time of $Insert$

and *GetMax* functions is constant. Hence, the total running time of Algorithm 4 is $O(n)$. As a consequence, we obtain the following theorem:

Theorem 2. *The $LPrF$ array can be computed in $O(n)$ time.*

6 Longest previous non-overlapping factor

This section presents how to calculate the $LPnF$ table in $O(n)$ time. First, let us investigate the values of the $LPnF$ array. For the sake of simplicity, we set that $y[n]$ is defined and smaller than any character in $y[0..n-1]$. For each value $j = LPnF[i]$, let us have a look at the characters following the respective factors of length j . Let $0 \leq k < i$ be such that $y[k..k+j-1] = y[i..i+j-1]$. There are two possible reasons, why these factors cannot be extended:

- either the following characters do not match (that is, $y[k+j] \neq y[i+j]$), or
- they match, but if the factors are extended, then they would overlap (that is, $y[k+j] = y[i+j]$ and $k+j = i$).

We divide the $LPnF$ problem into two subproblems, and (for $0 \leq i < n$) define:

$$LPnF^M[i] = \max \left\{ j : \begin{array}{l} \exists_{k < j} : y[k..k+j-1] = y[i..i+j-1], \\ y[k+j] \neq y[i+j] \text{ and } k+j \leq i \end{array} \right\}$$

$$LPnF^O[i] = \max \{ j : \exists_{k < j} : y[k..k+j-1] = y[i..i+j-1] \text{ and } k+j = i \}$$

It is easy to see that $LPnF[i] = \max\{LPnF^M[i], LPnF^O[i]\}$. The $LPnF^O[i]$ is, in fact, the maximum radius of a square that has its center between positions $i-1$ and i . Such array can be easily computed in linear time from runs, using approach proposed in [12].

We have to show how to compute the $LPnF^M$ array. Following the same scheme we have used for the $LPnrF$ problem, we reduce this problem to the computation of two tables, namely $LPnF^M_>$ and $LPnF^M_<$, defined as $LPnF^M$ with the restriction that the mismatch character in the previous factor $y[k+j]$ is greater (smaller) than $y[i+j]$. More formally:

$$LPnF^M_>[i] = \max \left\{ j : \begin{array}{l} \exists_{0 \leq k \leq i-j} : y[k..k+j-1] = y[i..i+j-1] \\ \text{and } y[k+j] > y[i+j] \end{array} \right\}$$

$$LPnF^M_<[i] = \max \left\{ j : \begin{array}{l} \exists_{0 \leq k \leq i-j} : y[k..k+j-1] = y[i..i+j-1] \\ \text{and } y[k+j] < y[i+j] \end{array} \right\}$$

Clearly, $LPnF^M[i] = \max(LPnF^M_>[i], LPnF^M_<[i])$. Without loss of generality, we can limit our considerations to computation of $LPnF^M_>$. Just like $LPnrF$, the $LPnF^M_>$ array has the property, that for any i , $1 < i \leq n$, $LPnF^M_>[i] \geq LPnF^M_>[i-1] - 1$.

Lemma 8. *For $0 < i < n$, we have $LPnF^M_>[i] \geq LPnF^M_>[i-1] - 1$.*

Proof. Let $\text{LPnF}_>^M[i-1] = j$. So, there exists some $0 \leq k \leq i-j-1$, such that:

$$y[k \dots k+j-1] = y[i-1 \dots i+j-2] \quad \text{and} \quad y[k+j] > y[i+j-1]$$

If we omit the first characters, then we obtain:

$$y[k+1 \dots k+j-1] = y[i \dots i+j-2] \quad \text{and} \quad y[k+j] > y[i+j-1]$$

and hence $\text{LPnF}_>^M[i] \geq j-1 = \text{LPnF}_>^M[i-1] - 1$. \square

Algorithm 7: Compute- $\text{LPnF}_>$

```

initialization:  $\text{LPnF}_>^M[0] := 0$ ;  $k_0 = 0$  ;
for  $i = 1$  to  $n-1$  do
   $r_i := \text{RANK}[i]$  ;
   $(k, l) = \text{InitialCandidate}(k_{i-1}, \text{LPnF}_>^M[i-1])$  ;
  while  $l = 0$  or  $k + l \leq i$  do
     $k_i = k$  ;
     $r_k := \text{RANK}[k]$  ;
     $r'_k := \text{FirstMinPos}(r_i + 1, r_k, \text{LCP})$  ;
     $\text{LPnF}_>^M[i] := l$  ;
    if  $[r_i + 1 \leq r'_k - 1] \neq \emptyset$  then
       $k := \text{MinValue}(r_i + 1, r'_k - 1, \text{SUF})$  ;
       $l := \text{lcp}(r_i, \text{RANK}[k])$  ;
    else break ;
  return  $\text{LPnF}_>^M$  ;

```

Function $\text{InitialCandidate}(k, l)$

```

if  $l > 0$  then
  return  $(k + 1, l - 1)$ 
else
  return  $(n, 0)$  ;

```

In the algorithm computing the $\text{LPnF}_>^M$ array, we use two data structures for RMQ queries. They are applied to answer, in constant time, two types of queries:

- $\text{FirstMinPos}(p, q, \text{LCP})$ returns the first (from the left) position in the range $[p \dots q]$ with minimum value of LCP ,
- $\text{MinValue}(p, q, \text{SUF})$ returns the minimal value from $\text{SUF}[p \dots q]$.

Lemma 9. *Algorithm 7 works in $O(n)$ time.*

Proof. We prove this lemma using amortized cost analysis. The amortization function equals $\text{LPnF}_>^M[i]$. Initially we have $\text{LPnF}_>^M[0] = 0$. Please observe, that the body of the for loop is an instance of the Algorithm 1, with:

$$\begin{aligned} \text{Val}(k) &= \text{lcp}(i, k) \\ \text{Candidate}(k) &\equiv k + l \leq i \text{ or } l = 0 \\ \text{FirstMin}(i, k) &= \text{FirstMinPos}(\text{RANK}[i] + 1, \text{RANK}[k], \text{LCP}) \\ \text{NextCand}(i, j) &= \text{MinValue}(\text{RANK}[i] + 1, j - 1, \text{SUF}) \end{aligned}$$

Hence, by Lemmata 1 and 8, each iteration of the for loop takes $O(\text{LPnF}_>^M[i] - \text{LPnF}_>^M[i - 1] + 2)$ time, and the overall time complexity of Algorithm 7 is $O(n + \text{LPnF}_>^M[n - 1] - \text{LPnF}_>^M[0]) = O(n)$.

The correctness of the algorithm follows from the fact that (for each i) the body of the while loop is executed at least once (as a consequence of 8). \square

Theorem 3. *The LPnF array can be computed in $O(n)$ time (without using the suffix trees). For (polynomially bounded) integer alphabets the complexity does not depend on the size of the alphabet.*

Proof. The table $\text{LPnF}_<^M$ can be computed using similar approach in $O(n)$ time. As already mentioned, the LPnF^O array can also be computed in $O(n)$ time. Then, $\text{LPnF}[i] = \max(\text{LPnF}_<^M[i], \text{LPnF}_>^M[i], \text{LPnF}^O[i])$. \square

7 Applications to text compression

Several text compression algorithms and many related software are based on factorizations of input text in which each element is a factor of the text occurring at a previous position possibly extended by one character (see [1] for variants of the scheme). We assume, to simplify the description, that the current element occurs before as it is done in LZ77 parsing [18], which is related a notion of complexity of strings.

Algorithm 9: AbstractSemiGreedyfactorization(w)

```

 $i = 1; j = 0; n = |w|;$ 
while  $i \leq n$  do
   $j = j + 1;$ 
  if  $w[i]$  doesn't appear in  $w[1..(i - 1)]$  then  $f_j = w[i];$ 
  else
     $f_j = u$  such that  $uv$  is the longest prefix of  $w[i..n]$  for which  $u$  appears
    before position  $i$  and  $v$  appears before position  $i + |u|$ .
   $i = i + |f_j|;$ 
return  $(f_1 \dots f_j)$ 

```

An improvement on the scheme, called optimal parsing, has been proposed in [11]. It optimises the parsing by utilising a semi-greedy algorithm. The algorithm

reduces the number of elements of the factorization. Algorithm 9 is an abstract semi-greedy algorithm for computing factorization of the word w . At a given step, instead of choosing the longest factor starting at position i and occurring before, which is the greedy technique, the algorithm chooses the factor whose next factor goes to the furthest position. The semi-greedy scheme is simple to implement with the LPF table. We should also note, that LPnrF array can be used to construct reverse Lempel-Ziv factorization described in [13] in $O(n)$ time, while in [13] authors present $O(n \log \Sigma)$ algorithm.

Combining reverse and non-reverse types of factorization is a mere application of the LPF (or LPnF) and LPnrF tables as shown in Algorithm 10. We get the next statement as a conclusion of the section.

Theorem 4. *The optimal parsing using factors and reverse factors can be computed in linear time independently of the alphabet size.*

Algorithm 10: LinearTimeSemiGreedyfactorization(w)

```

 $i = 1; j = 0; n = |w|$  ;
compute LPF and LPnrF arrays for word  $w$  ;
let MAXF[i] = max{LPF[i], LPnrF[i]} ;
let MAXF+[i] = MAXF[i] + i ;
prepare MAXF+ for range maximum queries ;
while  $i \leq n$  do
     $j = j + 1$  ;
    if  $w[i]$  doesn't appear in  $w[1 \dots (i - 1)]$  then  $f_j = w[i]$  ;
    else
        let  $k = \text{MAXF}[i]$  ;
        find  $i \leq q < i + k$  such that MAXF+[q] is maximal ;
         $f_j = w[i \dots q]$  ;
return  $(f_1 \dots f_j)$ 

```

References

1. T. C. Bell, J. G. Clearly, and I. H. Witten. *Text Compression*. Prentice Hall Inc., New Jersey, 1990.
2. M. A. Bender and M. Farach-Colton. The lca problem revisited. In G. H. Gonnet, D. Panario, and A. Viola, editors, *Latin American Theoretical INformatics (LATIN)*, volume 1776 of *Lecture Notes in Computer Science*, pages 88–94. Springer, 2000.
3. H.-J. Böckenhauer and D. Bongartz. *Algorithmic Aspects of Bioinformatics*. Springer, Berlin, 2007.
4. M. Crochemore. Transducers and repetitions. *Theoretical Computer Science*, 45(1):63–86, 1986.
5. M. Crochemore, C. Hancart, and T. Lecroq. *Algorithms on Strings*. Cambridge University Press, Cambridge, UK, 2007.

6. M. Crochemore, L. Ilie, C. Iliopoulos, M. Kubica, W. Rytter, and T. Waleń. LPF computation revisited. In J. Kratochvíl and M. Miller, editors, *International Workshop on Combinatorial Algorithms*, LNCS, Berlin, 2009. Springer. To appear.
7. J. Fischer and V. Heun. Theoretical and practical improvements on the RMQ-problem, with applications to LCA and LCE. In M. Lewenstein and G. Valiente, editors, *CPM*, volume 4009 of *Lecture Notes in Computer Science*, pages 36–48. Springer, 2006.
8. J. Fischer and V. Heun. A New Succinct Representation of RMQ-Information and Improvements in the Enhanced Suffix Array. In B. Chen, M. Paterson, and G. Zhang, editors, *Proceedings of the International Symposium on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies (ESCAPE'07)*, volume 4614 of *Lecture Notes in Computer Science*, pages 459–470, Hangzhou, China, April 7-9, 2007. Springer-Verlag.
9. H. Gabow, J. Bentley, and R. Tarjan. Scaling and related techniques for geometry problems. In *Symposium on the Theory of Computing (STOC)*, pages 135–143, 1984.
10. S. Grumbach and F. Tahi. Compression of DNA sequences. In *Data Compression Conference*, pages 340–350, 1993.
11. A. Hartman and M. Rodeh. Optimal parsing of strings. In A. Apostolico and Z. Galil, editors, *Combinatorial algorithms on words*, volume 12 of *Computer and System Sciences*, pages 155–167, Berlin, 1985. Springer.
12. R. M. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in linear time. In *FOCS*, pages 596–604, 1999.
13. R. M. Kolpakov and G. Kucherov. Searching for gapped palindromes. In P. Ferragina and G. M. Landau, editors, *Combinatorial Pattern Matching, 19th Annual Symposium, Pisa, Italy, June 18-20, 2008*, volume 5029 of *Lecture Notes in Computer Science*, pages 18–30, Berlin, 2008. Springer.
14. M. G. Main. Detecting leftmost maximal periodicities. *Discret. Appl. Math.*, 25:145–153, 1989.
15. G. K. Manacher. A new linear-time “on-line” algorithm for finding the smallest initial palindrome of a string. *J. ACM*, 22(3):346–351, 1975.
16. K. Sadakane. Succinct data structures for flexible text retrieval systems. *Journal of Discrete Algorithms*, 5(1):12–22, 2007.
17. G. Tischler. Personal communication.
18. J. Ziv and A. Lempel. A universal algorithm for sequential data compression. *IEEE Transactions on Information Theory*, pages 337–343, 1977.