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We present efficient algorithms computing all Abelian periods of two types in a word. 
Regular Abelian periods are computed in O(n log logn) randomized time which improves 
over the best previously known algorithm by almost a factor of n. The other algorithm, for 
full Abelian periods, works in O(n) time. As a tool we develop an O(n)-time construction 
of a data structure that allows O(1)-time gcd(i, j) queries for all 1 ≤ i, j ≤ n. This is a 
result of independent interest.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The area of Abelian stringology was initiated by Erdős who posed a question about the smallest alphabet size for which 
there exists an infinite Abelian-square-free word; see [22]. The first example of such a word over a finite alphabet was given 
by Evdokimov [23]. An example over five-letter alphabet was given by Pleasants [39] and afterwards an optimal example 
over four-letter alphabet was shown by Keränen [33].

Several results related to Abelian stringology have been presented recently. The combinatorial results focus on Abelian 
complexity in words [3,13,19–21,24] and partial words [5–10]. A related model studied in the same context is k-Abelian 
equivalence [31]. Algorithms and data structures have been developed for Abelian pattern matching and indexing (also 
called jumbled pattern matching and indexing), most commonly for the binary alphabet [4,11,12,14,15,37,38] and for general 
alphabets as well [34,14]. Hardness results related to jumbled indexing have also been studied [1,29]. Abelian indexing has 
also been extended to trees [15] and graphs with bounded treewidth [28]. Another algorithmic focus is on Abelian periods 
in words, which were first defined and studied by Constantinescu and Ilie [16]. Abelian periods are a natural extension of 
the notion of a period from standard stringology [18] and are also related to Abelian squares; see [17].

We say that two words x, y are commutatively equivalent (denoted as x ≡ y) if one can be obtained from the other by 
permuting its symbols. Furthermore we say that x is an Abelian factor of y if there exists a word z such that xz ≡ y. We 
denote this relation as x ⊆ y.

Example 1. 00121001 ≡ 01010201 and 00021 ⊆ 01010201.

We consider words over an alphabet � = {0, . . . , σ − 1}. The Parikh vector P(w) of a word w shows frequency of each 
symbol of the alphabet in the word. More precisely, P(w)[c] equals to the number of occurrences of the symbol c ∈ � in w . 

* Corresponding author.
E-mail addresses: kociumaka@mimuw.edu.pl (T. Kociumaka), jrad@mimuw.edu.pl (J. Radoszewski), rytter@mimuw.edu.pl (W. Rytter).
http://dx.doi.org/10.1016/j.jcss.2016.09.003
0022-0000/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2016.09.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:kociumaka@mimuw.edu.pl
mailto:jrad@mimuw.edu.pl
mailto:rytter@mimuw.edu.pl
http://dx.doi.org/10.1016/j.jcss.2016.09.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2016.09.003&domain=pdf


206 T. Kociumaka et al. / Journal of Computer and System Sciences 84 (2017) 205–218
Fig. 1. The word 0101020100121001 together with its two Abelian periods: one is 6 (since 010102 ≡ 010012 and 1001 ⊆ 010102) and the other is 8 
(since 01010201 ≡ 00121001). The latter is also a full Abelian period. In total this word has two full Abelian periods (8 and 16), and ten Abelian periods 
(6, 8, 9, 10, 11, 12, 13, 14, 15, 16). Its shortest weak Abelian period is (5, 3).

It turns out that x and y are commutatively equivalent if and only if the Parikh vectors P(x) and P(y) are equal. Moreover, 
x is an Abelian factor of y if and only if P(x) ≤ P(y), i.e., if P(x)[c] ≤ P(y)[c] for each coordinate c. Parikh vectors were 
introduced in the context of Abelian equivalence already in [16].

Example 2. For the words from Example 1 we have:

P(00121001) = P(01010201) = [4,3,1],
P(00021) = [3,1,1] ≤ [4,3,1] = P(01010201).

Let w be a word of length n. Let us denote by w[i. . j] the factor wi . . . w j and by Pi, j the Parikh vector P(w[i. . j]). An 
integer q is called an Abelian period of w if for k = �n/q�:

P1,q = Pq+1,2q = · · · = P(k−1)q+1,kq and Pkq+1,n ≤ P1,q.

An Abelian period is called full if it is a divisor of n.
A pair (q, i) is called a weak Abelian period of w if q is an Abelian period of w[i + 1. . n] and P1,i ≤Pi+1,i+q . Fig. 1 shows 

an example word together with its Abelian periods of various types.
Fici et al. [27] gave an O(n log log n)-time algorithm finding all full Abelian periods and an O(n2)-time algorithm finding 

all Abelian periods. An O(n2σ)-time algorithm finding weak Abelian periods was developed in [25,26]. It was later improved 
to O(n2)-time in [17] and further improved to O(n2/

√
log n)-time for constant-sized alphabets in [36].

Our results We present an O(n)-time deterministic algorithm finding all full Abelian periods. We also give an algo-
rithm finding all Abelian periods, which we develop in two variants: an O(n log log n + n logσ)-time deterministic and 
an O(n log log n)-time randomized. All our algorithms run on O(n) space in the standard word-RAM model with �(log n)

word size. The randomized algorithm is Monte Carlo and returns the correct answer with high probability, i.e. for each c > 0
the parameters can be set so that the probability of error is at most 1

nc . We assume that σ , the size of the alphabet, does 
not exceed n, the length of the word. However, it suffices that σ is polynomially bounded, i.e. σ = nO(1); then the symbols 
of the word can be renumbered in O(n) time so that σ ≤ n.

As a tool we develop a data structure for gcd-queries. After O(n)-time preprocessing, given any i, j ∈ {1, . . . , n} the value 
gcd(i, j) can be computed in constant time. We are not aware of any solutions to this problem besides the folklore ones: 
preprocessing all answers (O(n2) preprocessing, O(1) queries), using Euclid’s algorithm (no preprocessing, O(log n) queries) 
or prime factorization (O(n) preprocessing [30], queries in time proportional to the number of distinct prime factors, which 
is O(

log n
log log n )).

A preliminary version of this work appeared as [35].

Organization of the paper The auxiliary data structure for gcd-queries is presented in Section 2. In Section 3 we introduce 
the proportionality relation on Parikh vectors, which provides a convenient characterization of Abelian periods in a word. 
Afterwards in Sections 4 and 5 we present our main algorithms for full Abelian periods and Abelian periods, respectively. 
Each of the algorithms utilizes tools from number theory. The missing details of these algorithms related to the case of large 
alphabets are provided in the next two sections. In particular, in Section 6 we reduce efficient testing of the proportionality 
relation to a problem of equality of members of certain vector sequences, which potentially being of �(nσ) total size, 
admit an O(n)-sized representation. Deterministic and randomized constructions of an efficient data structure for the vector 
equality problem (based on such representations) are left for Section 7. We end with a short section with some conclusions 
and open problems.

2. Greatest common divisor queries

The key idea behind our data structure for gcd is an observation that gcd-queries are easy when one of the arguments is 
prime or both arguments are small enough for the precomputed answers to be used. We exploit this fact by reducing each 
query to a constant number of such special-case queries.

In order to achieve this we define a special decomposition of an integer k > 0 as a triple (k1, k2, k3) such that

k = k1 · k2 · k3 and ki ≤ √
k or ki ∈ Primes for i = 1,2,3.
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Example 3. (2, 64, 64) is a special decomposition of 8192. (1, 18, 479), (2, 9, 479) and (3, 6, 479) are, up to permutations, 
all special decompositions of 8622.

Let us introduce an operation ⊗ such that (k1, k2, k3) ⊗ p results by multiplying the smallest of ki ’s by p. For example, 
(8, 2, 4) ⊗ 7 = (8, 14, 4).

For an integer k > 1, let MinDiv[k] denote the least prime divisor of k.

Fact 1. Let k > 1 be an integer, p = MinDiv[k] and � = k/p. If (�1, �2, �3) is a special decomposition of �, then (�1, �2, �3) ⊗ p is a 
special decomposition of k.

Proof. Assume that �1 ≤ �2 ≤ �3. If �1 = 1, then �1 · p = p is prime. Otherwise, �1 is a divisor of k and by the definition of 
p we have p ≤ �1. Therefore:

(�1 p)2 = �2
1 p2 ≤ �3

1 p ≤ �1�2�3 p = k.

Consequently, �1 p ≤ √
k and in both cases (�1 p, �2, �3) is a special decomposition of k. �

Fact 1 allows computing special decompositions provided that the values MinDiv[k] can be computed efficiently. This is, 
however, a by-product of a linear-time prime number sieve of Gries and Misra [30].

Lemma 2. ([30], Section 5) The values MinDiv[k] for all k ∈ {2, . . . , n} can be computed in O(n) time.

We proceed with the description of the data structure. In the preprocessing phase we compute in O(n) time two tables:

(a) a Gcd-small[i, j] table such that Gcd-small[i, j] = gcd(i, j) for all i, j ∈ {1, . . . , 
⌊√

n
⌋};

(b) a Decomp[k] table such that Decomp[k] is a special decomposition of k for each k ≤ n.

This phase is presented below in the algorithm Preprocessing(n). The Gcd-small table is filled using elementary steps in 
Euclid’s subtraction algorithm and the Decomp table is computed according to Fact 1.

Algorithm Preprocessing(n)

for i := 1 to
⌊√

n
⌋

do Gcd-small[i, i] := i;

for i := 2 to
⌊√

n
⌋

do

for j := 1 to i − 1 do

Gcd-small[i, j] := Gcd-small[i − j, j];
Gcd-small[ j, i] := Gcd-small[i − j, j];

Decomp[1] := (1, 1, 1);

for k := 2 to n do

p := MinDiv[k];
Decomp[k] := Decomp[k/p] ⊗ p;

return (Gcd-small, Decomp);

Fact 3. If (x1, x2, x3) is a special decomposition of x ≤ n, then for each y ≤ n we can compute gcd(xi, y) in constant time using the 
tables Gcd-small and Decomp.

Proof. We compute gcd(xi, y) as follows: if xi ≤ √
n, then

gcd(xi, y) = gcd(xi, y mod xi) = Gcd-small[xi, y mod xi];
otherwise xi is guaranteed to be prime, so the gcd can be greater than 1 only if xi | y and then gcd(xi, y) = xi . �

The algorithm Query(x, y) computes gcd(x, y) for x, y ≤ n using the special decomposition (x1, x2, x3) of x as follows.
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Fig. 2. A graph of the word w = 0100110001010, where each symbol 0 corresponds to a horizontal unit line segment and each symbol 1 corresponds to 
vertical unit line segment. Here P3 = (2, 1) (the word 010) and P9 = (6, 3) (the word 010011000). Hence, 3 ∼ 9. In other words, the points P3 and P9 lie 
on the same line originating from (0, 0).

Algorithm Query(x, y)

(x1, x2, x3) := Decomp[x];
for i := 1 to 3 do

di := gcd(xi, y); {Fact 3}

y := y/di ;

return d1 · d2 · d3;

The correctness follows from the fact that

gcd(x1x2x3, y) = gcd(x1, y) · gcd(x2x3, y/gcd(x1, y))

and a similar equality for the latter factor. We obtain the following result.

Theorem 4. After O(n)-time preprocessing, given any x, y ∈ {1, . . . , n} the value gcd(x, y) can be computed in constant time.

Example 4. We show how the query works for x = 7416, y = 8748. Consider the following special decomposition of x: 
(6, 12, 103). For i = 1 we have d1 = 6 and y becomes 1458. For i = 2 we have d2 = 6, therefore y becomes 243. In both 
cases, to compute di we used the table Gcd-small. For i = 3, xi is a large prime number. We obtain that d3 = 1 which yields 
gcd(x, y) = 6 · 6 · 1 = 36.

3. Combinatorial characterization of Abelian periods

Let us fix a word w of length n. Let Pi = P1,i . Two positions i, j ∈ {1, . . . , n} are called proportional, which we denote 
i ∼ j, if Pi[c] = D · P j[c] for each c ∈ �, where D is a rational number independent of c. Note that if i ∼ j then the 
corresponding constant D equals i/ j. Also note that ∼ is an equivalence relation; see also Fig. 2. In this section we exploit 
the connections between the proportionality relation and Abelian periods, which we conclude in Fact 5.

Definition 1. An integer k is called a candidate (a potential Abelian period) if and only if

k ∼ 2k ∼ 3k ∼ · · · ∼
⌊n

k

⌋
k.

By Cand(n) we denote the set of all candidates.

We define the following tail table (assume min ∅ = ∞):

tail[i] = min{ j : Pi,n ≤ Pi− j,i−1}.
A similar table in the context of weak Abelian periods was introduced in [17].

Example 5. For the Fibonacci word

Fib7 = 010010100100101001010

of length 21, the first ten elements of the tail table are ∞, the remaining eleven elements are:
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Fig. 3. Illustration of Fact 5b. The word u = 1000111000111100000000011001011000001 of length 37 has an Abelian period 10. We have 10 ∼ 20 ∼ 30 and 
P31,37 is dominated by the period P10, i.e. the graph of the word ends within the rectangle marked in the figure (the point v dominates the point u).

i 11 12 13 14 15 16 17 18 19 20 21
Fib7[i] 0 0 1 0 1 0 0 1 0 1 0
tail[i] ∞ 10 11 8 8 7 5 5 3 2 2

The notion of a candidate and the tail table let us state a condition for an integer to be an Abelian period or a full 
Abelian period of w .

Fact 5. Let w be a word of length n. A positive integer q ≤ n is:

(a) a full Abelian period of w if and only if q ∈ Cand(n) and q | n,
(b) an Abelian period of w if and only if

q ∈ Cand(n) and tail[kq + 1] ≤ q for k =
⌊

n
q

⌋
.

Proof. Let k be defined as in (b). Note that q ∈ Cand(n) is equivalent to:

P1,q = Pq+1,2q = · · · = P(k−1)q+1,kq,

which by definition means that q is a full Abelian period of w[1. . kq]. This yields the conclusion part (a). To obtain part (b), 
it suffices to note that the condition tail[kq + 1] ≤ q is actually equivalent to

Pkq+1,n ≤ P(k−1)q+1,kq.

See also Fig. 3 for an example. �

4. Algorithm for full Abelian periods

In this section we obtain a linear-time algorithm computing all full Abelian periods of a word. For integers n, k > 0 let 
Mult(k, n) be the set of multiples of k not exceeding n. Recall that, by Fact 5a, q is a full Abelian period of w if and only if 
q | n and q ∈ Cand(n). This can be stated equivalently as:

q | n and Mult(q,n) ⊆ [n]∼,

where [n]∼ is the equivalence class of n under ∼. For a set A ⊆ {1, . . . , n} we introduce the following auxiliary operation

FILTER1(A,n) = {d ∈ Z>0 : d | n ∧ Mult(d,n) ⊆ A}
so that the following fact holds.

Observation 6. FILTER1([n]∼, n) is the set of all full Abelian periods.

Thus the problem reduces to efficient computation of [n]∼ and implementation of the FILTER1 operation.

Example 6. FILTER1({2, 3, 4, 5, 6, 8, 9, 12}, 12) = {3, 4, 6, 12}.

If σ =O(1), computing [n]∼ in linear time is easy, since one can store all vectors Pi and then test if i ∼ n in O(1) time. 
For larger alphabets, we defer the solution to Section 6, where we prove the following result.

Lemma 7. For a word w of length n, [n]∼ can be computed in O(n) time.



210 T. Kociumaka et al. / Journal of Computer and System Sciences 84 (2017) 205–218
Lemma 8. Let n be a positive integer and A ⊆ {1, . . . , n}. There exists an O(n)-time algorithm that computes the set FILTER1(A, n).

Proof. Denote by Div(n) the set of divisors of n. Let A′ = {1, . . . , n} \ A. Observe that for d ∈ Div(n)

d /∈ FILTER1(A,n) ⇐⇒ ∃ j∈A′ d | j.

Moreover, for d ∈ Div(n) and j ∈ {1, . . . , n} we have

d | j ⇐⇒ d | d′, where d′ = gcd( j,n).

These observations lead to the following algorithm.

Algorithm FILTER1(A, n)

D := X := Div(n);

A′ := {1, . . . , n} \ A;

foreach j ∈ A′ do

D := D \ {gcd( j, n)};

foreach d, d′ ∈ Div(n) do

if d | d′ and d′ /∈ D then

X := X \ {d};

return X ;

We use O(1)-time gcd-queries from Theorem 4. The number of pairs (d, d′) is o(n), since |Div(n)| = o(nε) for any ε > 0; 
see [2]. Consequently, the algorithm runs in O(n) time. �
Theorem 9. Let w be a word of length n over the alphabet {0, . . . , σ − 1}, where σ ≤ n. All full Abelian periods of w can be computed 
in O(n) time.

Proof. By Observation 6, the computation of all full Abelian periods reduces to a single FILTER1 operation, as shown in the 
following algorithm.

Algorithm Full Abelian periods

Compute the data structure for answering gcd queries; {Theorem 4}

A := [n]∼; {Lemma 7}

K := FILTER1(A, n); {Lemma 8}

return K;

The algorithms from Lemmas 7 and 8 take O(n) time. Hence, the whole algorithm works in linear time. �
5. Algorithm for Abelian periods

In this section we develop an efficient algorithm computing all Abelian periods of a word. Recall that by Fact 5b, q is an 
Abelian period of w if and only if q ∈ Cand(n) and tail[kq + 1] ≤ q, where k = �n/q�. The following lemma allows linear-time 
computation of the tail table. It is implicitly shown in [17]; in the Appendix we provide a full proof for completeness.

Lemma 10. Let w be a word of length n. The values tail[i] for 1 ≤ i ≤ n can be computed in O(n) time.

Thus the crucial part is computing Cand(n). We define the following operation for an abstract ≈ relation on {k0, . . . , n}:

FILTER2(≈) = {k ∈ {k0, . . . ,n} : ∀i∈Mult(k,n) i ≈ k},
so that the following fact holds:

Observation 11. FILTER2(∼) = Cand(n). (Here k0 = 1.)
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It turns out that the set FILTER2(≈) can be efficiently computed provided that ≈ can be tested in O(1) time. As we have 
already noted in Section 4, if σ = O(1), then ∼ can be tested by definition in O(1) time. For larger alphabets, we develop 
an appropriate data structure in Section 6, where we prove the following lemma.

Lemma 12. Let w be a word of length n over an alphabet of size σ and let q0 be the smallest index q such that w[1..q] contains each 
letter present in w. There exists a data structure of O(n) size which for given i, j ∈ {q0, . . . , n} decides whether i ∼ j in constant time. 
It can be constructed by an O(n logσ)-time deterministic or an O(n)-time randomized algorithm (Monte Carlo, correct with high 
probability).

Unfortunately, its usage is restricted to i, j ≥ q0. Nevertheless, if q is an Abelian period, then q ≥ q0, so it suffices to 
compute

FILTER2(∼ |{q0,...,n}) = Cand(n) ∩ {q0, . . . ,n}.
Thus the problem reduces to efficient implementation of FILTER2 operation. This is the main objective of the following 
lemma.

Lemma 13. Let ≈ be an arbitrary equivalence relation on {k0, k0 + 1, . . . , n} which can be tested in constant time. Then, there exists 
an O(n log log n)-time algorithm that computes the set FILTER2(≈).

Before we proceed with the proof, let us introduce an equivalent characterization of the set FILTER2(≈).

Fact 14. For k ∈ {k0, . . . , n}
k ∈ FILTER2(≈) ⇐⇒ ∀ p∈Primes : kp≤n (k ≈ kp ∧ kp ∈ FILTER2(≈)).

Proof. First assume that k ∈ FILTER2(≈). Then, by definition, for each prime p such that kp ≤ n, kp ≈ k. Moreover, for 
each i ∈ Mult(kp, n) we have i ≈ k ≈ kp, i.e. i ≈ kp, which concludes that kp ∈ FILTER2(≈). This yields the (⇒) part of the 
equivalence.

For a proof of the (⇐) part, consider any k satisfying the right hand side of the equivalence and any integer � ≥ 2 such 
that k� ≤ n. We need to show that k ≈ k�. Let p be a prime divisor of �. By the right hand side, we have k ≈ kp, and since 
kp ∈ FILTER2(≈), we get

kp ≈ kp(�/p) = k�.

This concludes the proof of the equivalence. �
Proof of Lemma 13. The following algorithm uses Fact 14 for k decreasing from n to k0 to compute FILTER2(≈). The condi-
tion:

Y = {k0, . . . ,k} ∪ (FILTER2(≈) ∩ {k + 1, . . . ,n})
is an invariant of the algorithm.

Algorithm FILTER2(≈)

Y := {k0, . . . , n};

for k := n downto k0 do

foreach p ∈ Primes, kp ≤ n do

(�) if kp �≈ k or kp �∈ Y then

Y := Y \ {k};

return Y ;

In the algorithm we assume to have an ordered list of primes up to n. It can be computed in O(n) time; see [30]. For a 
fixed p ∈ Primes the instruction (�) is called for at most n

p values of k. The total number of operations performed by the 
algorithm is thus O(n log log n) due to the following well-known fact from number theory (see [2]):

∑
p∈Primes, p≤n

1
p = O(log log n). �
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Theorem 15. Let w be a word of length n over the alphabet {0, . . . , σ − 1}, where σ ≤ n. There exist an O(n log logn + n logσ)-time 
deterministic and an O(n log log n)-time randomized algorithm that compute all Abelian periods of w. Both algorithms require O(n)

space.

Proof. The pseudocode below uses the characterization of Fact 5b and Observation 11 restricted by k0 = q0 to compute all 
Abelian periods of a word.

Algorithm Abelian periods

Build the data structure to test ∼ |{q0,...,n}; {Lemma 12}

Compute table tail; {Lemma 10}

Y := FILTER2(∼ |{q0,...,n}); {Lemma 13}

K := ∅;

foreach q ∈ Y do

k := �n/q�;

if tail[kq + 1] ≤ q then K :=K ∪ {q}
return K;

The deterministic version of the algorithm from Lemma 12 runs in O(n logσ) time and the randomized version runs 
in O(n) time. The algorithm from Lemma 13 runs in O(n log log n) time, and the algorithm from Lemma 10 runs in linear 
time. This implies the required complexity of the Abelian periods’ computation. �
6. Implementation of the proportionality relation for large alphabets

The main goal of this section is to present data structures for efficient testing of the proportionality relation ∼ for 
large alphabets. Let q0 be the smallest index q such that w[1..q] contains each letter c ∈ � present in w . Denote by 
s = LeastFreq(w) a least frequent symbol of w . For i ∈ {q0, . . . , n} let γi = Pi/Pi[s]. We use vectors γi in order to deal with 
vector equality instead of vector proportionality; see the following lemma.

Lemma 16. If i, j ∈ {q0, . . . , n}, then i ∼ j is equivalent to γi = γ j .

Proof. (⇒) If i ∼ j, then the vectors Pi and P j are proportional. Multiplying any of them by a constant only changes the 
proportionality ratio. Hence, Pi/Pi[s] and P j/P j[s] are proportional. The denominators of both fractions are positive since 
i, j ≥ q0. However, the s-th components of γi and γ j are 1. Consequently, these vectors are equal.

(⇐) Pi/Pi[s] =P j/P j[s] means that Pi and P j are proportional. Hence, i ∼ j. �
Example 7. Consider the word w = 021001020021 over an alphabet of size 3. Here LeastFreq(w) = 1 and q0 = 3. We have:

γ3 = (1,1,1), γ4 = (2,1,1), γ5 = (3,1,1), γ6 = ( 3
2 ,1, 1

2 ), γ7 = (2,1, 1
2 ),

γ8 = (2,1,1), γ9 = ( 5
2 ,1,1), γ10 = (3,1,1), γ11 = (3,1, 3

2 ), γ12 = (2,1,1).

We see that

γ4 = γ8 = γ12 and γ5 = γ10

and consequently

4 ∼ 8 ∼ 12 and 5 ∼ 10.

We define a natural way to store a sequence of vectors of the same length with a small total Hamming distance between 
consecutive elements. Recall that the Hamming distance between two vectors of the same length is the number of positions 
where these two vectors differ. The sequence Pi is a clear example of such a vector sequence. As we prove in Lemma 17, 
γi also is.

Definition 2. Given a vector v , consider an elementary operation of the form “v[ j] := x” that changes the j-th component of 
v to x. Let ū1, . . . , ̄uk be a sequence of vectors of the same dimension, and let ξ = (σ1, . . . , σr) be a sequence of elementary 
operations.
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We say that ξ is a diff-representation of ū1, . . . , ̄uk if (ūi)
k
i=1 is a subsequence of the sequence (v̄ j)

r
j=0, where

v̄ j = σ j(. . . (σ2(σ1(0̄))) . . .).

We denote |ξ | = r.

Example 8. Let ξ be the sequence:

v[1] := 1, v[2] := 2, v[1] := 4, v[3] := 1, v[4] := 3, v[3] := 0, v[1] := 1,

v[2] := 0, v[4] := 0, v[1] := 3, v[2] := 2, v[1] := 2, v[4] := 1.

The sequence of vectors produced by the sequence ξ , starting from 0̄, is:

(0,0,0,0), (1,0,0,0), (1,2,0,0), (4,2,0,0), (4,2,1,0), (4,2,1,3), (4,2,0,3),

(1,2,0,3), (1,0,0,3), (1,0,0,0), (3,0,0,0), (3,2,0,0), (2,2,0,0), (2,2,0,1).

Hence ξ is a diff-representation of the above vector sequence as well as all its subsequences.

Lemma 17.
(a)

∑n−1
i=q0

distH (γi, γi+1) ≤ 2n, where distH is the Hamming distance.
(b) An O(n)-sized diff-representation of (γi)

n
i=q0

can be computed in O(n) time.

Proof. Recall that s = LeastFreq(w) and q0 is the position of the first occurrence of s in w . To prove (a), observe that Pi
differs from Pi−1 only at the coordinate corresponding to w[i]. If w[i] �= s, the same holds for γi and γi−1. If w[i] = s, the 
vectors γi and γi−1 may differ on all σ coordinates. However, s occurs in w at most n

σ times. This shows part (a).
As a consequence of (a), the sequence (γi)

n
i=q0

admits a diff-representation with at most 2n + σ elementary operations 
in total. It can be computed by an O(n)-time algorithm that apart from γi maintains Pi in order to compute the new values 
of the changing coordinates of γi . �

Below we use Lemma 17 to develop data structures for efficient testing of the proportionality relation ∼. Recall that 
we apply the simpler Lemma 7 for computation of full Abelian periods and Lemma 12 for computation of regular Abelian 
periods.

Lemma 7. For a word w of length n, [n]∼ can be computed in O(n) time.

Proof. Observe that if k ∼ n then k ≥ q0. Indeed, if k ∼ n, then Pk is proportional to Pn , so all symbols occurring in w also 
occur in w[1 . . .k]. Due to Lemma 16 this means that γk = γn . Using a diff-representation of (γi) provided by Lemma 17 we 
reduce the task to the following problem with δi = γi − γn .

Claim 18. Given a diff-representation of the vector sequence δq0, . . . , δn we can decide for which i vector δi is equal to 0̄ in O(σ + r)
time, where σ is the size of the vectors and r is the size of the representation.

The solution simply maintains δi and the number of non-zero coordinates of δi . This completes the proof of the 
lemma. �

As the main tool for general proportionality queries we use a data structure for the following problem.

Integer vector equality queries

Input: A diff-representation ξ of a sequence (ūi)
k
i=1 of integer vectors of dimension m, such that r = |ξ | and the 

components of vectors are of absolute value (m + r)O(1) .
Queries: “Is ūi = ū j ?” for i, j ∈ {1, . . . , k}.

In Section 7 we prove the following result.

Theorem 19. The integer vector equality queries can be answered in O(1) time by a data structure of O(n) size, which can be con-
structed:
(a) in O(m + r log m) time deterministically or
(b) in O(m + r) time using a Monte Carlo algorithm (with one-sided error, correct with high probability).
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Lemma 12. Let w be a word of length n over an alphabet of size σ and let q0 be the smallest index q such that w[1..q]
contains each letter present in w . There exists a data structure of O(n) size which for given i, j ∈ {q0, . . . , n} decides whether 
i ∼ j in constant time. It can be constructed by an O(n log σ)-time deterministic or an O(n)-time randomized algorithm 
(Monte Carlo, correct with high probability).

Proof. By Lemma 16, to answer the proportionality-queries it suffices to efficiently compare the vectors γi , which, by 
Lemma 17, admit a diff-representation of size O(n).

The Integer Vector Equality Problem requires integer values so we split (γi) into two sequences (αi) and (βi) of numer-
ators and denominators, respectively. We need to store the fractions in a reduced form so that comparing numerators and 
denominators can be used to compare fractions. Thus we set

αi[ j] = Pi[ j]/d and βi[ j] = Pi[s]/d,

where d = gcd(Pi[ j], Pi[s]) can be computed in O(1) time using a single gcd-query of Theorem 4 since the values of Pi
are non-negative integers up to n.

Consequently, the elements of (αi) and (βi) are also positive integers not exceeding n. This allows using Theorem 19, so 
that the whole algorithm runs in the desired O(n log σ) and O(n) time, respectively, using O(n) space. �
7. Solution of Integer Vector Equality Problem

In this section we provide the missing proof of Theorem 19. Recall that in the Integer Vector Equality Problem we 
are given a diff-representation of a vector sequence (ūi)

k
i=1, i.e. a sequence ξ of elementary operations σ1, σ2, . . . , σr on a 

vector of dimension m. Each σi is of the form: set the j-th component to some value x. We assume that x is an integer 
of magnitude (m + r)O(1) . Let v̄0 = 0̄ and for 1 ≤ i ≤ r let v̄ i be the vector obtained from v̄ i−1 by performing σi . Our task 
is answering queries of the form “Is ūi = ū j?” but it reduces to answering equality queries of the form “Is v̄ i = v̄ j ?”, since 
(ūi)

k
i=1 is a subsequence of (v̄ i)

r
i=0 by definition of the diff-representation.

Definition 3. A function H : {0, . . . , r} → {0, . . . , �} is called an �-naming for ξ if H(i) = H( j) holds if and only if v̄ i = v̄ j .

In order to answer equality queries, we construct an �-naming with � = (m + r)O(1) . Integers of this magnitude can be 
stored in O(1) space so this suffices to answer the equality queries in constant time.

7.1. Deterministic solution

Let A = {1, . . . , m} be the set of coordinates. For any B ⊆ A, let selectB [i] be the index of the ith operation concerning a 
coordinate from B in ξ . Moreover, let rankB [i], where i ∈ {0, . . . , r}, be the number of operations concerning coordinates in 
B among σ1, . . . , σi and let rB = rankB [r].

Definition 4. Let ξ be a sequence of operations, A be the set of coordinates and B ⊆ A. Let h : {0, . . . , rB} → Z be a function. 
Then we define:

Squeeze(ξ, B) = ξB where ξB [i] = ξ [selectB [i]],
Expand(ξ, B,h) = ηB where ηB [i] = h(rankB [i]).

In other words, the squeeze operation produces a subsequence ξB of ξ consisting of operations concerning B . The expand 
operation is in some sense an inverse of the squeeze operation; it propagates the values of h from the domain B to the full 
domain A.

Example 9. Let ξ be the sequence from Example 8. Here A = {1, 2, 3, 4}. Let B = {1, 2} and assume H B [0..8] =
[0, 1, 2, 6, 2, 1, 4, 5, 3]. Then:

selectB [1..8] = (1,2,3,7,8,10,11,12),

rankB [0..13] = (0,1,2,3,3,3,3,4,5,5,6,7,8,8),

Expand(ξ, B, H B) = (0,1,2,6,6,6,6,2,1,1,4,5,3,3).

See also Fig. 4.

For a pair of sequences η′, η′′ , denote by Align(η′, η′′) the sequence of pairs η such that η[i] = (η′[i], η′′[i]) for each i.
Moreover, for a sequence η of r + 1 pairs of integers, denote by Renumber(η) a sequence H of r + 1 integers in the range 

{0, . . . , r} such that η[i] < η[ j] if and only if H[i] < H[ j] for any i, j ∈ {0, . . . , r}.
The recursive construction of a naming function for ξ is based on the following fact.
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Fig. 4. A schematic diagram of performance of algorithm ComputeH for the sequence of elementary operations from Example 8. The columns correspond to 
elementary operations and the rows correspond to coordinates of the vectors.

Fact 20. Let ξ be a sequence of elementary operations, A = B ∪ C (B ∩ C = ∅) be the set of coordinates, H B be an rB -naming function 
for ξB and HC an rC -naming function for ξC . Additionally, let

ηB = Expand(ξ, B, H B), ηC = Expand(ξ, C, HC ),

H = Renumber(Align(ηB , ηC )).

Then H is an r-naming function for ξ .

The algorithm makes an additional assumption about the sequence ξ .

Definition 5. We say that a sequence of operations ξ is normalized if for each operation v[ j] := x we have x ∈ {0, . . . , r{ j}}, 
where (as defined above) r{ j} is the number of operations in ξ concerning the jth coordinate.

If for each operation v[ j] := x the value x is of magnitude (m + r)O(1) , then normalizing the sequence ξ , i.e., constructing 
a normalized sequence with the same answers to all equality queries, takes O(m + r) time. This is done using a radix sort 
of triples ( j, x, i) and by mapping the values x corresponding to the same coordinate j to consecutive integers.

Lemma 21. Let ξ be a normalized sequence of r operations on a vector of dimension m. An r-naming for ξ can be deterministically 
constructed in O(r log m) time.

Proof. If the dimension of vectors is 1 (that is, |A| = 1), the single components of the vectors v̄ i already constitute an 
r-naming. This is due to the fact that ξ is normalized.

For larger |A|, the algorithm uses Fact 20, see the pseudocode below and Fig. 4.

Algorithm ComputeH(ξ)

if ξ is empty then return 0̄;

if |A| = 1 then return H computed naively;

else

Split A into two halves B , C ;

ξB := Squeeze(ξ, B); ξC := Squeeze(ξ, C);

H B := ComputeH(ξB ); HC := ComputeH(ξC );

ηB := Expand(ξ, B, H B ); ηC := Expand(ξ, C, HC );

return Renumber(Align(ηB , ηC ));

Let us analyze the complexity of a single recursive step of the algorithm. Tables rank and select are computed in O(r)
time so both squeezing and expanding are performed in O(r) time. Renumbering, implemented using radix sort and bucket 
sort, also runs in O(r) time, since the values of H B and HC are positive integers bounded by r. Hence, the recursive step 
takes O(r) time.
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We obtain the following recursive formula for T (r, m), an upper bound on the execution time of the algorithm for a 
sequence of r operations on a vector of length m:

T (r,1) = O(r), T (0,m) = O(1)

T (r,m) = T (r1, �m/2�) + T (r2, �m/2�) +O(r) where r1 + r2 = r.

A solution to this recurrence yields T (r, m) =O(r log m). �
Lemma 21 yields part (a) of Theorem 19.

7.2. Randomized solution

Our randomized construction is based on fingerprints; see [32]. Let us fix a prime number p. For a vector v̄ =
(v1, v2, . . . , vm) we introduce a polynomial over the field Zp :

Q v̄(x) = v1 + v2x + v3x2 + . . . + vmxm−1 ∈ Zp[x].
Let us choose x0 ∈ Zp uniformly at random. Clearly, if v̄ = v̄ ′ then

Q v̄(x0) = Q v̄ ′(x0).

The following lemma states that the converse is true with high probability.

Lemma 22. Let v̄ �= v̄ ′ be vectors in {0, . . . , n}m. Let p > n be a prime number and let x0 ∈ Zp be chosen uniformly at random. Then

P (Q v̄(x0) = Q v̄ ′(x0)) ≤ m
p .

Proof. Note that, since p > n,

R(x) = Q v̄(x) − Q v̄ ′(x) ∈ Zp[x]
is a non-zero polynomial of degree ≤ m, hence it has at most m roots. Consequently, x0 is a root of R with probability 
bounded by m/p. �
Lemma 23. Let v̄1, . . . , ̄vr be vectors in {0, . . . , n}m. Let p > max(n, (m + r)c+3) be a prime number, where c is a positive constant, 
and let x0 ∈ Zp be chosen uniformly at random. Then H(i) = Q v̄i (x0) is a naming function with probability at least 1 − 1

(m+r)c .

Proof. Assume that H is not a naming function. This means that there exist i, j such that H(i) = H( j) despite v̄ i �= v̄ j . 
Hence, by the union bound and Lemma 22 we obtain the conclusion of the lemma:

P(H is not a naming) ≤
∑

i, j : v̄ i �=v̄ j

P (H(i) = H( j)) ≤
∑

i, j : v̄ i �=v̄ j

m
p ≤ mr2

p ≤ 1
(m+r)c . �

Using Lemma 23 we obtain the following Lemma 24. It yields part (b) of Theorem 19 and thus completes the proof of 
the theorem.

Lemma 24. Let ξ be a sequence of r operations on a vector of dimension m with values of magnitude n = (m + r)O(1) . There exists a 
randomized O(m +r)-time algorithm that constructs a function H which is a k-naming for ξ with high probability for k = (m +r)O(1) .

Proof. Assume all values in ξ are bounded by (m + r)c′
. Let c ≥ c′ . Let us choose a prime p such that

(m + r)3+c < p < 2(m + r)3+c .

Moreover let x0 ∈ Zp be chosen uniformly at random.
Then we set H(i) = Q v̄i (x0). By Lemma 23, this is a naming function with probability at least 1 − 1

(m+r)c .

If we know all powers x j
0 mod p for j ∈ {1, . . . , m}, then we can compute H(i) from H(i − 1) (a single operation) in 

constant time. Thus H(i) for all 1 ≤ i ≤ r can be computed in O(m + r) time. �
With a naming function stored in an array, answering equality queries is straightforward. In the randomized version, 

there is a small chance that H is not a naming function, which makes the queries Monte Carlo (with one-sided error). 
Nevertheless, the answers are correct with high probability.
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8. Conclusions and open problems

We presented efficient algorithms for computation of all full Abelian periods and all Abelian periods in a word that work 
in O(n) time and O(n log log n +n logσ) time (deterministic) or O(n log log n) time (randomized), respectively. An interesting 
open problem is the existence of an O(n log log n)-time deterministic algorithm or a linear-time algorithm for computation 
of Abelian periods. Another open problem is to provide an O(n2−ε)-time algorithm computing the shortest weak Abelian 
periods in a word, for any ε > 0, or a hardness proof for this problem (e.g. based on 3SUM problem as in [1,29]).

As a by-product we obtained an O(n) preprocessing time and O(1) query time data structure for gcd(i, j) computation, 
for any 1 ≤ i, j ≤ n. We believe that applications of this result in other areas (not necessarily in Abelian stringology) are yet 
to be discovered.
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Appendix. Computation of tail table

The following lemma is implicitly shown in [17]. We provide a full proof for completeness.

Lemma 10. Let w be a word of length n. The values tail[i] for 1 ≤ i ≤ n can be computed in O(n) time.

Proof. Define tail′[i] = i − tail[i]. The algorithm computes this table in O(n) time using the fact that its values are non-
decreasing, i.e.

∀1≤i<n tail′[i] ≤ tail′[i + 1].
In the algorithm we store the difference �i =P(xi) −P(yi) of Parikh vectors of yi = w[i. . n] and xi = w[k. . i − 1] where 

k = tail′[i]. Note that �i[c] ≥ 0 for any c ∈ �.

Algorithm Compute-tail(w)

� := (0, 0, . . . , 0); {σ zeros}

�[w[n]] := 1; {boundary condition}

k := n;

for i := n downto 1 do

�[w[i]] := �[w[i]] − 2;

while k > 1 and �[w[i]] < 0 do

k := k − 1;

�[w[k]] := �[w[k]] + 1;

if �[w[i]] < 0 then k := −∞;

tail′[i] := k;

tail[i] := i − tail′[i];

Assume we have computed tail′[i + 1] and �i+1. When we proceed to i, we move the symbol w[i] from x to y and 
update � accordingly. At most one element of � might have dropped below 0. If there is no such element, we conclude 
that tail′[i] = tail′[i + 1]. Otherwise we keep extending x to the left with new symbols and updating � until all its elements 
become non-negative.

The total number of iterations of the while-loop is O(n) since in each iteration we decrease the variable k, which is 
always positive, and we never increase this variable. Consequently, the time complexity of the algorithm is O(n). �
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