
Theoretical Computer Science 302 (2003) 211–222
www.elsevier.com/locate/tcs

Application of Lempel–Ziv factorization to the
approximation of grammar-based compression

Wojciech Ryttera;b;∗
aInstytut Informatyki, Uniwersytet Warszawski, Poland

bDepartment of Computer Science, New Jersey Institute of Technology, USA

Received 6 August 2002; accepted 8 October 2002
Communicated by D. Perrin

Abstract

We introduce new type of context-free grammars, AVL-grammars, and show their applicability
to grammar-based compression. Using this type of grammars we present O(n log |�|) time and
O(log n)-ratio approximation of minimal grammar-based compression of a given string of length
n over an alphabet � and O(k log n) time transformation of LZ77 encoding of size k into
a grammar-based encoding of size O(k log n). A preliminary version of this paper has been
presented in Rytter (Combinatorial Pattern Matching, Lecture Notes in Computer Science, vol.
2373, Springer, Berlin, June 2000, pp. 20–31), independently of Charikar et al. (STOC, 2002),
where grammar-based approximation has been attacked with di9erent construction and a more
complicated type of grammars (�-balanced grammars for �6 1− 1

2

√
2). The AVL-grammar is

a very natural and simple tool for grammar based compression, it is a straightforward extension
of the classical AVL-tree.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: LZ-compression; Minimal grammar; AVL-tree; AVL-grammar

1. Introduction

Text compression based on context free grammars, or equivalently, on straight-line
programs, has recently attracted much attention, see [1,3,9,10,12,13,16–18]. The gram-
mars give a more structured type of compression and are more convenient for example
in compressed pattern-matching, see [17]. In a grammar-based compression a single

∗ Corresponding author. Warsaw University, Institute of Informatics, ul. Banacha 2, Warsaw 02-097,
Poland.

E-mail address: rytter@mimuw.edu.pl (W. Rytter).

0304-3975/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00777 -6

mailto:rytter@mimuw.edu.pl

212 W. Rytter / Theoretical Computer Science 302 (2003) 211–222

text w of length n is generated by a context-free grammar G. Assume we deal with
grammars generating single words. Computing exact size of the minimal grammar-based
compression is known to be NP-complete.
In the paper, using ideas similar to unwinding from [6] and balanced grammars from

[8], we show a logarithmic relation between LZ-factorizations and minimal grammars.
Recently, approximation ratios of several grammar-based compression have been inves-
tigated by Lehman and Shelat in [13]. In this paper we propose a new grammar-based
compression algorithm based on Lempel–Ziv factorization (denoted here by LZ), which
is a version of LZ77-encoding [14]. For a string w of length n denote by LZ(w) the
Lempel–Ziv factorization of w. We show:
1. For each string w and its grammar-based compression G |LZ(w)|=O(|G|);
2. Given LZ(w), a grammar-based compression G′ for w can be eIciently constructed

with |G′|=O(log |w| · |LZ(w)|).
This gives log n-ratio approximation of minimal grammar-based compression, since LZ-
factorization can be computed eIciently [4]. The grammar-based type of compression is
more convenient than LZ-compression, especially in compressed and fully compressed
pattern-matching. For simplicity assume that the grammars are in Chomsky normal
form. The size of the grammar G, denoted by |G|, is the number of productions (rules),
or equivalently the number of nonterminals of a grammar G in Chomsky normal form.
Grammar compression is essentially equivalent to straight-line programs. A grammar
(straight-line program) is a sequence of assignment statements:

X1 = expr1; X2 = expr2; : : : ; Xm = exprm;

where Xi are nonterminals and expri is a single (terminal) symbol, or expri=Xj ·Xk , for
some j; k¡i, where · denotes the concatenation of Xj and Xk . For each nonterminal Xi,
denote by val(Xi) the value of Xi, it is the string described by Xi. The string described
by the whole straight-line program is val(Xm). The size of the straight-line program
is m.
The problem of Jnding the smallest size grammar (or equivalently, straight line

program) generating a given text is NP-complete. We consider the following problem:
(approximation of grammar-based compression):
Instance: given a text w of length n,
Question: construct in polynomial time a grammar G such that val(G)=w and the

ratio between |G| and the size of the minimal grammar for w is small.

Example 1. Let us consider the following grammar G7 which describes the 7th Fi-
bonacci word Fib7 = abaababaabaab. We have |G7|=7. This is the smallest size
grammar in Chomsky normal form for Fib7. However the general test for grammar
minimality is computationally hard.

X7 = X6 · X5; X6 = X5 · X4; X5 = X4 · X3 X4 = X3 · X2;
X3 = X2 · X1 X2 = a; X1 = b;

If A is a nonterminal of a grammar G then we sometimes identify A with the grammar
G with the starting nonterminal replaced by A, all useless unreachable nonterminals

W. Rytter / Theoretical Computer Science 302 (2003) 211–222 213

X2

abaa baba ba

X3

X2 X1 X2

X4

X5

X3

X2 X1 X2 X1

X3

X4

X6

X7

X5

X4

X3

X2 X1 X2 X2 X1

X3

baa

Fig. 1. Tree(G7): the parse-tree of G7. It is a binary tree: we assume that the nonterminals generating single
terminal symbols are identiJed with these symbols. We have: val(G7) =Fib7 = abaababaabaab.

being removed. In the parse tree for a grammar with the starting nonterminal A we
can also sometimes informally identify A with the root of the parse tree.

2. LZ-factorizations and grammar-based factorizations

We consider a similar version of the LZ77 compression algorithm without self-
referencing as one used in [6] (where it is called LZ1). Intuitively, LZ algorithm
compresses the input word because it is able to discover some repeated subwords, see
[4]. The Lempel–Ziv code deJnes a natural factorization of the encoded word into
subwords which correspond to intervals in the code. The subwords are called factors.
Assume that � is an underlying alphabet and let w be a string over �. The LZ-
factorization of w is given by a decomposition: w=f1 · f2 · ·fk , where f1 =w[1] and
for each 16i6k, fi is the longest preJx of fi : : : fk which occurs in f1 : : : fi−1. We
can identify each fi with an interval [p; q], such that fi=w[p : : : q] and q6|f1 : : : fi−1|.
We identify LZ-factorization with LZ(w). Its size with the number of
factors.
For a grammar G generating w we deJne the parse-tree Tree(G) of w as a derivation

tree of w, in this tree we identify (conceptually) terminal symbols with their parents, in
this way every internal node has exactly two sons, see Fig. 1. DeJne the partial parse-
tree, denoted PTree(G) as a maximal subtree of Tree(G) such that for each internal
node there is no node to the left having the same label. We deJne also the grammar
factorization, denoted by G-factorization, of w, as a sequence of subwords generated
by consecutive bottom nonterminals of PTree(G), these nonterminals are enclosed
by rectangles in Fig. 2. Alternatively we can deJne G-factorization as follows: w is
scanned from left to right, each time taking as next G-factor the longest unscanned
preJx which is generated by a single nonterminal which has already occurred to the left
or a single letter if there is no such nonterminal. The factors of LZ- and G-factorizations
are called LZ-factors and G-factors, respectively.

214 W. Rytter / Theoretical Computer Science 302 (2003) 211–222

a b a a b a b a baa b a

X2 X1 X2

X3

X4

X5

X7

X6

X5

X4

X3

g1 g2 g3 g4 g5 g6

a b a a b a a a b a a bb
f1 f4 f5 f6f2 f3

Fig. 2. PTree(G7), LZ-factorization (shaded one) is shown below G7 factorization of Fib7. The number of
LZ-factors does not exceed the number of grammar-based factors.

Example 2. The LZ-factorization of the 7th Fibonacci word Fib7 is given by

abaababaabaab = f1f2f3f4f5f6 = a b a aba baaba ab:

The G7-factorization is: g1g2g3g4g5g6 = a b a ab aba abaab.

Theorem 1. For each string w and its grammar-based compression G |LZ(w)|6|G|.

Proof. Let G be a context free grammar in Chomsky normal form generating a single
string w. Let f1f2 : : : fk be LZ-factorization and g1g2 : : : gr be the G-factorization of w.

Claim 1. |G|¿g.

Proof. The nonterminals corresponding to G-factors do not need to be distinct, how-
ever all internal nodes of the tree PTree(G) have di9erent nonterminal labels, so there
are at least g − 1 internal nodes in this tree which correspond to nonterminals. Addi-
tionally there should be at least one nonterminal which production is of the type A→ a.
Altogether there are at least g di9erent nonterminals.

Claim 2. The number of LZ-factors is not greater than the number of G-factors.

Proof. We prove by induction on i that for each i6min(k; r) we have:

|g1g2 : : : gi|6 |f1f2 : : : fi|:
If |g1g2 : : : gi|= |f1f2 : : : fi| then |fi+1|¿|gi+1| because LZ-factorization is greedy, gi+1
is a preJx of the fi+1 : : : fk which occurs in the subword f1f2 : : : fi, so fi+1 is not

W. Rytter / Theoretical Computer Science 302 (2003) 211–222 215

shorter than gi+1. Similar argument works for the case when |g1g2 : : : gi|¡|f1f2 : : : fi|.
In this case gi+1 can be already contained in f1f2 : : : fi or the suIx of gi+1 which is
not contained in f1f2 : : : fi will be included in fi+1. In all cases |g1g2 : : : gigi+1|6|f1
f2 : : : fifi+1|.

Hence if r6k then |g1g2 : : : gr|6|f1f2 : : : fr| and f1f2 : : : fr =w, since g1g2 : : : gr =w.
Consequently k6r. This completes the proof.

3. AVL-grammars

We introduce new type of grammars: AVL-grammars. They correspond naturally to
AVL-trees. The Jrst use of a di9erent type balanced grammars has appeared in [9].
AVL-trees are usually used in the context of binary search trees, here we use them
in the context of storing in the leaves the consecutive symbols of the input string
w. The basic operation is the concatenation of sequences of leaves of two trees. We
use the standard AVL-trees, for each node v the balance of v, denoted bal(v) is the
di9erence between the height of the left and right subtrees of the subtree of T rooted
at v. T is AVL-balanced i9 |bal(v)|61 for each node v. We say that a grammar G
is AVL-balanced if Tree(G) is AVL-balanced. Denote by height(G) the height of
Tree(G) and by height(A) the height of the parse tree with the root labeled by a
nonterminal A. The following fact is a consequence of a similar fact for AVL-trees,
see [11].

Lemma 1. If the grammar G is AVL-balanced then height(G)=O(log n).

In case of AVL-balanced grammars in each nonterminal A additional information
about the balance of A is kept: bal(A) is the balance of the node corresponding to A
in the tree Tree(G). We do not deJne the balance of nodes corresponding to terminal
symbols, they are identiJed with their fathers: nonterminals generating single symbols.
Such nonterminals are leaves of Tree(G), for each such nonterminal B we deJne
bal(B)= 0.

Example 4. Let us consider G=G7 and look at the tree in Fig. 1. Only nonterminal
nodes are considered. bal(X1)= bal(X2)= bal(X3)= 0 and bal(X4)= : : : bal(X7)= +1.
Hence the grammar G7 for the 7th Fibonacci word is AVL-balanced.

Lemma 2. Assume A; B are two nonterminals of AVL-balanced grammars. Then we
can construct in O(|height(A) − height(B)|) time a AVL-balanced grammar G=
Cancat(A; B), where val(G)= val(A)·val(B), by adding only O(|height(A)−height(B)|)
nonterminals.

Proof. We refer to the third volume of Knuth’s book, [11, p. 474], for more de-
tailed description of the concatenation algorithm for two AVL-balanced trees T1; T2
with roots A and B. Our AVL-trees contain keys (symbols) only in leaves, so to

216 W. Rytter / Theoretical Computer Science 302 (2003) 211–222

B
B

first step of Concat

v

v

v’

w

A A

w

Fig. 3. The Jrst step of Cancat(A; B). The edge (w; v) is split into (w; v′); (v′; v), where height(v)= height(B)
or height(v)= height(B) + 1. The node v′ is a newly created node. The corresponding grammar productions
are added.

B
B

D’
C

ED

C E
rotation1

A’A
height(D)=height(B)+2

B
B

D

C E

A

F G
F G

E

D’

A’

C’height(D)=height(B)+2

rotation2

the first case: height(E) > height(C)

the second case

Fig. 4. All nodes are well balanced except the root A, which is overbalanced to the right. There are two
cases. A single rotation in Tree(G) corresponds to a local change of constant number of productions and
creation of some new nonterminals. The root becomes balanced, but its father or some node upwards can
be still unbalanced and the processing goes up.

concatenate two trees we do not need to delete the root of one of them (implying
a costly restructuring), see [11]. Assume that height(T1)¿height(T2), other case is
symmetric. We follow the rightmost branch of T1, the heights of nodes decrease each
time at most by 2. Then we stop at a node v such that height(v)−height(T2)∈{1; 0}.
We create a new node v′, its father is the father of v and its sons are v; root(T2), see
Fig. 3.
The resulting tree can be unbalanced (by at most 2) on the rightmost branch. Suitable

rotations are to be done, see Fig. 4. The concatenating algorithm for AVL-trees can be
applied to the parse-trees and automatically extended to the case of AVL-grammars.

W. Rytter / Theoretical Computer Science 302 (2003) 211–222 217

T

earlier occurrence of fi

1 2S 3S S4 5SS

i−1

grammar decomposition of the factor

Fig. 5. The next factor fi is split into segments corresponding to nonterminals occurring to the
left. There are O(log n) segments since the height of the parse-tree is O(log n). Observe that
height(S1)6height(S − 2)6height(S3)¿height(S4)¿height(S5). The sequence of heights of subtree
S1; S2; : : : ; St(i) is bitonic.

The real parse-tree could be even of an exponential size, however what we need is
only its rightmost or leftmost branch, which can be recovered from the grammar going
top-down.
There is one more technical detail distinguishing it from the concatenation of trees. It

can happen that only a constant number of rotations have been done, which is reOected
by an introduction of several new productions of the grammar, see Fig. 4. However
this would imply creating copies of old terminals on the path from v′ to the root, due
to the change of subtrees rooted at v. However the number of a9ected nonterminals
is only O(|height(A)− height(B)|). If we change production rule for a nonterminal in
Tree(G) we should do it on its newly created copy, since this nonterminal can occur
in other places, and we cannot a9ect other parts of the tree. Possibly the structure of
the tree is changed in one place at the bottom of the rightmost path. However for all
nodes on this path the corresponding nonterminals have to change names to new ones,
since sequences of leaves in their subtrees have changed (by a single symbol). The
rebalancing has to be done only on the rightmost branch bottom-up starting at v. The
part of this branch is of length O(|height(A)− height(B)|).

4. Construction of small grammar-based compression

Assume we have an LZ-factorization f1f2 : : : fk of w. We convert it into a gram-
mar whose size increases by a logarithmic factor. Assume we have LZ-factorization
w=f1f2 : : : fk and we have already constructed good (AVL-balanced and of size
O(i log n)) grammar G for the preJx f1f2 : : : fi−1. If fi is a terminal symbol gen-
erated by a nonterminal A then we set G :=Cancat(G; A). Otherwise we locate the
segment corresponding to fi in the preJx f1f2 : : : fi−1.

218 W. Rytter / Theoretical Computer Science 302 (2003) 211–222

Due to the fact that G is balanced we can Jnd a logarithmic number of nonterminals
S1; S2; : : : ; St(i) of G such that fi= val(S1)·val(S2)·: : : val(St(i)), see Fig. 5. The sequence
S1; S2; : : : ; St(i) is called the grammar decomposition of the factor fi.
We concatenate the parts of the grammar corresponding to this nonterminals with G,

using the operation Concat mentioned in Lemma 2. Assume the Jrst |�| nonterminals
corresponds to letters of the alphabet, so they exist at the beginning. We initialize G
to the grammar generating the Jrst symbol of w and containing all nonterminals for
terminal symbols, they do not need to be initially connected to the string symbol. The
algorithm starts with the computation of LZ-factorization, this can be done using suIx
trees in O(n log |�|) time, see [4].
If LZ-factorization is too large (exceeds n= log n) then we neglect it and write a

trivial grammar of size n generating a given string. Otherwise we have only k6n log n
factors, they are processed from left to right. We perform :

ALGORITHM Construct-Grammar(w); {|w|= n}
compute LZ factorization f1f2f3 : : : fk
{in O(n log |�|) time; using suIx trees}
if k¿n= log(n) then return trivial O(n) size grammar
else
for i=1 to k do
(1) Let S1; S2; : : : ; St(i) be grammar decomposition of fi;
(2) H :=Cancat(S1; S2; : : : ; St(i));
(3) G :=Cancat(G;H);
return G;

Due to Lemma 2 we have t(i)=O(log n), so the number of two-arguments concatena-
tions needed to implement single step (2) is O(log n), each of them adding O(log n)
nonterminals. Steps (1) and (3) can be done in O(log n) time, since the height of the
grammar is logarithmic. Hence the algorithm gives O(log2(n))-ratio approximation.
At the cost of slightly more complicated implementation of step (2) log2 n-ratio can

be improved to a log n-ratio approximation. The key observation is that the sequence of
heights of subtrees corresponding to segments Si of next LZ-factor is bitonic, see Fig. 5.
We can split this sequence into two subsequences: height-nondecreasing sequence
R1; R2; : : : ; Rk , called right-sided, and height-nonincreasing sequence L1; L2; : : : ; Lr , called
left-sided.

Lemma 3. Assume R1; R2; : : : ; Rk is a right-sided sequence, and Gi is the AVL-
grammar which results by concatenating R1; R2; : : : ; Ri from left-to-right. Then

|height(Ri)− height(Gi−1)|6 max{(height(Ri))− height(Ri−1); 1}:

Proof. We use the following obvious fact holding for any two nonterminals A; B.
Denote h= max{height(A); height(B)}, then we have

h6 height(Cancat(A; B))6 h+ 1: (1)

W. Rytter / Theoretical Computer Science 302 (2003) 211–222 219

R2
R3

R4

R5
L4

L1L2
L3

R1

u3

u

u2

4

1u

u5

Fig. 6. An example of the grammar decomposition of the next factor fi into a sequence of right-sided and
a sequence of left-sided subtrees: R1 · R2 · R3 · R4 · R5 · L4 · L3 · L2 · L1 The right-sided sequence of subtrees
is R1; R2; : : : ; R5.

Let ui be the father of the node corresponding to Ri, see Fig. 6. We show:

Claim. height(Gi)6height(ui).

The proof of the claim is by induction. For i=1 we have Gi=Ri. In this case
height(u1)= height(R1)+1¿height(G1). Assume the claim holds for i−1: height(Gi−1)
6height(ui−1). There are two possibilities.
Case 1: height(Gi−1)6height(Ri).
Then, according to Eq. (4): height(Gi)6height(Gi−1) + 1, and due to the inductive

assumption height(Gi)6height(ui−1) + 16height(ui).
Case 2: height(Gi−1)6height(Ri).
Then, again using Eq. (4), height(Gi)6height(Ri) + 16height(ui).
This completes the proof of the claim. We go now to the main part of the proof of

the lemma.
If height(Gi−1)¿height(Ri) then

|height(Ri)− height(Gi−1)| = height(Gi−1)− height(Ri)

6 height(ui−1)− height(Ri)6 1:

The last inequality follows from the AVL-property.
If height(Gi−1)6height(Ri) then

|height(Ri)− height(Gi−1)| = height(Ri)− height(Gi−1)

6 height(Ri)− height(Ri−1);

since height(Gi−1)¿height(Ri−1). This completes the proof.

Theorem 2. We can construct in a O(n log |�|) time a O(log n)-ratio approximation
of a minimal grammar-based compression.

220 W. Rytter / Theoretical Computer Science 302 (2003) 211–222

Given LZ-factorization of length k we can construct a corresponding grammar of
size O(k log n) in time O(k log n) .

Proof. The next factor fi is decomposed into segments S1; S2; : : : ; St(i). It is enough to
show that we can create in O(log n) time an AVL-grammar for the concatenation of
S1; S2; : : : ; St(i) by adding only O(log n) nonterminals and productions to G, assuming
that the grammars for S1; S2; : : : ; St(i) are available.
The sequence (S1; S2; : : : ; St(i)) consists of a right-sided sequence and left-sided se-

quence. The grammars H ′; H ′′ corresponding to these sequences are computed (by
adding logarithmically many nonterminals to G), due to Lemma 3. Then H ′; H ′′ are
concatenated. Assume R1; R2; : : : ; Rk are right-sided subtrees. Then the total work and
number of extra nonterminals needed to concatenate R1; R2; : : : ; Rk can be estimated as
follows:

k∑

i=2
|height(Ri)− height(Gi−1)|6

k∑

i=2
max{height(Ri)− height(Ri−1); 1}

6
k∑

i=2
(height(Ri)− height(Ri−1))

+
k∑

i=2
16 height(Rk) + k = O(log n):

The same applies to the left-sided sequence in a symmetric way. Altogether processing
each factor fi enlarges the grammar by an O(log n) additive factor and needs O(log n)
time. To get log n-ratio we consider only the case when the number k of factors is
O(n= log n). LZ-factorization is computed in O(n log |�|) time using suIx trees, (O(n)
time for integer alphabets, see [5]).

5. From log n-ratio to log(n=g)-ratio approximation

There is possible a rather cosmetic improvement of the approximation ratio. Let g
be the size of the minimal grammar-based compression and assume we have a greedy
LZ-factorization of a string w of size n into s factors, the number s is also a lower
bound on g. The improvement is a direct application of a method from the paper on
compressed matching of Farach and Thorup [6], (In their notation n=U; g= n). In [6]
they improved a starting factor log n to log(n=g) by introducing new cut-points and
reJning factorization. Exactly in the same way log n can be improved to get log(n=g).
We insert virtually in the uncompressed string s cuts at positions which are multiples

of n=s. In this way we get a new factorization w=f1f2 : : : fr , since possibly some
factors in LZ-factorization were split, now each factor is of size at most n=s.
The input string w is split by s new cut-points into subwords w1; w2; : : : ; ws each

of size n=s. Previously we processed factors fi for i=1; 2; : : : ; r and produced incre-
mentally the grammar for f1f2::fi. Now we process the factors in packages. Each of

W. Rytter / Theoretical Computer Science 302 (2003) 211–222 221

w1; w2; : : : ; ws is processed separately, in the order 1; 2; : : : ; s, producing separate gram-
mars for each of w1; w2; : : : ; ws. The sets of nonterminals of the grammars are not nec-
essarily disjoint. When processing wi we have already the grammars for w1; w2; ::wi−1.
Assume wi consists of factors ft; ft+1; : : : ; ft′ . The processing of wi consists in con-

sidering consecutive factors ft; ft+1; : : : ; ft′ . For each factor fp, p= t; t + 1; : : : ; t′, the
grammar for ft; ft+1; : : : ; fp is created by concatenating the grammar for ft; ft+1; : : : ; fp−1

with the nonterminal for fp. The concatenation is done as concatenation of AVL-
grammars described previously.
In this way the height of all nonterminals is at most log(n=s). Afterward we add s−1

nonterminals to create from nonterminals for w1; w2; : : : ; ws the grammar for the whole
string. Each time we process a factor we add O(log(n=s)) nonterminals (bounded by
a maximal height), there are r=O(s) factors. At the end we add s − 1 nonterminals.
Altogether the resulting binary grammar has O(n log(n=s)) nonterminals.
Let g be the size of the minimal grammar based compression of a given string of

length n. We have g log(n=g)¿s log(n=s) since g¿s. In this way we have proved the
following fact.

Theorem 3. We can construct in polynomial time O(log(n=g))-ratio approximation of
a minimal grammar compression, where g is the size of the minimal grammar based
compression of a given string of length n.

6. Final remarks

The main result is log n-ratio approximation of a minimal grammar-based com-
pression. However the transformation of LZ-encodings into grammars is of the same
importance (or maybe even more important). The grammars are easier to deal than
LZ-encodings, particularly in compressed pattern-matching, see [6]. Our method leads
to an simpler alternative algorithm for LZ77-compressed pattern-matching. Another
useful feature of our grammars is their logarithmic height. We can take any gram-
mar G (straight-line program) generating a single text and produce the G-factorization.
Then we can transform it into a balanced grammar in the same way as it is done
for LZ-factorization. This gives an alternative algorithm for balancing grammars and
straight line programs, it has been originally done using the methods from parallel tree
contraction.

Theorem 4. Assume G is a grammar (straight-line program) of size k generating
a single string of size n. Then we can construct in O(k log n) time an equivalent
grammar of height O(log n).

Assume we have a grammar-compressed pattern and a text, where m1; m2 are the
sizes of their compressed versions. In [15] an improved algorithm for fully compressed
pattern-matching algorithm has been given, which works in time O(m1 · m2 · h1 · h2),
where h1; h2 are the heights of corresponding grammars. We can use AVL-grammar
together with the algorithm from [15] to texts which are polynomially related to their

222 W. Rytter / Theoretical Computer Science 302 (2003) 211–222

compressed versions. This gives an improvement upon the result of [7] for LZ fully
compressed matching in case when encodings are polynomially related to explicit texts
(which is a typical case). Let notation Õ(g(k)) stand for O(g(k) logc(k)), where c is
a constant.

Theorem 5. Given LZ-encodings of sizes m1 and m2 of the pattern P and a text T
respectively. Assume that the original texts are polynomially related to their com-
pressed versions. Then we can do fully compressed pattern-matching in time
Õ(m1 · m2).

Grammar compression can be also considered for two-dimensional texts, but this
case is much more complicated, see [2].

References

[1] A. Apostolico, S. Leonardi, Some theory and practice of greedy o9-line textual substitution, DCC 1998,
pp. 119–128.

[2] P. Berman, M. Karpinski, L.L. Larmore, W. Plandowski, W.W. Rytter, On the complexity of pattern
matching for highly compressed two-dimensional texts, in: A. Apostolico, J. Hein (Eds.), Proceedings
of the 8th Annual Symposium on Combinatorial Pattern Matching, Lecture Notes in Computer Science,
Vol. 1264, Springer, Berlin, 1997, pp. 40–51. Full version to appear in JCSS 2002.

[3] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Rasala, A. Sahai, A. Shelat,
Approximating the smallest grammar: Kolmogorov complexity in natural models, STOC 2002.

[4] M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press, New York, 1994.
[5] M. Farach, Optimal suIx tree construction with large alphabets, FOCS 1997.
[6] M. Farach, M. Thorup, String matching in Lempel–Ziv compressed strings, Proceedings of the 27th

Annual Symposium on the Theory of Computing, 1995, pp. 703–712.
[7] L. GRasieniec, M. Karpinski, W. Plandowski, W. Rytter, EIcient algorithms for Lempel–Ziv encoding,

Proceedings of the 5th Scandinavian Workshop on Algorithm Theory, Springer, Berlin, 1996.
[8] M. Hirao, A. Shinohara, M. Takeda, S. Arikawa, Faster fully compressed pattern matching algorithm for

balanced straight-line programs, Proceedings of the 7th International Symposium on String Processing
and Information Retrieval (SPIRE2000), IEEE Computer Society, Silver Spring, MD, September 2000,
pp. 132–138.

[9] M. Karpinski, W. Rytter, A. Shinohara, Pattern-matching for strings with short description, Nordic
J. Comput. 4 (2) (1997) 172–186.

[10] J. Kie9er, E. Yang, Grammar-based codes: a new class of universal lossless source codes, IEEE Trans.
Inform. Theory 46 (2000) 737–754.

[11] D. Knuth, The Art of Computing, Vol. III, 2nd Ed., Addison-Wesley, Reading, MA, 1998, p. 474.
[12] J.K. Lanctot, Ming Li, En-hui Yang, Estimating DNA Sequence Entropy, SODA 2000.
[13] E. Lehman, A. Shelat, Approximation algorithms for grammar-based compression, SODA 2002.
[14] A. Lempel, J. Ziv, A Universal algorithm for sequential data compression, IEEE Trans. Inform. Theory

IT-23 (1977) 337–343.
[15] M. Miyazaki, A. Shinohara, M. Takeda, An improved pattern-matching algorithm for strings in terms

of straight-line programs, J. Discrete Algorithms 1 (2000) 187–204.
[16] C. Nevill-Manning, Inferring sequential structure, Ph.D. Thesis, University of Waikato, 1996.
[17] W. Rytter, Compressed and fully compressed pattern-matching in one and two-dimensions, Proc. IEEE

88 (11) (2000) 1769–1778.
[18] W. Rytter, Application of Lempel–Ziv factorization to the approximation of grammar-based compression,

in: Combinatorial Pattern Matching, Lecture Notes in Computer Science, Vol. 2373, Springer, Berlin,
June 2002, pp. 20–31.

	Application of Lempel--Ziv factorization to the approximation of grammar-based compression
	Introduction
	LZ-factorizations and grammar-based factorizations
	AVL-grammars
	Construction of small grammar-based compression
	From logn-ratio to log(n/g)-ratio approximation
	Final remarks
	References

