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A run is an inclusion maximal occurrence in a string (as a subinterval) of a repetition v
with a period p such that 2p � |v|. The exponent of a run is defined as |v|/p and is greater
than or equal to 2. We show new bounds on the maximal sum of exponents of runs in
a string of length n. Our upper bound of 4.1n is better than the best previously known
proven bound of 5.6n by Crochemore and Ilie (2008). The lower bound of 2.035n, obtained
using a family of binary words, contradicts the conjecture of Kolpakov and Kucherov
(1999), that the maximal sum of exponents of runs in a string of length n is smaller
than 2n.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Repetitions and periodicities in strings are one of the fundamental topics in combinatorics on words [1,14]. They are also
important in other areas: lossless compression, word representation, computational biology, etc. In this paper we consider
bounds on the sum of exponents of repetitions that a string of a given length may contain. In general, repetitions are studied
also from other points of view, like: the classification of words (both finite and infinite) not containing repetitions of a given
exponent, efficient identification of factors being repetitions of different types and computing the bounds on the number
of various types of repetitions occurring in a string. More results and motivation can be found in a survey by Crochemore
et al. [5].

The concept of runs (also called maximal repetitions) has been introduced to represent all repetitions in a string in a
succinct manner. The crucial property of runs is that their maximal number in a string of length n (denoted as ρ(n)) is
O (n), see Kolpakov and Kucherov [10]. This fact is the cornerstone of any algorithm computing all repetitions in strings
of length n in O (n) time. Due to the work of many people, much better bounds on ρ(n) have been obtained. The lower
bound 0.927n was first proved by Franek and Yang [7]. Afterwards, it was improved by Kusano et al. [13] to 0.944565n
employing computer experiments, and very recently by Simpson [18] to 0.944575712n. On the other hand, the first explicit
upper bound 5n was settled by Rytter [16], afterwards it was systematically improved to 3.48n by Puglisi et al. [15], 3.44n
by Rytter [17], 1.6n by Crochemore and Ilie [2,3] and 1.52n by Giraud [8]. The best known result ρ(n) � 1.029n is due
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to Crochemore et al. [4], but it is conjectured [10] that ρ(n) < n. Some results are known also for repetitions of exponent
higher than 2. For instance, the maximal number of cubic runs (maximal repetitions with exponent at least 3) in a string of
length n (denoted ρcubic(n)) is known to be between 0.406n and 0.5n, see Crochemore et al. [6].

A stronger property of runs is that the maximal sum of their exponents in a string of length n (notation: σ(n)) is
linear in terms of n, see final remarks in Kolpakov and Kucherov [11]. This fact has applications to the analysis of various
algorithms, such as computing branching tandem repeats: the linearity of the sum of exponents solves a conjecture of [9]
concerning the linearity of the number of maximal tandem repeats and implies that all can be found in linear time. For
other applications, we refer to [11]. The proof that σ(n) < cn in Kolpakov and Kucherov’s paper [11] is very complex and
does not provide any particular value for the constant c. A bound can be derived from the proof of Rytter [16] but the paper
mentions only that the obtained bound is “unsatisfactory” (it seems to be 25n). The first explicit bound 5.6n for σ(n) was
provided by Crochemore and Ilie [3], who claim that it could be improved to 2.9n employing computer experiments. As for
the lower bound on σ(n), no exact values were previously known and it was conjectured [12,11] that σ(n) < 2n.

In this paper we provide an upper bound of 4.1n on the maximal sum of exponents of runs in a string of length n and
also a stronger upper bound of 2.5n on the maximal sum of exponents of cubic runs in a string of length n. As for the lower
bound, we bring down the conjecture of Kolpakov and Kucherov, that σ(n) < 2n, by providing an infinite family of binary
strings for which the sum of exponents of runs is greater than 2.035n.

2. Preliminaries

We consider words (strings) u over a finite alphabet Σ , u ∈ Σ∗; the empty word is denoted by ε; the positions in u are
numbered from 1 to |u|. By Σn we denote the set of all words of length n from Σ∗ . For u = u1u2 . . . um , let us denote by
u[i . . j] a factor of u equal to ui . . . u j (in particular u[i] = u[i . . i]). Words of the form u[1 . . i] are called prefixes of u, and
words of the form u[i . . |u|] suffixes of u.

If u and v are words, then the concatenation of u and v is denoted by uv . If k is a non-negative integer, then the kth
power of the word u, denoted by uk , is the word:

uk = uu . . . u︸ ︷︷ ︸
k times

.

A square is the 2nd power of some non-empty word, and a cube is the 3rd power of some non-empty word.
We say that an integer p is the (shortest) period of a word u = u1 . . . um (notation: p = per(u)) if p is the smallest

positive integer, such that ui = ui+p holds for all 1 � i � m − p. The primitive root of a word u, denoted root(u), is the
shortest word w such that wk = u for some positive integer k. We call a word u primitive if root(u) = u, otherwise it is
called non-primitive. We say that words u and v are cyclically equivalent (or that one of them is a cyclic rotation of the
other) if u = xy and v = yx for some x, y ∈ Σ∗ . It is a simple observation that if u and v are cyclically equivalent then
|root(u)| = |root(v)|.

We say that v ∈ Σ∗ is a Lyndon word if it is primitive and minimal or maximal in the class of words that are cyclically
equivalent to it. It is known (see [14]) that a Lyndon word has no non-trivial prefix that is also its suffix.

A run (also called a maximal repetition) in a string u is an interval [i . . j], such that:

• the period p of the associated factor u[i . . j] satisfies 2p � j − i + 1,
• the interval cannot be extended to the right nor to the left, without violating the above property, that is, u[i − 1] �=

u[i + p − 1] and u[ j − p + 1] �= u[ j + 1], provided that the respective letters exist.

A cubic run is a run [i . . j] for which the period p satisfies 3p � j − i +1. For simplicity, in the rest of the text we sometimes
refer to runs and cubic runs as to occurrences of the corresponding factors of u. The (fractional) exponent of a run v ,
denoted exp(v), is defined as ( j − i + 1)/p.

By R(u) we denote the set of all runs in a word u ∈ Σ∗ and by Rcubic(u) the set of cubic runs in the word u. We also
introduce the following notation:

• ρ(u) = |R(u)| and ρcubic(u) = |Rcubic(u)| are the numbers of runs and cubic runs in u respectively,
• σ(u) and σcubic(u) are the sums of exponents of runs and cubic runs in u respectively.

For a non-negative integer n, we use the same notations ρ(n), ρcubic(n), σ(n) and σcubic(n) to denote the maximal value of
the respective function for a word of length n.

3. Upper bounds for σ(n) and σcubic(n)

In this section we utilize the concept of handles of runs as defined in [6]. The original definition refers only to cubic
runs, here we extend it also to ordinary runs.

Let u ∈ Σn . Denote by I = {p1, p2, . . . , pn−1} the set of inter-positions in u that are located between pairs of consecutive
letters of u. We define a function H assigning to each run v in u a set of some inter-positions within v (called later on
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Fig. 1. An example of a run v = (abaab)6a with exponent exp(v) = 6.2. It contains �6.2� − 1 = 5 occurrences of each of the words wmin = aabab and
wmax = babaa. The set H(v) contains 2 · (�6.2� − 2) = 8 inter-positions, pointed by arrows in the figure.

Fig. 2. A situation where pi is in the middle of two squares of different Lyndon words w2
1 and w2

2.

handles), i.e., H : R(u) → subsets(I). Let v be a run with period p and let w be the prefix of v of length p. Let wmin and
wmax be the minimal and maximal words (in lexicographical order) cyclically equivalent to w .

Example 1. If w = abaab then wmin = aabab, wmax = babaa.

H(v) is defined as follows:

(a) if wmin = wmax then H(v) contains all inter-positions within v ,
(b) if wmin �= wmax then H(v) contains all inter-positions in the middle of any occurrence of w2

min in v , and in the middle
of any occurrence of w2

max in v . (See Fig. 1.)

Note that H(v) can be empty for a non-cubic-run v .

Lemma 3.1. wmin and wmax are Lyndon words.

Proof. By the definition of wmin and wmax, it suffices to show that both words are primitive. This follows from the fact
that, due to the minimality of p, w is primitive and that wmin and wmax are cyclically equivalent to w . �
Lemma 3.2. Case (a) in the definition of H(v) implies that |wmin| = 1.

Proof. wmin is primitive, therefore if |wmin| � 2 then wmin contains at least two distinct letters, a = wmin[1] and b =
wmin[i] �= a. If b < a (b > a) then the cyclic rotation of wmin by i − 1 letters would be lexicographically smaller (greater)
than wmin, so wmin �= wmax. �
Lemma 3.3. H(v1) ∩ H(v2) = ∅ for any two distinct runs v1 and v2 in u.

Proof. Assume, to the contrary, that pi ∈ H(v1) ∩ H(v2) is a handle of two different runs v1 and v2. By the definition of
the handle and Lemma 3.1, pi is located in the middle of two squares of Lyndon words: w2

1 and w2
2, where |w1| = per(v1)

and |w2| = per(v2). Note that w1 �= w2, since otherwise runs v1 and v2 would be the same. Without the loss of generality,
we can assume that |w1| < |w2|. So, the word w1 is both a prefix and a suffix of w2 (see Fig. 2), what contradicts the fact
that w2 is a Lyndon word. �

To prove the upper bound for σ(n), we need to state an additional property of handles of runs. For u ∈ Σ∗ , let R1(u)

and R�2(u) be the sets of runs in u with period 1 and at least 2, respectively.

Lemma 3.4. If v ∈ R1(u) then exp(v) = |H(v)| + 1.
If v ∈ R�2(u) then 
exp(v)� � |H(v)|

2 + 3.

Proof. For the case of v ∈ R1(u), the proof is straightforward from the definition of handles. Assume now that v ∈ R�2(u)

and let w be a prefix of v of length per(v). Then the word wk for k = �exp(v)� is a prefix of v , and therefore both words
wk−1

min and wk−1
max are factors of v . Each of the words provides k − 2 distinct handles for v . Hence:∣∣H(v)
∣∣ � 2 · (⌊exp(v)

⌋ − 2
)
. �
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Now we are ready to prove the upper bound for σ(n). In the proof we use the bound ρ(n) � 1.029n on the number of
runs from [4].

Theorem 3.5. The sum of the exponents of runs in a string of length n is less than 4.1n.

Proof. Let u be a word of length n. Using Lemma 3.4, we obtain:

σ(u) =
∑

v∈R1(u)

exp(v) +
∑

v∈R�2(u)

exp(v)

�
∑

v∈R1(u)

(∣∣H(v)
∣∣ + 1

) +
∑

v∈R�2(u)

( |H(v)|
2

+ 3

)

=
∑

v∈R1(u)

∣∣H(v)
∣∣ + ∣∣R1(u)

∣∣ +
∑

v∈R�2(u)

|H(v)|
2

+ 3 · ∣∣R�2(u)
∣∣

� 3 · ∣∣R(u)
∣∣ +

∑
v∈R1(u)

∣∣H(v)
∣∣ +

∑
v∈R�2(u)

|H(v)|
2

� 3 · ∣∣R(u)
∣∣ +

∑
v∈R(u)

∣∣H(v)
∣∣. (1)

Due to the disjointness of handles of runs (Lemma 3.3),
∑

v∈R(u) |H(v)| < n. Combining it with (1), we obtain:

σ(u) < 3 · ∣∣R(u)
∣∣ + n � 3 · ρ(n) + n � 3 · 1.029n + n < 4.1n. �

A similar approach for cubic runs, this time using the bound of 0.5n for ρcubic(n) from [6], enables us to immediately
provide a stronger upper bound for the function σcubic(n).

Theorem 3.6. The sum of the exponents of cubic runs in a string of length n is less than 2.5n.

Proof. Let u be a word of length n. Let Rcubic,1(u) = R1(u) ∩ Rcubic(u). Similarly, let Rcubic,�2(u) = R�2(u) ∩ Rcubic(u).
From Lemma 3.4, we obtain:

σcubic(u) =
∑

v∈Rcubic,1(u)

exp(v) +
∑

v∈Rcubic,�2(u)

exp(v)

�
∑

v∈Rcubic,1(u)

(∣∣H(v)
∣∣ + 1

) +
∑

v∈Rcubic,�2(u)

( |H(v)|
2

+ 3

)

=
∑

v∈Rcubic,1(u)

∣∣H(v)
∣∣ + ∣∣Rcubic,1(u)

∣∣ +
∑

v∈Rcubic,�2(u)

|H(v)|
2

+ 3 · ∣∣Rcubic,�2(u)
∣∣

� 3 · ∣∣Rcubic(u)
∣∣ +

∑
v∈Rcubic,1(u)

∣∣H(v)
∣∣ +

∑
v∈Rcubic,�2(u)

|H(v)|
2

� 3 · ∣∣Rcubic(u)
∣∣ +

∑
v∈Rcubic(u)

∣∣H(v)
∣∣. (2)

Due to the disjointness of handles of runs (Lemma 3.3),
∑

v∈Rcubic(u) |H(v)| < n. Combining it with (2), we obtain:

σcubic(u) < 3 · ∣∣Rcubic(u)
∣∣ + n � 3 · ρcubic(n) + n < 3 · n

2
+ n = 2.5n. �

4. Lower bound for σ(n)

Let us start by investigating the sums of exponents of runs for words of two known families that contain a large number
of runs. We consider first the words defined by Franek and Yang [7], then the Padovan words defined by Simpson [18]. They
give large sums of exponents, however below 2n. Then we construct a new family of words which breaks the barrier of 2n.
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Table 1
Number of runs and sum of exponents of runs in Franek and Yang’s [7] words xi .

i |xi | ρ(xi)/|xi | σ(xi) σ (xi)/|xi |
1 6 0.3333 4.00 0.6667
2 27 0.7037 39.18 1.4510
3 116 0.8534 209.70 1.8078
4 493 0.9047 954.27 1.9356
5 2090 0.9206 4130.66 1.9764
6 8855 0.9252 17 608.48 1.9885
7 37 512 0.9266 74 723.85 1.9920
8 158 905 0.9269 316 690.85 1.9930
9 673 134 0.9270 1 341 701.95 1.9932

Table 2
Number of runs and sum of exponents of runs in Simpson’s [18] modified Padovan words yi .

i |yi | ρ(yi)/|yi | σ(yi) σ (yi)/|yi |
1 13 0.6154 16.00 1.2308
6 69 0.7971 114.49 1.6593

11 287 0.8990 542.72 1.8910
16 1172 0.9309 2303.21 1.9652
21 4781 0.9406 9504.38 1.9879
26 19 504 0.9434 38 903.64 1.9946
31 79 568 0.9443 158 862.94 1.9966
36 324 605 0.9445 648 270.74 1.9971
41 1 324 257 0.9446 2 644 879.01 1.9973

Let ◦ be a special concatenation operator defined as:

x[1 . . n] ◦ y[1 . . m] =
{

x[1 . . n]y[2 . . m] = x[1 . . n − 1]y[1 . . m] if x[n] = y[1],
x[1 . . n − 1]y[2 . . m] if x[n] �= y[1].

Also let g be a morphism defined as:

g(x) =
⎧⎨
⎩

010010 if x = 0,

101101 if x = 1,

g(x[1 . . n]) = g(x[1]) ◦ g(x[2]) ◦ · · · ◦ g(x[n]) if |x| > 1.

Then xi = gi(0) is the family of words described by Franek and Yang [7], which gives the lower bound ρ(n) � 0.927n,
conjectured for some time to be optimal. The sums of exponents of runs of several first terms of the sequence xi are listed
in Table 1.

Define a mapping δ(x) = R( f (x)), where R(x) is the reverse of x and f is the morphism

f (a) = aacab, f (b) = acab, f (c) = ac.

Let y′
i be a sequence of words defined for i > 5 recursively using y′

i+5 = δ(y′
i). The first 5 elements of the sequence y′

i are:

b, a, ac, ba, aca.

The strings y′
i are called modified Padovan words. If we apply the following morphism h:

h(a) = 101001011001010010110100,

h(b) = 1010010110100, h(c) = 10100101

to y′
i , we obtain a sequence of run-rich strings yi defined by Simpson [18], which gives the best known lower bound

ρ(n) � 0.944575712n. Table 2 lists the sums of exponents of runs of selected words from the sequence yi .
The values in Tables 1 and 2 have been computed experimentally. They suggest that for the families of words xi and yi

the maximal sum of exponents could be less than 2n. We show, however, a lower bound for σ(n) that is greater than 2n.

Theorem 4.1. There are infinitely many binary strings w such that:

σ(w)

|w| > 2.035.
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Table 3
Sums of exponents of runs in words wi .

i |wi | σ(wi) σ (wi)/|wi |
1 31 47.10 1.5194
2 119 222.26 1.8677
3 461 911.68 1.9776
4 1751 3533.34 2.0179
5 6647 13 498.20 2.0307
6 25 205 51 264.37 2.0339
7 95 567 194 470.30 2.0349
8 362 327 737 393.11 2.0352
9 1 373 693 2 795 792.39 2.0352

10 5 208 071 10 599 765.15 2.0353

Fig. 3. Comparison of the sum of exponents of runs in selected families of words.

Proof. Let us define two morphisms φ : {a,b, c}∗ �→ {a,b, c}∗ and ψ : {a,b, c}∗ �→ {0,1}∗ as follows:

φ(a) = baaba, φ(b) = ca, φ(c) = bca,

ψ(a) = 01011, ψ(b) = ψ(c) = 01001011.

We define wi = ψ(φi(a)). Table 3 and Fig. 3 show the sums of exponents of runs in words w1, . . . , w10, computed experi-
mentally.

In particular the word w8 is of length 362 327 and its sum of exponents of runs is 737 393.11 (which has been verified
using a computer program). Hence clearly, for any word w = (w8)

k , k � 1, we have:

σ(w)

|w| > 2.035. �
5. Relating the upper bound for σ(n) to semicubic runs

Recall that 1.029n is the best known upper bound for ρ(n) [4]. On the other hand, the best known corresponding upper
bound for cubic runs, for which the exponent is at least 3, is much smaller: 0.5n [6].

This suggests that the upper bound for the maximal number of runs with an intermediate exponent, e.g. at least 2.5, in
a string of length n could be smaller than the general bound for exponent at least 2. Let us call such runs with exponent at
least 2.5 semicubic runs.

Observation. The number of semicubic runs in Fibonacci strings is relatively small, it can be proved that in case of these
strings every semicubic run is also cubic (if exponent is at least 2.5 then it is at least 3).

Let ρsemic(u) be the number of semicubic runs in the string u and let ρsemic(n) denote the maximum of ρsemic(u) over
all strings u of length n.

Using extensive computer experiments, we have found the following family of binary words zi = ν(μi(a)), where:

μ(a) = ba, ν(a) = 0010100010,

μ(b) = aba, ν(b) = 001010

that contain, for sufficiently large i, at least 0.52n semicubic runs, see Table 4.
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Table 4
The number of semicubic runs in the words zi = ν(μi(a)).

i |zi | ρsemic(zi) ρsemic(zi)/|zi |
1 16 5 0.3125
2 42 17 0.4048
3 100 46 0.4600
4 242 118 0.4876
5 584 296 0.5069
6 1410 724 0.5135
7 3404 1762 0.5176
8 8218 4266 0.5191
9 19 840 10 316 0.5200

10 47 898 24 920 0.5203
11 115 636 60 182 0.5204
12 279 170 145 310 0.5205
13 673 976 350 832 0.5205
14 1 627 122 847 004 0.5206

Using the same program we managed to construct strings with ρ(n) � 0.944575n, that is, very close to the best known
lower bound for this function and also close to the best known upper bound. This suggests that the data from the program
are good approximations for semicubic runs as well. Therefore we conjecture the following.

Conjecture 5.1 (Semicubic-runs conjecture). ρsemic(n) � 0.6n.

If the above conjecture holds, it lets us instantly improve the upper bound for σ(n).

Theorem 5.2. If Conjecture 5.1 is true then σ(n) � 3.9n.

Proof. Let Rsemic(u) denote the set of all semicubic runs in a string u, and let Rsemic,1(u) = Rsemic(u) ∩ R1(u) and
Rsemic,�2(u) = Rsemic(u) ∩ R�2(u). Conjecture 5.1 allows us to improve the part of the proof of Theorem 3.5 related to
the term

∑
v∈R�2(u) exp(v):

σ(u) =
∑

v∈R1(u)

exp(v) +
∑

v∈R�2(u)

exp(v)

=
∑

v∈R1(u)

exp(v) +
∑

v∈R�2(u)\Rsemic,�2(u)

exp(v) +
∑

v∈Rsemic,�2(u)

exp(v)

�
∑

v∈R1(u)

(∣∣H(v)
∣∣ + 1

) +
∑

v∈R�2(u)\Rsemic,�2(u)

2.5 +
∑

v∈Rsemic,�2(u)

( |H(v)|
2

+ 3

)

�
∑

v∈R1(u)

∣∣H(v)
∣∣ + ∣∣R1(u)

∣∣ + 2.5 · ∣∣R�2(u) \ Rsemic,�2(u)
∣∣ +

∑
v∈Rsemic,�2(u)

|H(v)|
2

+ 3 · ∣∣Rsemic,�2(u)
∣∣

�
∑

v∈R(u)

∣∣H(v)
∣∣ + ∣∣R1(u)

∣∣ + 2.5 · ∣∣R�2(u) \ Rsemic,�2(u)
∣∣ + 3 · ∣∣Rsemic,�2(u)

∣∣
� n + ∣∣R1(u)

∣∣ + 2.5 · (∣∣R�2(u)
∣∣ − ∣∣Rsemic,�2(u)

∣∣) + 3 · ∣∣Rsemic,�2(u)
∣∣

� n + ∣∣R1(u)
∣∣ + 2.5 · ∣∣R�2(u)

∣∣ + 0.5 · ∣∣Rsemic,�2(u)
∣∣

� n + 2.5 · ∣∣R(u)
∣∣ + 0.5 · ∣∣Rsemic(u)

∣∣
� n + 2.5 · 1.029n + 0.5 · 0.6n � 3.9n. �

6. Conclusions

In this paper we have provided an upper bound of 4.1n on the maximal sum of exponents of runs in a string of length
n and also a stronger upper bound of 2.5n for the maximal sum of exponents of cubic runs in a string of length n. As for
the lower bound, we bring down the conjecture by Kolpakov and Kucherov [12,11], that σ(n) < 2n, by providing an infinite
family of binary strings, for which the sum of exponents of runs is greater than 2.035n.

A natural open problem is to tighten these bounds. One could consider the strings wn for n > 8. Unfortunately it seems
that the lower bound on σn

n for the sequence wn grows so slowly, that it never exceeds 2.035 significantly. Further progress
would be very difficult and would require heavy experimentation.
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One of the possible directions for improvement of the upper bound, presented in this paper, consists in finding bounds
for the maximal number of runs with exponent at least f , where f ∈ (2,3), in a string of length n.
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