Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

L : )
processing
letters

devoted to the rapid publication of shore contriburions to information processing

P i b
f_r 4/'—’" "
7 ‘,J‘—\"‘-.--F J’n, %'
a— .f”-r’ $%
L ‘—H"‘—_“"“_—-—J\
" e — — 3
;
_—
\\ / —— =
rd il
N § A
>
\'L . f{-/
=7

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

Information Processing Letters 113 (2013) 74-77

www.elsevier.com/locate/ipl

Contents lists available at SciVerse ScienceDirect

Information Processing Letters

A note on efficient computation of all Abelian periods in a string

M. Crochemore®P, C.S. Iliopoulos *¢, T. Kociumaka 9, M. Kubica9, J. Pachocki{,
J. Radoszewski 9*, W. Rytter €1, W. Tyczynski94, T. Walen -d

2 King’s College London, London WC2R 2LS, UK
b Université Paris-Est, France

¢ Digital Ecosystems & Business Intelligence Institute, Curtin University of Technology, Perth WA 6845, Australia

d Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland

€ Department of Mathematics and Informatics, Copernicus University, ul. Chopina 12/18, 87-100 Torufi, Poland

f Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Poland

ARTICLE INFO

ABSTRACT

Article history:

Received 27 July 2012

Received in revised form 31 October 2012
Accepted 2 November 2012

Available online 5 November 2012
Communicated by M. Yamashita

We derive a simple efficient algorithm for Abelian periods knowing all Abelian squares
in a string. An efficient algorithm for the latter problem was given by Cummings and
Smyth in 1997. By the way we show an alternative algorithm for Abelian squares. We
also obtain a linear time algorithm finding all “long” Abelian periods. The aim of the paper
is a (new) reduction of the problem of all Abelian periods to that of (already solved) all

Abelian squares which provides new insight into both connected problems.

Keywords:
Algorithms
Abelian period
Abelian square

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We present an efficient reduction of the Abelian pe-
riod problem to the Abelian square problem. For a string
of length n the latter problem was solved in O(n?) by
Cummings and Smyth [7]. The best previously known algo-
rithms for the Abelian periods, see [12], worked in O (n?m)
time (where m is the alphabet size) which for large m
is 0(n3). Our algorithm works in O(n?) time. As a by-
product we obtain an alternative O(n?) time algorithm
finding all Abelian squares and an O (n) time algorithm

* Corresponding author. Tel.: +48 22 55 44 484; fax: +48 22 55 44 400.
E-mail addresses: maxime.crochemore@kcl.ac.uk (M. Crochemore),

c.iliopoulos@kcl.ac.uk (C.S. Iliopoulos), kociumaka@mimuw.edu.pl
(T. Kociumaka), kubica@mimuw.edu.pl (M. Kubica),
pachocki@mimuw.edu.pl (J. Pachocki), jrad@mimuw.edu.pl
(J. Radoszewski), rytter@mimuw.edu.pl (W. Rytter),
w.tyczynski@mimuw.edu.pl (W. Tyczynski), walen@mimuw.edu.pl
(T. Walen).

1 The author is supported by grant no. N206 566740 of the National
Science Centre.

0020-0190/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2012.11.001

finding a compact representation of all Abelian periods of
length greater than n/2, in particular, the shortest such pe-
riod.

Abelian squares were first studied by Erdos [11], who
posed a question on the smallest alphabet size for which
there exists an infinite Abelian-square-free string. An ex-
ample of such a string over five-letter alphabet was given
by Pleasants [16] and afterwards the best possible example
over four-letter alphabet was shown by Kerdnen [13].

Quite recently there have been several results on
Abelian complexity in words [1,4,8-10] and partial words
[2,3] and on Abelian pattern matching [5,14,15]. Abelian
periods were first defined and studied by Constantinescu
and Ilie [6].

We say that two strings are (commutatively) equivalent,
and write x = y, if one can be obtained from the other by
permuting its symbols. In other words, the Parikh vectors
P(x), P(y) are equal, where the Parikh vector gives fre-
quency of each symbol of the alphabet in a given string.
Parikh vectors were introduced already in [6] for this prob-
lem.



M. Crochemore et al. / Information Processing Letters 113 (2013) 74-77 75

N

c aaabacbDb b aabocbbabcabDbdocba

Fig. 1. A word of length 25 with an Abelian period (i =3, p = 6). This period implies two Abelian squares: abacbbbaabcb and baabcbbabcab.

Table 1

The values of head(1,i),i=1,..., 11, for the infinite Fibonacci word. Numbers in bold denote halves of square prefixes of the word.
i 1 2 3 4 5 7 8 9 10 11
Fli] a b a a b b a a b a
head(1, 1) 2 3 3 5 5 8 8 10 10 11

A string w is an Abelian k-power if w = x1x3...X,
where

X1 =X2=:-+= Xg.

The length of x1 is called the base of the k-power. In par-
ticular w is an Abelian square if and only if it is an Abelian
2-power.

A string x is an Abelian factor of y if P(x) < P(y), that
is, each element of P(x) is smaller than the corresponding
element of P(y). The pair (i, p) is an Abelian period of w =
w([1,n] if and only if w[i+1, j] is an Abelian k-power with
base p (for some k) and w(1,i] and w[j+ 1,n] are Abelian
factors of w[i + 1,i + p], see Fig. 1. Here p is called the
length of the period.

In Section 2 we introduce two auxiliary tables that we
use in computing Abelian squares and powers. Next in Sec-
tion 3 we show new O (n?) time algorithms for all Abelian
squares and all Abelian periods in a string and a reduction
between these problems.

Finally in Section 4 we present an O (n) time algorithm
finding a compact representation of all “long” Abelian pe-
riods. Define

MinLong (i)
=min{p >n/2: (i, p) is an Abelian period of w}.

If no such p exists, we set MinLong(i) = co. All long
Abelian periods are of the form (i,p) where p >
MinLong(i), the table MinLong is a compact O(n) space
representation of potentially quadratic set of long Abelian
periods.

2. Auxiliary tables

Let w be a string of length n. Assume its positions are
numbered from 1 to n, w = wywy...ws. By wl[i, j] we
denote the factor of w of the form w;wi1...wj. Factors
of the form w([1,i] are called prefixes of w and factors of
the form w[i, n] are called suffixes of w.

We introduce the following table:

head(i, j) = minimum k such that
P(wli, j1) <P(wlj+1, j+k).

If no such k exists, we set head(i, j) = oo, and if j < i, we
set head(i, j) = 0. In the algorithm below we actually com-
pute a slightly modified table head’ (i, j) = j + head(i, j).

Example 1. For the infinite Fibonacci word F =
abaababaabaababaababaa . . . the first several values of the
table head(1,i) are presented in Table 1.

We have here Abelian square prefixes of lengths 6, 10,
12, 16, 20, 22.

We show how to compute the head table in O(n?)
time. The computation is performed in row-order of the
table using the fact that it is non-decreasing:

Observation 2. For any 1 <i < j <n, head (i, j) <
head'(i, j + 1).

We assume that the alphabet of w is ¥ ={1,2,...,m}
where m < n. For a Parikh vector Q, by Q[i] for i =
1,2,...,m we denote the number of occurrences of the
letter i. For two Parikh vectors Q and R, we define their
Parikh difference, denoted as Q — R, as a Parikh vector:
(Q — B)lil= Q[i] — R[i].

In the algorithm we store the difference Aj="P(y;) —
P(xj) of Parikh vectors of

xj=wl[i,jl and y;=w[j+1,k]

where k = head (i, j). Note that Ajla]l > 0 for any a =
1,2,...,m.

Assume we have computed head (i, j — 1) and A j—1.
When we proceed to j, we move the letter w[j] from y
to x and update A accordingly. Thus at most one element
of A might have dropped below 0. If there is no such el-
ement, we conclude that head'(i, j) = head'(i, j — 1) and
that we have obtained A; = A. Otherwise we keep ex-
tending y to the right with new letters and updating A
until all its elements become non-negative. We obtain the
following algorithm Compute-head.

Lemma 3. The head table can be computed in O (n?) time.

Proof. The time complexity of the algorithm Compute-
head is O(n?). Indeed, the total number of steps of the
while-loop for a fixed value of i is O(n), since each step
increases the variable k. O

We also use the following tail table that is analogical to
the head table:

tail(i, j) = minimum k such that
P(wli, j1) <P(wli —k,i—1]).



76 M. Crochemore et al. / Information Processing Letters 113 (2013) 74-77

Algorithm Compute-head(w)
fori:=1 ton do
A:=(0,0,...,0);

k:=1;

for j:=i ton do

k:=k+1;

A[w[i]] := 1; {Boundary condition}

Alw[j]] := Alw[j]] = 2;
while (k <n) and (A[w[j]] < 0) do

A[w[k]] := A[wl[k]] + 1;
if A[w[j]] <O then k := 0o;
head (i, j) :=k; head(i, j) := head (i, j) — j;

Table 2

The table MinLong constructed for the string caabbcabbcaaa.
i 0 1 2 3 4 5 7 8 9 10 11 12 13
wli] c a a b b a b c a a a
MinLong (i) 7 7 9 8 7 7 o0 o0 o0 [ee) o0 o0 o0

3. Abelian squares and Abelian periods

In this section we show how Abelian periods can be
inferred from Abelian squares in a string.

Define by maxpower(i, p) the maximal length of a pre-
fix of wl[i,n] which is an Abelian k-power with base
p (for some k). Define square(i,p) = 1 if and only if
maxpower(i, p) > 2p. Cummings and Smyth [7] compute
an alternative table square’ (i, p), such that square’ (i, p) =1
if and only if w[i —p+1,i+ p] is an Abelian square. These
tables are clearly equivalent:

square(i,p)=1 < square’'(i+p—1,p)=1.

The maxpower(i, p) table can be computed from the
square(i, p) table in linear time using a simple dynamic
programming recurrence:

maxpower (i, p)
_{0 ifn—i<p—1,
p + square(i, p) - maxpower(i + p, p) otherwise.
(1)
An alternative O (n?) time algorithm for computing the

table square(i, p) for a string w of length n is a conse-
quence of the following observation, see also Example 1.

Observation 4. square(i,p) =1 < head(i,i+p — 1) =p.

Theorem 5. All Abelian squares in a string of length n can be
computed in O (n?) time.

The following observation provides a constant-time
condition for checking an Abelian period.

Observation 6. (i, p) is an Abelian period of w if and
only if

p = head(1,1), tail(j, n)
where j =i+ 1+ maxpower(i + 1, p).

Proof. (=) By definition, the pair (i, p) is an Abelian pe-
riod of w if and only if there exists j' such that w[i+1, j’]
is an Abelian power with base p and P(w[1,i]),
Pw[j +1,n]) CPw[i+1,i+p]). Due to the former con-
dition, we have j—1 > j'. On the other hand, by both con-
ditions, j’ is the maximum integer not exceeding n such
that p | j/—i. Hence, j—1 < j’, and consequently j—1 = j’.
Now the condition P(w[1,i]) € P(w[i+ 1,i+ p]) implies
that p > head(1, i) and the condition

P(w[j’ +1,n]) S P(Wli +1,i+ p])

=P(w[i'—=p+1.J])
implies that p > tail(j' 4+ 1, n) = tail(j, n).
(<) Let j =i+ 1+ maxpower(i + 1, p), then w[i + 1,
j — 17 is an Abelian power with base p. Assume that addi-
tionally p > head(1, i), p > tail(j, n). These inequalities im-
ply that P(w[1,i]) € P(w[i+1,i+ p]) and P(w[j,n]) €
Pwl[j— p, j—1]). Hence, (i, p) satisfies all the conditions
for an Abelian period. O

We conclude with the following algorithm for comput-
ing Abelian periods. In the algorithm we implicitly use
our alternative version of computing the table square from
head, since the latter table is computed anyway (instead of
that Cummings and Smyth’s algorithm could be used for
Abelian squares).

Theorem 7. All Abelian periods of a string of length n can be
computed in O (n?) time.

4. Long Abelian periods

In this section we show how to compute the table
MinLong(i), see the example in Table 2.

For a non-decreasing function f:{1,2,...,n+ 1} —
{—o0}U{1,2,...,n+ 1} define the function

@ =minj: f(j) > i}.



M. Crochemore et al. / Information Processing Letters 113 (2013) 74-77

Algorithm Compute-Abelian-Periods
Compute head(i, j), tail(i, j) using algorithm Compute-head;
Initialize the table maxpower to zero table;
for p:=1ton do
for i :=n downto 1 do
ifi<n—p+1 then
maxpower (i, p) := p;
if head(i,i+ p — 1) = p then
maxpower (i, p) := p + maxpower(i + p, p);
fori:=0ton—1do
for p:=1ton—ido
j:=1i4+1+ maxpower(i + 1, p);
if (p > head(1,1i)) and (p > tail(j,n)) then
Report an Abelian period (i, p);

77

p=j—1—1

e et >
} f f {
w[l,z] w[7'+17.7_1] w[]vn}

e it >
tail(j,n)
D >
head(1,1)

n

Fig. 2. A schematic view of a long Abelian period: p > 3, p > head(1, 1), tail(j, n).

If the minimum is undefined then we set f‘(i) = .

Observation 8. Let f be a function non-decreasing and

computable in constant time. Then all the values of f can
be computed in linear time.

Theorem 9. A compact representation of all long Abelian peri-
ods can be computed in linear time.

Proof. Let us take f(j) = j — tail(j,n). This function is
non-decreasing, see also Observation 2. Then for i < % we

have:
MinLong(i) = max{ LgJ + 1, head(1,1), f(i) —i— 1}

and otherwise MinLong(i) = oo, see also Fig. 2.
Hence the computation of MinLong table is reduced to

linear time algorithm for f and the conclusion of the the-
orem follows from Observation 8. O

References

[1] S.V. Avgustinovich, A. Glen, B.V. Halldérsson, S. Kitaev, On shortest
crucial words avoiding Abelian powers, Discrete Appl. Math. 158 (6)
(2010) 605-607.

[2] E. Blanchet-Sadri, J.I. Kim, R. Mercas, W. Severa, S. Simmons, Abelian
square-free partial words, in: A.H. Dediu, H. Fernau, C. Martin-
Vide (Eds.), LATA, in: Lecture Notes in Computer Science, vol. 6031,
Springer, 2010, pp. 94-105.

[3] E. Blanchet-Sadri, S. Simmons, Avoiding Abelian powers in partial
words, in: Mauri and Leporati [14], pp. 70-81.

[4] ]. Cassaigne, G. Richomme, K. Saari, L.Q. Zamboni, Avoiding Abelian
powers in binary words with bounded Abelian complexity, Int. ]J.
Found. Comput. Sci. 22 (4) (2011) 905-920.

[5] E. Cicalese, G. Fici, Z. Liptak, Searching for jumbled patterns in strings,
in: J. Holub, J. Zd'arek (Eds.), Proceedings of the Prague Stringology
Conference 2009, Czech Technical University in Prague, Czech Repub-
lic, 2009, pp. 105-117.

[6] S. Constantinescu, L. Ilie, Fine and Wilf's theorem for Abelian periods,
Bulletin of the EATCS 89 (2006) 167-170.

[7] LJ. Cummings, W.F. Smyth, Weak repetitions in strings, J. Combina-
torial Math. Combinatorial Comput. 24 (1997) 33-48.

[8] J.D. Currie, A. Aberkane, A cyclic binary morphism avoiding Abelian
fourth powers, Theor. Comput. Sci. 410 (1) (2009) 44-52.

[9] J.D. Currie, T.I. Visentin, Long binary patterns are Abelian 2-avoidable,
Theor. Comput. Sci. 409 (3) (2008) 432-437.

[10] M. Domaratzki, N. Rampersad, Abelian primitive words, in: Mauri
and Leporati [14], pp. 204-215.

[11] P. Erdos, Some unsolved problems, Hungarian Academy Sci. Mat. Ku-
taté Intézet Kozl 6 (1961) 221-254.

[12] G. Fici, T. Lecroq, A. Lefebvre, E. Prieur-Gaston, Computing Abelian
periods in words, in: J. Holub, J. Zd'arek (Eds.), Proceedings of the
Prague Stringology Conference 2011, Czech Technical University in
Prague, Czech Republic, 2011, pp. 184-196.

[13] V. Kerdnen, Abelian squares are avoidable on 4 letters, in: W. Kuich
(Ed.), ICALP, in: Lecture Notes in Computer Science, vol. 623,
Springer, 1992, pp. 41-52.

[14] G. Mauri, A. Leporati (Eds.), Developments in Language Theory - 15th
International Conference, DLT, Proceedings, Milan, Italy, July 19-22,
2011, Lecture Notes in Computer Science, vol. 6795, Springer, 2011.

[15] T.M. Moosa, M.S. Rahman, Indexing permutations for binary strings,
Inf. Process. Lett. 110 (18-19) (2010) 795-798.

[16] PA. Pleasants, Non-repetitive sequences, Proc. Cambridge Phil.
Soc. 68 (1970) 267-274.



