EXISTENCE OF ENERGY MINIMIZERS FOR MAGNETOSTRICTIVE MATERIALS

PIOTR RYBKA AND MITCHELL LUSKIN

Abstract. The existence of a deformation and magnetization minimizing the magnetostrictive free energy is given. Mathematical challenges are presented by a free energy that includes elastic contributions defined in the reference configuration and magnetic contributions defined in the spatial frame. The one-to-one a.e. and orientation-preserving property of the deformation is demonstrated, and the satisfaction of the nonconvex saturation constraint for the magnetization is proven.

1. Introduction

A mathematical model for magnetostrictive materials, in which the deformation and the magnetization are coupled, has been given in [4,7,15,16,18]. More significant shape change can be obtained from magnetostrictive materials that also undergo a structural phase transformation [9,17].

In this paper, we prove the existence of a deformation and magnetization minimizing the magnetostrictive free energy [4,15,16]. A novel feature of this free energy is that the elastic free energy is given in a reference configuration, as usual for elasticity, but the magnetic energies are given in the spatial frame. This requires that we use a free energy for which the Jacobian of the deformation can be controlled. We also must prove that the deformation is one-to-one a.e. and that the magnetization satisfies the nonconvex saturation constraint.

Magnetostrictive, shape memory, single crystal, thin films such as Ni$_2$MnGa have recently been grown [9,17], and their properties are being explored for use in new technologies. We hope that this work will provide the foundation for our future work on the derivation of a rigorous magnetostrictive thin film energy.

The plan of our work is the following. In §2, we introduce the magnetostriction model and in particular we present the constitutive assumptions. We shall seek the minimizers in an admissible set \mathcal{A}, described in §2, that incorporates all of the constraints. To prove the existence of minimizers, we demonstrate in Theorem 3.1 that \mathcal{A} is closed in a weak topology. We then show in §4 that \mathcal{E} is lower semicontinuous on \mathcal{A}, and hence that it attains its minimum. This is the content of Theorem 4.1 and is the main result of this paper.

Date: April 18, 2004.

2000 Mathematics Subject Classification. 49J45, 74B20, 74F15, 74G65.

Key words and phrases. calculus of variations, magnetostriction, micromagnetics.

The work of Piotr Rybka was supported in part by KBN 2P03A 042 24 and by a visiting position at the University of Minnesota.

The work of Mitchell Luskin was supported in part by NSF DMS-0074043 and DMS-0304326, by AFOSR F49620-98-1-0433, and by the Minnesota Supercomputer Institute. This work was also supported in part by the Army High Performance Computing Research Center (AHPCRC) under the auspices of the Department of the Army, Army Research Laboratory (ARL) under Cooperative Agreement number DAAD19-01-2-0014. The content of which does not necessarily reflect the position or policy of the government, and no official endorsement should be inferred.
2. The magnetostriction model

We consider a magnetostrictive crystal which in an undeformed state occupies the Lipschitz domain \(\Omega \subset \mathbb{R}^3 \). The admissible deformations \(\bar{y} : \Omega \to \mathbb{R}^3 \) of the crystal will be required to have the regularity \(\bar{y} \in W^{2,2}(\Omega; \mathbb{R}^3) \), to be orientation-preserving (det \(\nabla \bar{y} > 0 \) a.e.), and to be one-to-one a.e., where we recall that a mapping \(\bar{y} \) is one-to-one a.e. if there is a set \(G \subset \Omega \) of full measure (that is, \(|G| = |\Omega| \)) such that \(\bar{y}(x) \) restricted to \(G \) is one-to-one. The one-to-one property everywhere of \(\bar{y}(x) \) would seem more appropriate, however it is the weaker property that we will prove is preserved under weak convergence in \(W^{2,2}(\Omega; \mathbb{R}^3) \).

The demonstration that energy-minimizing deformations obtained from the calculus of variations are one-to-one often requires sophisticated techniques [22], such as for problems with cavitation [21] or other problems with low regularity. Since our problem has higher regularity, simpler methods based on Banach’s indicatrix are sufficient.

Because of the continuity of \(\bar{y} \in W^{2,2}(\Omega; \mathbb{R}^3) \), it follows that the sets \(\bar{y}(\Omega) \) and \(\bar{y}(\partial \Omega) \) are closed and the deformed domain \(\mathcal{O}(\bar{y}) := \bar{y}(\Omega) \setminus \bar{y}(\partial \Omega) \) is open. Here and in the sequel the bar over a set denotes its closure. We note that \(\mathcal{O}(\bar{y}) \) differs from \(\bar{y}(\Omega) \) on a set of measure zero and \(|\mathcal{O}(\bar{y})| = |\bar{y}(\Omega)| \) [11].

We wish to model a crystal that is attached on a nonempty, open subset of its boundary, \(\Gamma \subset \partial \Omega \), so we will assume that admissible deformations \(\bar{y}(x) \) satisfy the boundary condition

\[
\bar{y}(x) = \bar{y}_0(x) \quad \text{for all } x \in \Gamma. \tag{2.1}
\]

The magnetization \(m(z) \) of the crystal is naturally defined in spatial coordinates by \(m : \mathcal{O}(\bar{y}) \to \mathbb{R}^3 \) and admissible magnetizations will be required to have the regularity \(m \in W^{1,2}(\mathcal{O}(\bar{y}); \mathbb{R}^3) \) which is equivalent to

\[
\int_{\mathcal{O}(\bar{y})} \left(|\nabla_z m(z)|^2 + |m(z)|^2 \right) \, dz = \int_{\Omega} \left(|\nabla_z m(\bar{y}(x))|^2 + |m(\bar{y}(x))|^2 \right) \det \nabla \bar{y}(x) \, dx < \infty.
\]

We will often find it convenient as above to consider the magnetization \(m \circ \bar{y} : \Omega \to \mathbb{R}^3 \) described in material coordinates. We will assume that the crystal is at a fixed temperature below the Curie temperature so that

\[
|m(\bar{y}(x))| \det \nabla \bar{y}(x) = \tau, \quad x \in \Omega, \tag{2.2}
\]

where \(\tau \), the saturation magnetization, is a positive constant depending on the temperature.

The applied magnetic field will be given in spatial coordinates by \(h : \mathbb{R}^3 \to \mathbb{R}^3 \), and we will assume that \(h \in L^2(\mathbb{R}^3; \mathbb{R}^3) \).

The free energy of a magnetostrictive crystal can be modeled by [4, 16]:

\[
\mathcal{E}(\bar{y}, m) = \int_{\Omega} \left\{ \kappa |\Delta \bar{y}(x)|^2 + \Phi(\nabla \bar{y}(x), m \circ \bar{y}(x)) \right\} \, dx + \int_{\mathcal{O}(\bar{y})} \left\{ \alpha |\nabla_z m(z)|^2 - h(z) \cdot m(z) \right\} \, dz
\]

\[
+ e_{\text{mag}}(\bar{y}, m)
\]

\[
= \int_{\Omega} \left\{ \kappa |\Delta \bar{y}(x)|^2 + \Phi(\nabla \bar{y}(x), m \circ \bar{y}(x)) + \left(\alpha |\nabla_z m(\bar{y}(x))|^2 - h(\bar{y}(x)) \cdot m(\bar{y}(x)) \right) \det \nabla \bar{y}(x) \right\} \, dx
\]

\[
+ e_{\text{mag}}(\bar{y}, m),
\]

where the magnetostatic energy \(e_{\text{mag}}(\bar{y}, m) \) is calculated from the magnetic scalar potential \(\zeta : \mathbb{R}^3 \to \mathbb{R} \) by

\[
e_{\text{mag}}(\bar{y}, m) = \frac{1}{2} \int_{\mathbb{R}^3} |\nabla_z \zeta(z)|^2 \, dz, \tag{2.4}
\]
and where the magnetic scalar potential ζ satisfies
\[
\text{div}_z \left(-\nabla_z \zeta + \chi_{\mathcal{O}(\bar{y})} m \right) = 0, \quad z \in \mathbb{R}^3.
\]
(2.5)

We recall above that $\chi_{\mathcal{O}(\bar{y})}(z)$ is the characteristic function of $\mathcal{O}(\bar{y})$. The terms in (2.3) represent, from left to right, the surface energy, the anisotropy energy, the exchange energy, the interaction energy due to the applied magnetic field, and the magnetostatic energy. The parameters α and κ are positive material constants depending on the fixed temperature. The anisotropy energy density $\Phi(F, m)$ is a continuous function of the deformation gradient $F \in \mathbb{R}^{3 \times 3}_+$ (where $\mathbb{R}^{3 \times 3}_+$ denotes the group of 3×3 matrices with positive determinant) and the magnetization $m \in \mathbb{R}^3$. (Since the temperature is assumed to be fixed, we do not explicitly denote the dependence of the anisotropy energy density $\Phi(F, m)$ on temperature.)

We will assume that the anisotropy free energy density $\Phi \in C^2(\mathbb{R}^{3 \times 3}_+ \times \mathbb{R}^3; \mathbb{R})$ is of the form
\[
\Phi(F, m) = W(F, m) + \psi(\det F).
\]
(2.6)

We also assume that $\psi : (0, \infty) \to \mathbb{R}$ is convex and satisfies for
\[
q > 2 \quad \text{and} \quad 0 < c_L < c_U
\]
the growth conditions
\[
c_L a^{-q} \leq \psi(a) \leq c_U a^{-q} \quad \text{for } 0 < a < 1,
\]
\[
c_L a^q \leq \psi(a) \leq c_U a^q \quad \text{for } a > 1;
\]
(2.7)

and we assume that $W : \mathbb{R}^{3 \times 3}_+ \times \mathbb{R}^3 \to \mathbb{R}$ satisfies for
\[
2 \leq r < 6 \quad \text{and} \quad 0 < C_L < C_U
\]
the growth conditions
\[
C_L (|F|^2 - 1) \leq W(F, m) \leq C_U (|F|^r + 1) \quad \text{for all } F \in \mathbb{R}^{3 \times 3}_+ \text{ and } m \in \mathbb{R}^3.
\]
(2.8)

We shall define the set of admissible functions to be
\[
\mathcal{A} = \left\{ (\bar{y}, m) \in W^{2,2}(\Omega; \mathbb{R}^3) \times W^{1,2}(\mathcal{O}(\bar{y}); \mathbb{R}^3) : \bar{y}(x) = \bar{y}_0(x) \text{ for all } x \in \Gamma, \psi(\det \nabla \bar{y}) \in L^1(\Omega), \det \nabla \bar{y} > 0 \text{ a.e., and } \bar{y} \text{ is one-to-one a.e.} \right\},
\]
where the growth properties of ψ were given in (2.7). We note that \mathcal{A} is not an affine space.

We shall show under the above assumptions that the problem
\[
\min \{ \mathcal{E}(\bar{y}, m) : (\bar{y}, m) \in \mathcal{A} \text{ and } |m(\bar{y}(x))| \det \nabla \bar{y}(x) = \tau \text{ for almost all } x \in \Omega \}
\]
(2.9)

has a solution. We shall see that the terms
\[
\int_{\mathcal{O}(\bar{y})} |\nabla_z m(z)|^2 dz = \int_{\Omega} |\nabla_z m|^2 \det \nabla \bar{y} \, dx \quad \text{and} \quad \int_{\Omega} \psi(\det \nabla \bar{y}) \, dx
\]
in \mathcal{E} require the most care in the analysis.

The anisotropy energy density for magnetostrictive crystals that undergo a structural phase transformation can have the form (2.6). To see this, we note that the anisotropy energy density for magnetostrictive crystals such as Ni$_2$MnGa is minimized at temperatures below the martensitic transformation on the wells [16, 17]
\[
\mathcal{M} = \text{SO}(3)(U_1, m_1) \cup \text{SO}(3)(U_1, -m_1) \cup \cdots \cup \text{SO}(3)(U_N, m_N) \cup \text{SO}(3)(U_N, -m_N),
\]
where \(\det U_1 > 0 \) and where for the symmetry group, \(G \subset SO(3) \), of the high temperature phase we have

\[
\{(U_1, m_1), \ldots, (U_N, m_N)\} = \{(QU_1 Q^T, Qm_1) : Q \in G\}. \tag{2.10}
\]

We note that SO(3) is the group of proper rotations and

\[
SO(3)(U_k, \pm m_k) \equiv \{(RU_k, \pm Rm_k) : R \in SO(3)\} \quad \text{for } k = 1, \ldots, N.
\]

If \(W(F, m) \) satisfies the property of frame indifference

\[
W(RF, Rm) = W(F, m) \quad \text{for all } F \in \mathbb{R}^{3 \times 3}_+, m \in \mathbb{R}^3, R \in SO(3),
\]

and the property of material symmetry for the group, \(G \),

\[
W(FQ, m) = W(F, m) \quad \text{for all } F \in \mathbb{R}^{3 \times 3}_+, m \in \mathbb{R}^3, R \in G,
\]

then \(\Phi(F, m) \) satisfies the property of frame indifference and material symmetry by the invariance of the determinant function. If \(W(F, m) \) is minimized on the wells (2.10), that is,

\[
W(\bar{F}, \bar{m}) < W(F, m) \quad \text{for all } (\bar{F}, \bar{m}) \in \mathcal{M} \text{ and } (F, m) \in \mathbb{R}^{3 \times 3}_+ \times \mathbb{R}^3 \setminus \mathcal{M}
\]

and \(\psi(a) \) is minimized at \(\det U_1 \), then \(\Phi(F, m) \) is also minimized on the wells (2.10).

The existence of minimizers for a two-dimensional model without surface energy \((\kappa = 0) \) and exchange energy \((\alpha = 0) \) when the deformation is constrained on the boundary to be affine, \(\bar{y}(x) = Fx, \) for \(F \in \mathbb{R}^{2 \times 2}_+ \) in the lamination convex hull of a \(\mathcal{M} \) with two wells \((N = 2) \) was given in [8] using the method of convex integration.

3. Compactness and Closure in the Set of Admissible Functions

In order to demonstrate the existence of minimizers, we will use the direct method of the calculus of variations. For this purpose, we will show that weak limits of elements of \(\mathcal{A} \) belong to \(\mathcal{A} \). To be precise, we say that the sequence \(\{(\bar{y}_n, m_n)\} \subset \mathcal{A} \) converges weakly to \((\bar{y}, m) \in \mathcal{A} \) if and only if

\[
\bar{y}_n \rightharpoonup \bar{y} \quad \text{in } W^{2,2}(\Omega; \mathbb{R}^3),
\]

and

\[
\chi_{\mathcal{O}(\bar{y}_n)m_n} \rightharpoonup \chi_{\mathcal{O}(\bar{y})m} \quad \text{in } L^2(\mathbb{R}^3; \mathbb{R}^3),
\]

\[
\chi_{\mathcal{O}(\bar{y}_n)\nabla z m_n} \rightharpoonup \chi_{\mathcal{O}(\bar{y})\nabla z m} \quad \text{in } L^2(\mathbb{R}^3; \mathbb{R}^{3 \times 3}).
\]

It is possible to explain the weak convergence defined above within the general framework of Cartesian currents (see [12]). However, since \(\bar{y}_n, m_n \) enjoy so much smoothness, we shall be content with easier, more direct methods.

It is convenient to introduce another definition. Namely, we say that a sequence \(\{(\bar{y}_n, m_n)\} \subset \mathcal{A} \) is \(\mathcal{A} \)-bounded if there exists a positive constant \(K \), independent of \(n \), such that

\[
\int_{\Omega} \left\{ |\Delta \bar{y}_n(x)|^2 + \psi(\det \nabla \bar{y}_n(x)) \right\} dx + \int_{\mathcal{O}(\bar{y}_n)} |\nabla z m_n(z)|^2 \, dz \leq K. \tag{3.1}
\]

We now state the main technical result of this section.

Theorem 3.1. If a sequence \(\{(\bar{y}_n, m_n)\} \subset \mathcal{A} \) is \(\mathcal{A} \)-bounded, then there exists a subsequence (not relabeled) and \((\bar{y}, m) \in \mathcal{A} \) such that \((\bar{y}_n, m_n) \) converges weakly to \((\bar{y}, m) \).
This result is fundamental for our considerations. It guarantees the existence of candidates for minimizers, which are weak limits of minimizing sequences. We shall divide the proof into a number of tasks. We shall first deal with \(\{\bar{y}_n\} \) prior to discussing \(\{m_n\} \).

Our main technical tool will be the distribution function. We define
\[
A^n_t = \{ x \in \Omega : \det \nabla \bar{y}_n(x) < t \}, \quad t < 1,
\]
\[
B^n_t = \{ x \in \Omega : \det \nabla \bar{y}_n(x) > t \}, \quad t > 1.
\]

Lemma 3.1. If the sequence \(\{(\bar{y}_n, m_n)\} \subset A \) is \(A \)-bounded, then
\[
|A^n_t| \leq t^q c_L^{-1} K \quad \text{and} \quad |B^n_t| \leq t^{-q} c_L^{-1} K.
\]

Proof. Our starting point is simply
\[
|A^n_t| = \int_{A^n_t} 1 \, dx = \int_{A^n_t} \frac{1}{t} \, dx \leq t \int_{A^n_t} \frac{1}{\det \nabla \bar{y}_n} \, dx \leq t \left(\int_{A^n_t} \frac{1}{(\det \nabla \bar{y}_n)^q} \, dx \right)^{\frac{1}{q}} \cdot |A^n_t|^{1-\frac{1}{q}}.
\]
Hence, we have by (2.7) that
\[
|A^n_t| \leq t^q \int_{A^n_t} (\det \nabla \bar{y}_n)^{-q} \, dx \leq t^q c_L^{-1} \int_{A^n_t} \psi(\det \nabla \bar{y}_n) \, dx \leq t^q c_L^{-1} K
\]
for \(t < 1 \).

The argument leading to the second estimate is similarly given by
\[
|B^n_t| = \int_{B^n_t} 1 \, dx = \int_{B^n_t} \frac{1}{t} \, dx \leq t^{-1} \int_{B^n_t} \det \nabla \bar{y}_n \, dx \leq t^{-1} \left(\int_{B^n_t} (\det \nabla \bar{y}_n)^q \, dx \right)^{\frac{1}{q}} \cdot |B^n_t|^{1-\frac{1}{q}}.
\]
Hence, we have by (2.7) that
\[
|B^n_t| \leq t^{-q} \int_{B^n_t} (\det \nabla \bar{y}_n)^q \, dx \leq t^{-q} c_L^{-1} \int_{B^n_t} \psi(\det \nabla \bar{y}_n) \, dx \leq t^{-q} c_L^{-1} K
\]
for \(t > 1 \).

We next state and prove a main lemma on the convergence of \(\{\bar{y}_n\} \). We note that the convergence result for \(\det \nabla \bar{y}_n \) below is better than that implied by the Sobolev embedding and compactness theorem [1]. It is due to the growth condition (2.7).

Lemma 3.2. If the sequence \(\{(\bar{y}_n, m_n)\} \subset A \) is \(A \)-bounded, then there exists a subsequence (not relabeled) such that
\[
\bar{y}_n \rightharpoonup \bar{y} \quad \text{in} \quad W^{2,2}(\Omega; \mathbb{R}^3),
\]
and
\[
\det \nabla \bar{y}_n \rightharpoonup \det \nabla \bar{y} \quad \text{in} \quad L^p(\Omega) \quad \text{for} \quad p < q, \quad (3.2)
\]
\[
\det \nabla \bar{y}_n \rightharpoonup \det \nabla \bar{y} \quad \text{in} \quad L^q(\Omega), \quad (3.3)
\]
\[
\int_{\Omega} \psi(\det \nabla \bar{y}) \, dx < \infty, \quad (3.4)
\]
\[
\det \nabla \bar{y} > 0 \quad \text{a.e.} \quad (3.5)
\]
Proof. The first part of this lemma follows directly from elliptic regularity [13] and the weak compactness of bounded sets in $W^{2,2}(\Omega; \mathbb{R}^3)$ since
\[
\int_{\Omega} |\Delta \bar{y}_n|^2 \, dx \leq K < \infty.
\]
Since the sequence $\{(\bar{y}_n, m_n)\}$ is A-bounded it follows from the Sobolev embedding theorem [1] that there exists a subsequence such that $\bar{y}_n \rightharpoonup \bar{y}$ in $W^{1,p}(\Omega; \mathbb{R}^3)$ for $p < 6$ and also in $C^{0,\alpha}(\overline{\Omega}; \mathbb{R}^3)$ for $0 < \alpha < 1 - \frac{2}{6} = \frac{1}{2}$. Thus, for another subsequence
\[
\nabla \bar{y}_n \rightharpoonup \nabla \bar{y} \quad \text{a. e.,}
\]
\[
det \nabla \bar{y}_n \rightharpoonup \det \nabla \bar{y} \quad \text{a. e.,}
\]
\[
det \nabla \bar{y}_n \rightharpoonup \det \nabla \bar{y} \quad \text{in } L^p(\Omega) \quad \text{for } p < 2.
\]
(3.6)

We now show that we can improve the convergence in (3.6). For that purpose, we are going to show that $\{(\det \nabla \bar{y}_n)^p\}$ is equi-integrable for any $p < q$, that is, for any given $\varepsilon > 0$ there is a $\delta > 0$ such that, if $V \subset \Omega$ satisfies $|V| < \delta$, then
\[
\int_V (\det \nabla \bar{y}_n)^p \, dx < \varepsilon.
\]
Indeed, for any $V \subset \Omega$ and $t > 1$ we have that
\[
\int_V (\det \nabla \bar{y}_n)^p \, dx = \left(\int_{V \setminus B^n_t} + \int_{V \cap B^n_t} \right) (\det \nabla \bar{y}_n)^p \, dx.
\]
(3.7)

Due to the definition of B^n_t, we can see that
\[
\int_V (\det \nabla \bar{y}_n)^p \, dx \leq t^p |V \setminus B^n_t| + \left(\int_{V \cap B^n_t} (\det \nabla \bar{y}_n)^q \, dx \right)^\frac{p}{q} |B^n_t|^{1 - \frac{p}{q}}
\]
\[
\leq t^p |V| + c_L^{-p/q} \left(\int_{B^n_t} \psi (\det \nabla \bar{y}_n) \, dx \right)^\frac{p}{q} \cdot (t^{-q} c_L^{-1} K)^{1 - \frac{q}{p}}
\]
\[
\leq t^p |V| + c_L^{-1} K t^{-q + p}.
\]
We can now take $t > 1$ so large that the second term is less than $\frac{\varepsilon}{2}$. Then we choose δ so small that $t^p \delta < \frac{\varepsilon}{2}$, and the claim follows since $|V| < \delta$.

Due to the convergence a.e. of another subsequence, we deduce by Vitali’s Theorem that
\[
(\det \nabla \bar{y}_n)^p \rightharpoonup (\det \nabla \bar{y})^p \quad \text{in } L^1(\Omega) \quad \text{for } p < q.
\]
Furthermore, we can infer that (see [3], Theorem 1)
\[
det \nabla \bar{y}_n \rightharpoonup \det \nabla \bar{y} \quad \text{in } L^p(\Omega) \quad \text{for } p < q.
\]
Thus, (3.2) follows.

In order to deduce (3.3), we notice that due to (2.7) the sequence $\det \nabla \bar{y}_n$ is bounded in $L^q(\Omega)$. Hence, it contains a subsequence converging weakly to g. By uniqueness of the limit it follows that $g = \det \nabla \bar{y}$.

We shall now show (3.4). To this end, we set $\psi_k(\xi) = \psi(\xi)$ if $\xi \in (0,k]$ and $\psi_k(\xi) = k$ otherwise. We can then conclude that
\[
\liminf_{n \to \infty} \int_{\Omega} \psi(\det \nabla \bar{y}_n) \, dx \geq \liminf_{n \to \infty} \int_{\Omega} \psi_k(\det \nabla \bar{y}_n) \, dx.
\]
Due to well-known results on the continuity of the Nemytskii operator (see [19]), we can deduce that
\[
\liminf_{n \to \infty} \int_{\Omega} \psi_k(\det \nabla \bar{y}_n) \, dx = \int_{\Omega} \psi_k(\det \nabla \bar{y}) \, dx.
\]
It is now easy to conclude that (3.4) holds.

Our next task is to show that (3.5) holds. For this purpose, we use again the technique of distribution functions. Let us define for \(t < 1 \) the set
\[
A_t = \{ x \in \Omega : \det \nabla \bar{y} < t \}.
\]
It is clear that (3.5) holds once we establish the estimate
\[
|A_t| \leq ct^q,
\]
where \(c \) is a positive constant. Since
\[
\det \nabla \bar{y} = \det \nabla \bar{y}_n + (\det \nabla \bar{y} - \det \nabla \bar{y}_n)
\]
and \(\det \nabla \bar{y}_n > 0 \text{ a.e.} \), we have for all \(n \in \mathbb{N} \) that
\[
A_t \subset A_n^2 \cup \{ x \in \Omega : |\det \nabla \bar{y}(x) - \det \nabla \bar{y}_n(x)| \geq t \} \equiv A_n^2 \cup E_n.
\]
By Egorov’s theorem, for any \(t \in (0, 1) \) there is a \(V \subset \Omega \) such that \(|V| < t^q \) and \(\det \nabla \bar{y}_n \) converges uniformly to \(\det \nabla \bar{y} \) on \(\Omega \setminus V \). Hence,
\[
|A_t| \leq |A_n^2| + |E_n \cap V| + |E_n \setminus V|
\]
\[
\leq c_L^{-1}K2^q t^q + t^q + |E_n \setminus V|.
\]
However, for fixed \(t \) and sufficiently large \(n \), the set \(E_n \setminus V \) is empty. Thus, (3.8) holds with \(c = 1 + c_L^{-1}K2^q \). Hence, (3.5) follows. \(\square \)

We remark that the methods we have presented and the assumptions on \(\psi \) allow us to prove similar convergence statements for \((\det \nabla \bar{y}_n)^{-1} \). Indeed, we have

Lemma 3.3. If \(1 \leq p < q \), then \((\det \nabla \bar{y}_n)^{-1} \) converges to \((\det \nabla \bar{y})^{-1} \) in \(L^p(\Omega) \).

Proof. By previous results, \(\det \nabla \bar{y}_n \) converges a.e., and the limit \(\det \nabla \bar{y} \) is positive a.e. Hence, \((\det \nabla \bar{y}_n)^{-1} \to (\det \nabla \bar{y})^{-1} \text{ a.e.} \). Due to Vitali’s convergence theorem, it is sufficient to check that the sequence \((\det \nabla \bar{y}_n)^{-p} \) is equi-integrable. To prove this, we suppose that \(\epsilon > 0 \) is given. Then for \(V \subset \Omega \) with \(|V| \leq \delta \), similar to argument following (3.7), we have that
\[
\int_V (\det \nabla \bar{y}_n)^{-p} \, dx = (\int_{V \setminus A_t^\epsilon} + \int_{V \cap A_t^\epsilon}) (\det \nabla \bar{y}_n)^{-p} \, dx
\]
\[
\leq t^{-p} |V| + \left(\int_{V \cap A_t^\epsilon} (\det \nabla \bar{y}_n)^{-q} \, dx \right)^{\frac{p}{q}} |A_t^\epsilon|^{1-\frac{p}{q}}
\]
\[
\leq t^{-p} |V| + c_L^{-1} K t^{-p} \leq \epsilon
\]
for a suitable choice of \(t \) and \(\delta \). \(\square \)

Finally, we want to make sure that the limit mapping \(\bar{y} \) is indeed one-to-one a.e.

Lemma 3.4. Let us suppose that \(\Omega \subset \mathbb{R}^3 \) is open, the deformations \(\bar{y}_n : \Omega \to \mathbb{R}^3 \) are one-to-one a.e., and \(\det \nabla \bar{y}_n > 0 \text{ a.e.} \) We also assume that the sequence \(\bar{y}_n \) converges weakly in \(W^{2,2}(\Omega) \) to \(\bar{y} \), \(\det \nabla \bar{y}_n \to \theta \text{ in } L^1(\Omega) \), and \(\theta > 0 \text{ a.e.} \). Then \(\bar{y} \) is one-to-one a.e. (and obviously \(\det \nabla \bar{y} = \theta \)).
Proof. We need a characterization of invertibility a.e. which is easy to apply to the limit \(\bar{y} \). Let us recall for that purpose the notion of Banach’s indicatrix

\[
N(\bar{y}, \Omega, z) = \#\{ x \in \Omega : \bar{y}(x) = z \},
\]

where we restrict our attention to the continuous representative of \(\bar{y} \). Of course, we have that

\(\bar{y}(\Omega) = \{ z \in \mathbb{R}^3 : N(\bar{y}, \Omega, z) \geq 1 \} \).

We claim that \(\bar{y} \) is one-to-one a.e. if and only if

\[
|\{ z \in \mathbb{R}^3 : N(\bar{y}, \Omega, z) \geq 2 \}| = 0.
\]

Indeed, let us suppose that \(\bar{y}|_E \) is one-to-one and \(E \) is of full measure. Since \(\bar{y} \) has the Lusin property (see [11], §5.2), we deduce that \(E = \bar{y}(\Omega \setminus G) \) has measure zero. Moreover, \(N(\bar{y}, \Omega, z) \geq 2 \) if and only if \(z \in E \).

On the other hand, let us suppose that \(E = \{ z \in \mathbb{R}^3 : N(\bar{y}, \Omega, z) \geq 2 \} \) has measure zero. We set \(G = \Omega \setminus \bar{y}^{-1}(E) \). We must show that \(|\bar{y}^{-1}(E)| = 0 \). By the area formula (see [11], Theorem 5.11), we can see that

\[
\int_{\bar{y}^{-1}(E)} \det \nabla \bar{y}(x) \, dx = \int_E N(\bar{y}, \Omega, z) \, dz = 0.
\]

Since \(\det \nabla \bar{y} > 0 \) a.e., we deduce that \(|\bar{y}^{-1}(E)| = 0 \).

We shall show that

\[
N(\bar{y}, \Omega, z) \leq 1 \quad \text{a.e.}
\]

Let us take \(\phi \in C_0(\mathbb{R}^3) \) such that \(\phi \geq 0 \). Obviously, we obtain since \(\bar{y}_n \) is one-to-one a.e. that

\[
\int_{\Omega} \phi(\bar{y}_n(x)) \det \nabla \bar{y}_n(x) \, dx = \int_{\bar{y}_n(\Omega)} \phi(z) \, dz \leq \int_{\mathbb{R}^3} \phi(z) \, dz.
\]

Hence,

\[
\int_{\Omega} \phi(\bar{y}(x)) \det \nabla \bar{y}(x) \, dx \leq \int_{\mathbb{R}^3} \phi(z) \, dz.
\]

Furthermore, this inequality implies that \(N(\bar{y}, \Omega, z) \leq 1 \) a.e. That is, \(\bar{y} \) is one-to-one a.e. as desired.

Our next task is to prove the convergence of the sequence of magnetization vectors \(\{m_n\} \).

Lemma 3.5. If \(\{\bar{y}_n, m_n\} \subset \mathcal{A} \) is a \(\mathcal{A} \)-bounded sequence, then there exists \(m \in W^{1,2}(O(\bar{y}); \mathbb{R}^3) \) such that a subsequence (not relabeled) converges weakly to \((\bar{y}, m) \).

Proof. We shall apply again the technique of distribution functions. We define the set

\[
D^n_t = \{ x \in \Omega : |\nabla z m_n \circ \bar{y}_n(x)| > t \}.
\]

We claim that

\[
|D^n_t| \leq K c_L^{-1} t^{-2} \bar{y}_n^{-2}. \tag{3.9}
\]

Indeed, by the Schwartz inequality

\[
|D^n_t| = \int_{D^n_t} 1 \, dx = \int_{D^n_t} \left(\left| \nabla m_n \det^{\frac{1}{2}} \nabla \bar{y}_n \right| \right) \, dx
\]

\[
\leq \left(\int_{D^n_t} |\nabla m_n|^2 \det \nabla \bar{y}_n \, dx \right)^{1/2} \left(\int_{D^n_t} |\nabla m_n|^{-2} (\det \nabla \bar{y}_n)^{-1} \, dx \right)^{1/2}
\]

\[
\leq \left(\int_{D^n_t} |\nabla m_n|^2 \det \nabla \bar{y}_n \, dx \right)^{1/2} \left(\int_{D^n_t} |\nabla m_n|^{-2} (\det \nabla \bar{y}_n)^{-1} \, dx \right)^{1/2}
\]

\[
\leq K c_L^{-1} t^{-2} \bar{y}_n^{-2}.
\]
Hence, (3.9) follows.

We note that

\[\{ y \in O : \text{dist}(z, \partial O) > \varepsilon \} \] and

\[\{ z \in \mathbb{R}^3 : \text{dist}(z, O) \leq \varepsilon \}. \]

We have for any \(\varepsilon > 0 \) that

\[\int_{O_{\varepsilon}(\bar{y})} |\nabla m_n(z)|^2 dz \leq \int_{O(\bar{y}_n)} |\nabla m_n(z)|^2 dz = \int_{\Omega} |\nabla m_n| \det \bar{y}_n dx \leq K. \]

Due to the constraint (2.2), we can see that

\[\int_{O_{\varepsilon}(\bar{y}_n)} |m_n(z)|^2 dz = \int_{\Omega} |m_n(\bar{y}_n(x))|^2 \det \bar{y}_n(x) dx \]

\[= \tau^2 \int_{\Omega} (\det \bar{y}_n(x))^{-1} dx \]

\[\leq \tau^2 \left(\int_{\Omega} (\det \bar{y}_n(x))^{-q} dx \right)^{\frac{1}{3}} |\Omega|^{1 - \frac{1}{3}} \]

\[\leq \tau^2 c_L^{-\frac{1}{3}} \left(\int_{\Omega} \psi(\det \bar{y}_n(x)) dx \right)^{\frac{1}{3}} |\Omega|^{1 - \frac{1}{3}} \leq K_1. \]

This immediately implies that there exists a subsequence (not relabeled) such that

\[m_n \rightharpoonup m \text{ in } W^{1,2}(O_{\varepsilon}(\bar{y}); \mathbb{R}^3). \]

It thus follows that there exists a further subsequence (not relabeled) such that

\[m_n \rightharpoonup m \text{ in } L^2(O_{\varepsilon}(\bar{y}); \mathbb{R}^3). \]

We shall now show that

\[\chi_{O_{\varepsilon}(\bar{y}_n)} m_n \rightharpoonup \chi_{O(\bar{y})} m \text{ in } L^2(\mathbb{R}^3, \mathbb{R}^3) \quad \text{and} \quad \chi_{O(\bar{y}_n)} \nabla z m_n \rightharpoonup \chi_{O(\bar{y})} \nabla z m \text{ in } L^2(\mathbb{R}^3, \mathbb{R}^{3 \times 3}). \]
We first estimate $\chi_{\Omega(\tilde{y}_n)} m_n - \chi_{\Omega(\tilde{y})} m$ in $L^2(\mathbb{R}^3; \mathbb{R}^3)$ by observing that

$$\chi_{\Omega(\tilde{y}_n)} m_n - \chi_{\Omega(\tilde{y})} m = (\chi_{\Omega(\tilde{y}_n)} - \chi_{\Omega(\tilde{y})}) m_n + \chi_{\Omega(\tilde{y})} (m_n - m) + (\chi_{\Omega(\tilde{y})} - \chi_{\Omega(\tilde{y})}) m.$$

Thus,

$$\left\| \chi_{\Omega(\tilde{y}_n)} m_n - \chi_{\Omega(\tilde{y})} m \right\|_{L^2(\mathbb{R}^3)} \leq \left\| m_n \right\|_{L^2(\Omega(\tilde{y}_n) \Delta \Omega(\tilde{y}))} + \left\| m_n - m \right\|_{L^2(\Omega)} + \left\| m \right\|_{L^2(\Omega(\tilde{y}) \setminus \Omega(\tilde{y}_n))} = I + II + III.$$

To estimate I, we set $\Omega^t := \tilde{y}_n^{-1}(\mathcal{O}_t(\tilde{y}))$. We can see using (2.2) and (2.7) that for $t < 1$

$$I^2 = \int_{\Omega} (1 - \chi_{\Omega^t})^2 |m_n|^2 \det \nabla \tilde{y}_n \, dx$$

$$= \left(\int_{\Omega^t} + \int_{\Omega \setminus \Omega^t} \right) \frac{(1 - \chi_{\Omega^t})^2 \tau^2}{\det \nabla \tilde{y}_n} \, dx$$

$$\leq \tau^2 \left(\int_{\Omega^t} \left(\frac{1}{\det \nabla \tilde{y}_n} \right)^q \, dx \right)^{\frac{1}{q}} |A_t^n|^{1 - \frac{1}{q}} + \frac{\tau^2}{t} |(\Omega^t \setminus \Omega^t_t)|$$

$$\leq ct^{q-1} + \frac{\tau^2}{t} |\Omega \setminus (\Omega^t \cup A_t^n)|.$$

We first choose $t < 1$ to make the first term small, that is, less than $\frac{1}{2}(\delta/3)^2$. We then show that we can select ϵ so that the second term is less than $\frac{1}{2}(\delta/3)^2$. This would imply that $I < \delta/3$, as desired. We can do so because

$$|\mathcal{O}^t(\tilde{y}) \setminus \mathcal{O}_t(\tilde{y})| \geq |\tilde{y}_n(\Omega \setminus \Omega^t)| \geq |\tilde{y}_n(\Omega \setminus (\Omega^t \cup A_t^n))|$$

$$= \int_{\Omega \setminus (\Omega^t \cup A_t^n)} \det \nabla \tilde{y}_n \geq t |\Omega \setminus (\Omega^t \cup A_t^n)|.$$

Our claim follows because $|\mathcal{O}^t(\tilde{y}) \setminus \mathcal{O}_t(\tilde{y})|$ can be made arbitrarily small, for fixed t.

For fixed $\epsilon > 0$ and for sufficiently large n, we have that $II < \delta/3$ because of (3.11). Finally, for given $\delta > 0$ one can find $\epsilon > 0$ for which $III < \delta/3$ because $|\mathcal{O}_t(\tilde{y}) \setminus \mathcal{O}_t(\tilde{y})|$ can be made arbitrarily small, and integration is absolutely continuous with respect to the set of integration.

The weak convergence is slightly easier. For $\varphi \in L^2(\mathbb{R}^3; \mathbb{R}^3)$, we consider

$$\int_{\mathbb{R}^3} (\chi_{\Omega(\tilde{y}_n)} \nabla z m_n - \chi_{\Omega(\tilde{y})} \nabla z m) \cdot \varphi \, dz$$

$$= \int_{\mathbb{R}^3} [(\chi_{\Omega(\tilde{y}_n)} - \chi_{\Omega(\tilde{y})}) \nabla z m_n \cdot \varphi + \chi_{\Omega(\tilde{y})} (\nabla z m_n - \nabla z m) \cdot \varphi + (\chi_{\Omega(\tilde{y})} - \chi_{\Omega(\tilde{y})}) \nabla z m \cdot \varphi] \, dz$$

$$= J + JJ + JJJ.$$

We can see that

$$|J| \leq \left\| \nabla z m_n \right\|_{L^2(\Omega(\tilde{y}_n))} \left\| \varphi \right\|_{L^2(\Omega(\tilde{y}_n) \setminus \Omega(\tilde{y}))}.$$

We can make $|J| < \delta/3$ by taking $\epsilon > 0$ small enough. The second term can be made small due to (3.10). Moreover, it is clear that $|JJJ| < \delta/3$ for sufficiently small $\epsilon > 0$. \hfill \Box

Finally, we shall demonstrate the lower semicontinuity of the mixed term $\int_{\Omega} |\nabla m_n|^2 \det \nabla \tilde{y}_n \, dx$.

Lemma 3.6. If $\{ (\tilde{y}_n, m_n) \} \subset A$ is an A-bounded sequence, then

$$\int_{\Omega} |\nabla z m|^2 \det \nabla \tilde{y} \, dx \leq \liminf_{n \to \infty} \int_{\Omega} |\nabla z m_n|^2 \det \nabla \tilde{y}_n \, dx.$$
Proof. If we take any \(\delta > 0 \), then there exists \(\varepsilon > 0 \) such that
\[
\int_{\Omega} |\nabla \mathbf{m}|^2 dz \geq \int_{\Omega} |\nabla \mathbf{m}|^2 dz - \delta.
\]
It then follows from (3.10) that
\[
\liminf_{n \to \infty} \int_{\Omega} |\nabla \mathbf{m}_n|^2 \det \nabla \mathbf{y}_n dx = \liminf_{n \to \infty} \int_{\Omega(n)} |\nabla \mathbf{m}_n|^2 dz \geq \liminf_{n \to \infty} \int_{\Omega(n)} |\nabla \mathbf{m}_n|^2 dz \\
\geq \int_{\Omega(n)} |\nabla \mathbf{m}|^2 dz \geq \int_{\Omega} |\nabla \mathbf{m}|^2 dz - \delta = \int_{\Omega} |\nabla \mathbf{m}|^2 \det \nabla \mathbf{y} dx - \delta.
\]
The proof follows since \(\delta \) was arbitrary. \(\square \)

We are now ready for the proof of Theorem 3.1. If \(\{(\mathbf{y}_n, \mathbf{m}_n)\} \subset \mathcal{A} \) is an \(\mathcal{A} \)-bounded sequence (3.1) with bound \(K \), then by Lemmas 3.1–3.6 its subsequence converges weakly to an element \((\mathbf{y}, \mathbf{m})\) in \(\mathcal{A} \) and
\[
\int_{\Omega} \{ |\Delta \mathbf{y}|^2 + \psi(\det \nabla \mathbf{y})\} \, dx + \int_{\Omega(n)} |\nabla \mathbf{m}|^2 dz < K.
\]

4. THE EXISTENCE OF AN ENERGY MINIMIZER

We are going to demonstrate a lower semicontinuity property for the energy \(\mathcal{E} \). We begin with a simple observation on minimizing sequences.

Lemma 4.1. If \(\{(\mathbf{y}_n, \mathbf{m}_n)\} \subset \mathcal{A} \) is a minimizing sequence, then it is \(\mathcal{A} \)-bounded.

Proof. We can estimate the magnetic interaction energy term, which is the only non-positive expression in \(\mathcal{E} \), by
\[
J_n = \left| \int_{\Omega(n)} h(z) \cdot \mathbf{m}_n(z) \, dz \right| = \left| \int_{\Omega} h(\mathbf{y}_n(x)) \cdot \mathbf{m}_n(\mathbf{y}_n(x)) \det \nabla \mathbf{y}_n(x) \, dx \right| \\
\leq C_\varepsilon \int_{\Omega(n)} h^2(z) \, dz + \varepsilon \int_{\Omega} |\mathbf{m}_n(\mathbf{y}_n(x))|^2 \det \nabla \mathbf{y}_n dx \\
\leq C_\varepsilon \| h \|^2_{L^2(\mathbb{R}^3)} + \varepsilon \int_{\Omega} (\det \nabla \mathbf{y}_n)^{-1} \, dx \\
\leq C_\varepsilon \| h \|^2_{L^2(\mathbb{R}^3)} + \varepsilon \tau^2 c_L^{-\frac{1}{q}} \left(\frac{1}{q} \int_{\Omega} \psi(\det \nabla \mathbf{y}_n) \, dx \right)^{\frac{q}{q-1}} \frac{1}{|\Omega|^{\frac{q}{q-1}}}.
\]
By Young’s inequality, we have that
\[
J_n \leq C_\varepsilon \| h \|^2_{L^2(\mathbb{R}^3)} + \varepsilon \tau^2 c_L^{-\frac{1}{q}} \left(\frac{1}{q} \int_{\Omega} \psi(\det \nabla \mathbf{y}_n) \, dx + \frac{q-1}{q} |\Omega| \right).
\]
Hence, we have that
\[
\int_{\Omega} \left[\kappa |\Delta \mathbf{y}_n|^2 + \psi(\det \nabla \mathbf{y}_n) + |\nabla \mathbf{m}_n \circ \mathbf{y}_n|^2 \det \nabla \mathbf{y}_n \right] \, dx \\
\leq \mathcal{E}(\mathbf{y}_n, \mathbf{m}_n) + J_n \\
\leq K + C_\varepsilon \| h \|^2_{L^2(\mathbb{R}^3)} + \varepsilon \tau^2 c_L^{-\frac{1}{q}} \left(\frac{1}{q} \int_{\Omega} \psi(\det \nabla \mathbf{y}_n) \, dx + \frac{q-1}{q} |\Omega| \right).
\]
Since \(\varepsilon \) can be made arbitrarily small and since we have assumed that \(h \in L^2(\mathbb{R}^3) \), our claim follows. \(\square \)
We recall that
\[\chi \]
Since
\[\chi \]
We now turn to the magnetic interaction energy and observe that
\[\text{continuity of the Nemytskii operator} \]
that we have proved that
\[r < m \]
Thus, by \([3, \text{Theorem 1}]\), we conclude that
\[\nabla \]
Indeed, we know that
\[(2.2) \]
constraint
growth assumptions
\[(2.7) \]
Theorem 4.1. Suppose that the magnetostrictive free energy \(E \) is given by \((2.3)\) and that the growth assumptions \((2.7)\) and \((2.8)\) hold. Then the minimum free energy satisfying the saturation constraint \((2.2)\) is attained.

Proof. We consider a minimizing sequence \(\{ (\bar{y}_n, m_n) \} \subset A \). By Lemma 4.1, \(\{ (\bar{y}_n, m_n) \} \) is an \(A \)-bounded sequence. Hence, by Theorem 3.1 there exists \((\bar{y}, m) \in A \) such that a subsequence \(\{ (\bar{y}_k, m_k) \} \) converges weakly to \((\bar{y}, m) \). It is sufficient for us to show that
\[E(\bar{y}, m) \leq \liminf_{n \to \infty} E(\bar{y}_m, m_n). \]
We shall treat each term in \(E \) separately, because after choosing a suitable subsequence we may replace \(\liminf \) with \(\lim \).

Due to the lower semicontinuity of the norm, we see for the elastic surface energy that
\[\kappa \int_{\Omega} |\Delta \bar{y}|^2 \, dx \leq \liminf_{n \to \infty} \kappa \int_{\Omega} |\Delta \bar{y}_n|^2 \, dx. \]
We recall from \((2.6)\) that the anisotropy energy density \(\Phi(\bar{y}, m) \) is the sum \(\Phi(\bar{y}, m) = W(\nabla \bar{y}, m) + \psi(\det \nabla \bar{y}) \). We first show that
\[\lim_{n \to \infty} \int_{\Omega} W(\nabla \bar{y}_n, m_n) \, dx = \int_{\Omega} W(\nabla \bar{y}, m) \, dx. \] (4.1)
Indeed, we know that \(\nabla \bar{y}_n \to \nabla \bar{y} \) in \(L^p(\Omega : \mathbb{R}^{3 \times 3}) \) for \(p < 6 \) and \(m_n \circ \bar{y}_n \to m \circ \bar{y} \) a.e. Moreover, due to Lemma 3.3 we have that
\[|m_n \circ \bar{y}_n| = \frac{\tau}{\det \nabla \bar{y}_n} \to \frac{\tau}{\det \nabla \bar{y}} = |m \circ \bar{y}| \quad \text{in} \ L^1(\Omega). \]
Thus, by \([3, \text{Theorem 1}]\), we conclude that \(m_n \circ \bar{y}_n \to m \circ \bar{y} \) in \(L^1(\Omega; \mathbb{R}^3) \). Thus, by the well-known continuity of the Nemytskii operator
\[L^r(\Omega) \times L^1(\Omega) \ni (\nabla \bar{y}, m) \to W(\nabla \bar{y}, m) \in L^1(\Omega), \]
where \(r < 6 \) is the growth factor for \(W(F, m) \) given by \((2.8)\), we deduce \((4.1)\). We finally recall that we have proved that
\[\int_{\Omega} \psi(\det \nabla \bar{y}) \, dx \leq \liminf_{n \to \infty} \int_{\Omega} \psi(\det \nabla \bar{y}_n) \, dx. \]
For the magnetic exchange energy, we have from Lemma 3.6 that
\[\alpha \int_{\Omega} |\nabla m|^2 \det \nabla \bar{y} \, dx \leq \liminf_{n \to \infty} \alpha \int_{\Omega} |\nabla m_n|^2 \det \nabla \bar{y}_n \, dx. \]
We now turn to the magnetic interaction energy and observe that
\[\lim_{n \to \infty} \int_{\Omega} (h \circ \bar{y}_n \cdot m_n \circ \bar{y}_n) \det \nabla \bar{y}_n \, dx = \int_{\Omega} (h \circ \bar{y} \cdot m \circ \bar{y}) \det \nabla \bar{y} \, dx. \]
We recall that
\[\int_{\Omega} (h \circ \bar{y}_n \cdot m_n \circ \bar{y}_n) \det \nabla \bar{y}_n \, dx = \int_{\partial (\bar{y}_n)} m_n(z) \cdot h(z) \, dz = \int_{\mathbb{R}^3} \chi_{\bar{y}_n(\Omega)} m_n(z) \cdot h(z) \, dz. \]
Since \(\chi_{\bar{y}_n(\Omega)} m_n \) converges to \(\chi_{\bar{y}(\Omega)} m \) in \(L^2(\mathbb{R}^3; \mathbb{R}^3) \), our claim follows.
We finally have to show the convergence of the magnetization energy $\epsilon_{\text{mag}}(\bar{y}, m)$ given by (2.4). We note that for given \bar{y} and m, the weak solution $\zeta \in H(\mathbb{R}^3)$ of the magnetostatic equation (2.5) satisfies
\begin{equation}
\int_{\mathbb{R}^3} (\nabla \zeta + \chi_{O(\bar{y})} m) \nabla z \eta \, dz = 0 \quad \text{for all } \eta \in H(\mathbb{R}^3) \tag{4.2}
\end{equation}
where
\[H(\mathbb{R}^3) = \left\{ \zeta \in D'(\mathbb{R}^3) : \nabla \zeta \in L^2, \int_{\mathbb{R}^3} \zeta(z) \, dz = 0 \right\}. \]
Since $\nabla z \zeta$ for $\zeta \in H(\mathbb{R}^3)$ is an $L^2(\mathbb{R}^3; \mathbb{R}^3)$ projection of $\chi_{O(\bar{y})} m(z)$, we have that
\[\| \nabla z \zeta \|_{L^2} \leq \| \chi_{O(\bar{y})} m \|_{L^2}; \]
and since $\chi_{O(\bar{y}_n)} m_n \to \chi_{O(\bar{y})} m$ in $L^2(\mathbb{R}^3; \mathbb{R}^3)$, we have
\[\lim_{n \to \infty} \frac{1}{2} \int_{\mathbb{R}^3} |\nabla z \zeta_n|^2 \, dz = \frac{1}{2} \int_{\mathbb{R}^3} |\nabla z \zeta|^2 \, dz. \]

We have to check that weak limits also satisfy the pointwise magnetic saturation constraint (2.2). If $(\bar{y}_n, m_n) \subset \mathcal{A}$ is a minimizing sequence, then the magnetic saturation constraint (2.2) follows since we showed L^2 convergence of $m_n \circ \bar{y}_n$ and $\det \nabla \bar{y}_n$. Namely, we have that
\[\int_{\Omega} \left| (m_n \circ \bar{y}_n) \det \nabla \bar{y}_n - (m \circ \bar{y}) \det \nabla \bar{y} \right| \, dx \]
\[\leq \| m_n - m \|_{L^2} \| \det \nabla \bar{y}_n \|_{L^2} + \| m \|_{L^2} \| \det \nabla \bar{y}_n - \det \nabla \bar{y} \|_{L^2}. \]

Finally, combining all of the above results we conclude that
\[\mathcal{E}(\bar{y}, m) \leq \lim_{n \to \infty} \mathcal{E}(\bar{y}_n, m_n), \]
that is, $(\bar{y}, m) \in \mathcal{A}$ is the desired minimum of \mathcal{E}. \hfill \square

References

Piotr Rybka, Institute of Applied Mathematics and Mechanics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland

E-mail address: rybka@mimuw.edu.pl

Mitchell Luskin, School of Mathematics, University of Minnesota, 206 Church Street SE, Minneapolis, MN 55455, U.S.A.

E-mail address: luskin@math.umn.edu