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Abstract

Pointwise gradient bounds via Riesz potentials, such as those available for the
linear Poisson equation, actually hold for general quasilinear degenerate equations
of p-Laplacean type. The regularity theory of such equations completely reduces
to that of the classical Poisson equation up to the C1-level.

1. Results

In this paper we prove the following:

Theorem 1.1. Let u ∈ C1(Ω) be a weak solution to the equation

− div (|Du|p−2 Du) = μ, (1.1)

where μ is a Borel measure with finite mass, p � 2, and Ω ⊂ R
n is an open set

with n � 2. Then there exists a constant c, depending only on n and p, such that
the pointwise Riesz potential estimate

|Du(x)|p−1 � cI|μ|
1 (x, R) + c

(
−
∫

B(x,R)

|Du| dy

)p−1

(1.2)

holds whenever B(x, R) ⊆ Ω is a ball centered at x and with radius R.

In (1.2), I1 denotes the classical, linear (truncated) Riesz potential of |μ|, which is
suited to problems defined in bounded domains, and which is defined by

I|μ|
1 (x, R) :=

∫ R

0

|μ|(B(x, �))

�n−1

d�

�
.

We refer the reader to Section 2 below for further notation. Theorem 1.1, proposed
above in the form of an a priori estimate valid for energy solutions, actually extends
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to the case in which u is, rather, a so-called very weak solution not necessarily
belonging to W 1,p(Ω). This type of low integrability is typical when dealing with
measure data problems [1,2,7,15,24]. The extension goes via a standard approxi-
mation argument briefly recalled in Section 5 below.

The surprising character of Theorem 1.1 lies mainly in the fact that, although
it is concerned with degenerate quasilinear equations, the gradient can be point-
wise estimated via Riesz potentials exactly as it would be for solutions to the
hyper-classical Poisson equation

− �u = μ, (1.3)

for which estimate (1.2) is an immediate consequence of the classical representation
formula via Green’s functions. Indeed, we have

Corollary 1.2. Let u ∈ W 1,p(Rn) be a local weak solution to the equation (1.1)
with p � 2 and μ being a Borel measure with locally finite mass. Then there exists
a constant c, depending only on n, p, such that the following estimate holds for
every Lebesgue point x ∈ R

n of Du:

|Du(x)|p−1 � c
∫

Rn

d|μ|(y)

|x − y|n−1 .

The other thing that makes Theorem 1.1 somehow unexpected is that, starting from
the seminal papers of Kilpeläinen and Malý [18,19], with different approaches
offered by Trudinger and Wang [38,39] (that also worked in the subelliptic set-
ting, starting from the ideas in [37,36]) and Korte and Kuusi [20] and Duzaar
and Mingione [9], it is a standard fact that solutions to non-homogeneous Lapla-
cean equations with measure data as (1.1) can be pointwise estimated in a natural
way by means of classical nonlinear Wolff potentials [14], that is,

Wμ
β,p(x, R) :=

∫ R

0

( |μ|(B(x, �))

�n−βp

)1/(p−1) d�

�
β ∈ (0, n/p].

In particular, the main result of [18,19] (see also [9,20,38] different approaches)
claims that the following pointwise estimate holds:

|u(x)|p−1 � c
[
Wμ

1,p(x, R)
]p−1 + c

(
−
∫

B(x,R)

|u| dy

)p−1

. (1.4)

The previous inequality is sharp, in the sense that Wμ
1,p cannot be replaced by any

other weaker potential. It plays a crucial role in the theory of quasilinear elliptic
equations, as shown, for instance, in the work of Phuc and Verbitsky [34,35]
and, more recently, in the one of Jaye and Verbitsky [17]. Estimate (1.4) was
eventually upgraded to the gradient level in [9,32], where a gradient estimate has
been provided, again using Wolff potentials:

|Du(x)|p−1 � c
[
Wμ

1/p,p(x, R)
]p−1 + c

(
−
∫

B(x,R)

|Du| dy

)p−1

. (1.5)
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Finally, a unifying approach allowing one to view both estimate (1.4) and estimate
(1.5) as particular cases of a general family of “universal potential estimates” was
finally given by the authors in [21]. Estimate (1.2) obviously improves the one in
(1.5) as, by using elementary manipulations together with the fact that p � 2, we
have

I|μ|
1 (x, R) =

∫ R

0

|μ|(B(x0, �))

�n−1

d�

�

�
∞∑

k=0

|μ|(B(x, R/2k))

(R/2k)n−1

�
[ ∞∑

k=0

( |μ|(B(x, R/2k))

(R/2k)n−1

)1/(p−1)
]p−1

�
[∫ 2R

0

( |μ|(B(x0, �))

�n−1

)1/(p−1) d�

�

]p−1

=
[
Wμ

1/p,p(x, 2R)
]p−1

. (1.6)

The main novelty of this paper is actually the fact that, when switching to the
gradient regularity theory, Wolff potentials are no longer necessary and the whole
theory “linearizes” as in the case of the standard Poisson equation −�u = μ.
As a matter of fact—taking into account Theorem 1.5 below—this paper shows
the surprising fact that, when considered up to the C1-level, there is no difference
between the regularity theory of general quasilinear degenerate equations and that
of the classical Poisson equation. We interpret this fact by observing that, while
an equation as (1.1) looks genuinely nonlinear in terms of the solution u, it looks
linear when considering the “stress tensor” |Du|p−2 Du; see Section 1.2 below
and, in particular, system (1.11).

We conjecture that estimate (1.2) is sharp in the sense that it cannot be improved
by using different types of nonlinear potentials. We also observe that the case p < 2
of estimate (1.2) has been proved in [10], but in this case it does not improve (1.5)
in that (1.6) is, in general, false for p < 2. The real problematic issue is in passing
from nonlinear potentials to linear ones when the latter provide better bounds and
Wolff potentials must be bypassed.

From the viewpoint of standard regularity theory, the ultimate effect of the
validity of estimate (1.2), as already mentioned above, is that the integrability the-
ory of solutions to p-Laplacean type equations is now completely reduced to the
linear case, that is, there is basically no difference between degenerate quasilinear
equations such as (1.1) and the classical, linear Poisson equation. As explained,
for instance, in [31] (where the case p = 2 is considered for general quasilinear
equations), estimate (1.9) allows one to recover, in a sharp way, all the gradient
integrability results available for Du obtainable in terms of the measure μ and
additional borderline cases. For instance, when the model equation (1.1) is consid-
ered, the results in [1,2,6,9,16,31] can then be recovered. For an overview of the
relevant Nonlinear Calderón–Zygmund theory we refer the reader to [33].
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We also note that a connection between Riesz potentials and the p-Laplacean
operator has been found by Lindqvist and Manfredi [26], where it is proved that
certain Riesz potentials are p-superharmonic functions.

Theorem 1.1 is a particular case of a result valid for more general equations,
and in turn opens the way to providing a new, sharp continuity criterium for the
gradient; see Theorems 1.3 and 1.5 below. We also observe that the results of this
paper provide an alternative viewpoint to those in [21].

1.1. General Elliptic Equations

We describe the general context to which our results apply. In the rest of the
paper, Ω denotes a bounded and open domain of R

n , with n � 2, while p � 2.
We shall consider general nonlinear, possibly degenerate elliptic equations with
p-growth of the type

− div a(Du) = μ in Ω, (1.7)

whenever μ is a Borel measure with finite mass. The vector field a : R
n → R

n

is assumed to be C1-regular and to satisfy the following growth and ellipticity
assumptions:

{
|a(z)| + |az(z)|(|z|2 + s2)1/2 � L(|z|2 + s2)(p−1)/2

ν(|z|2 + s2)(p−2)/2|ξ |2 � 〈az(z)ξ, ξ 〉 (1.8)

whenever z, ξ ∈ R
n , where 0 < ν � L and s � 0 are fixed parameters. A model

case for the previous situation is clearly given by considering the p-Laplacean
equation in (1.1) or its nondegenerate version (when s > 0)

−div [(|Du|2 + s2)(p−2)/2 Du] = μ.

The result is now

Theorem 1.3. Let u ∈ W 1,p(Ω) be a weak solution to the equation (1.7) under
the assumptions of (1.8) with p � 2, where μ is a Borel measure with finite total
mass defined on Ω . Then there exists a constant c, depending only on n, p, ν, L,
such that the pointwise estimate

|Du(x)|p−1 � cI|μ|
1 (x, R) + c

(
−
∫

B(x,R)

(|Du| + s) dy

)p−1

(1.9)

holds whenever B(x, R) ⊆ Ω and x ∈ Ω is a Lebesgue point of Du.

More general cases when u 
∈ W 1,p(Ω) also follow via approximation; see Sec-
tion 5 below. Theorem 1.3 yields, in turn, the following, immediate

Corollary 1.4. Let u ∈ W 1,p(Ω) be as in Theorem 1.3. Then

I|μ|
1 (·, R) ∈ L∞

loc(Ω) for some R > 0 �⇒ Du ∈ L∞
loc(Ω, R

n).
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In particular, there exists a constant c, depending only on n, p, ν, L, such that the
following estimate holds whenever BR ⊆ Ω:

‖Du‖L∞(BR/2) � c
∥∥∥I|μ|

1 (·, R)

∥∥∥1/(p−1)

L∞(BR)
+ c −

∫
BR

(|Du| + s) dy.

The above result is striking as it states that the classical, sharp Riesz potential crite-
rion implying the Lipschitz continuity of solutions to the Poisson equations remains
valid when considering the p-Laplacean operator. More analogies actually emerge.
Indeed, the techniques used for Theorem 1.1 also yield gradient continuity criteria
for solutions to nonlinear equations, and we have

Theorem 1.5. Let u ∈ W 1,p(Ω) be as in Theorem 1.3. If

lim
R→0

I|μ|
1 (x, R) = 0 locally uniformly in Ω w.r.t. x, (1.10)

then Du is continuous in Ω .

An intermediate VMO-regularity result for Du is also given in Theorem 4.3 below.
Theorem 1.5 admits the following relevant corollary, providing gradient continuity
when μ is a function belonging to a borderline Lorentz space:

Corollary 1.6. Let u ∈ W 1,p(Ω) be as in Theorem 1.3. If μ ∈ L(n, 1) locally
holds in Ω , that is, if∫ ∞

0
|{x ∈ Ω ′ : |μ(x)| > t}|1/n dt < ∞ for every open subset Ω ′ � Ω,

then Du is continuous in Ω .

We recall that Lorentz spaces interpolate Lebesgue spaces in the sense that Lγ ⊂
L(n, 1) ⊂ Ln holds for every γ > n, all the inclusions being strict. Corollary 1.6
strikingly extends the known results available in the literature where the condition
μ ∈ L(n, 1) is found to be a sufficient one for gradient boundedness of solutions
[4,12]. This condition is already sharp in the case of the Poisson equation [3] and we
remark that the the two-dimensional case n = 2 oddly remained an open problem
in [4,12], essentially for technical reasons; this gap is settled here. Moreover, in
these papers the gradient boundedness was proved, while here we prove the conti-
nuity. The results extend also to fully nonlinear elliptic equations as F(D2u) = 0,
as eventually shown in [8], and upgrade to the optimal level a previous continu-
ity criterion obtained in [11], claiming the continuity of the gradient in the case
μ ∈ L(n, 1/(p − 1)). Indeed, L(n, 1) ⊂ L(n, 1/(p − 1)), this inclusion being
strict for p > 2. For more on Lorentz spaces we refer the reader, for instance, to
[13].

Finally, another immediate corollary of Theorem 1.5 is concerned with those
measures satisfying special density properties.

Corollary 1.7. Let u ∈ W 1,p(Ω) be as in Theorem 1.3. Assume that the measure
μ satisfies the density condition

|μ|(BR) � cRn−1h(R) with
∫ R

0
h(�)

d�

�
< ∞

for every ball BR ⊂ R
n, where c � 0. Then Du is continuous in Ω .
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The previous results upgrade, in an optimal fashion and to the gradient level, anal-
ogous criteria for the continuity of u obtained by Lieberman [23].

1.2. Techniques

The techniques introduced in this paper depart considerably from those used in
the literature to obtain nonlinear potential estimates in that here, in order to obtain
linear type estimates for solutions to a non-linear equation, we introduce a local
linearization technique that incorporates, in a pointwise fashion and perhaps in a
way that may not be obvious, several ingredients from several different theories.
In particular, since estimate (1.2) provides integrability estimates for the gradient,
then exit time arguments of the type used in the classical linear Calderón–Zygmund
theory are used here. On the other hand, since in the best possible cases the argu-
ments provide C0,1 − C1-regularity results (as in Theorem 1.5), basic elements of
the classical De Giorgi-Nash-Moser theory must be used in the proof. Finally, since
the a priori estimates found cover the case when μ is assumed to be a Borel measure,
then the technology for measure data problems must be employed, as well [1,2,7].
Combining all these different ingredients in a single proof is very delicate, and the
final result is a proof that probably would be best approached via a preliminary
road-map.

Let us disclose the heuristic strategy for the model case (1.1). The idea is to
conceive equation (1.1) as a decoupled system

− div v = μ and v := |Du|p−2 Du, (1.11)

and therefore to proceed to a linear estimate for v via a Riesz potential. This brave
argument immediately finds an obstruction in the fact that the first equation in (1.11)
does not necessarily yield a solution of the type v := |Du|p−2 Du. To bypass it we
introduce a delicate linearization argument allowing, in a sense, to treat |Du|p−2

as a Muckenhoupt weight, thanks to the fact that, in a certain sense, we can reduce
to the case that u is “almost” a solution to the p-harmonic equation

div (|Du|p−2 Du) = 0. (1.12)

First of all, since the function ũ := εu solves

−div (|Dũ|p−2 Dũ) = ε p−1μ,

we can always assume that the total variation of μ is very small by taking ε small.
This is actually a version of the good-λ inequality principle, which allows us to
consider, via a delicate comparison argument, that u is almost a solution to (1.12)
(see Lemmas 2.4 and 3.1 below), in the sense that its distance to a real p-harmonic
function is quantitatively small. At this stage we make crucial use of the methods
and the regularity results from the theory of measure data equations [1,2], which
we have to exploit carefully here. Using this information we can then start the
linearization method via an exit time argument. More precisely, let us set

λp−1 ≈ I|μ|
1 (x, R) +

(
−
∫

B(x,R)

|Du| dy

)p−1

, (1.13)
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and let us consider a sequence of shrinking balls Bi (x) ≡ B(x, δi R), where δ ≡
δ(n, p) is a suitably small, yet universal, parameter. There are now two possibilities.
The first is when the gradient averages are dominated by λ, that is,

|(Du)Bi | � λ

happens for infinitely many indexes i , and, at this stage, (1.2) follows at any Le-
besgue point of the gradient. The other case, on which we obviously concentrate,
is that there exists an “exit time index” ie ∈ N such that

|(Du)Bi | > λ (1.14)

whenever i > ie. Now, since Du is almost harmonic in Bi , we can commute the
information in average in (1.14) in an everywhere information

|Du(x)| � λ/M (1.15)

for another universal, possibly large, constant M � 1. In other words, we see that
the equation becomes non-degenerate. We now look at the equation (1.1) and use
the information in (1.15) to get, formally

− �v = −λp−2�u “ � ” div (|Du|p−2 Du) = μ, (1.16)

where v := λp−2u, and therefore the standard linear Riesz representation formula
for solutions to the Poisson equation—this time applied to v—states that

λp−2|Du(x)| � I|μ|
1 (x, R) + λp−2 −

∫
B(x,R)

|Du| dy, (1.17)

from which estimate (1.2) follows by the definition of λ. Notice that, while the
scheme of our proof of Theorem 1.1 follows the heuristic outlined above until
(1.16), we cannot, of course, use the representation formula as in (1.17) since (1.16)
holds only formally. At this stage the final linear type representation formula will
be obtained in the course of the proof by a careful induction argument. Needless to
say, the whole heuristic argument outlined above must be made rigorous through
an extremely careful control of all the constants involved.

The proof of Theorem 1.5 relies, instead, on a more sophisticated argument, and
on the analysis of a potentially countable number of exit time moments. This marks
a considerable difference between the case of potential estimates for u and those
for Du. In fact, in the case of potential bounds for u, this can be obtained for lower
semicontinuous and positive solutions by using the Kilpeläinen and Malý [19]
Wolff potential bound (1.4), the fact that the equation is invariant under translation
(subtracting a constant from the solution still yields a solution) and the fact that
positive solutions satisfy the weak Harnack inequality. None of these ingredients
is available for Du, therefore a different path must be taken.

The results in this paper have been announced in the CRAS note [22].
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2. Preliminary Results and Notations

In the following we denote

B(x, R) := {y ∈ R
n : |x − y| < R}.

When the center is not relevant we shall simply denote BR ≡ B(x, R); moreover,
we shall also denote by σ B the ball, concentric to B, whose radius equals that of
B multiplied by σ > 0. A similar meaning is adopted when considering B/σ . We
shall denote by c, δ, ε, etc., general positive constants; relevant functional depen-
dence on the parameters will be emphasized by displaying them in parentheses. For
example, to indicate a dependence of c on the real parameters n, p, ν, L we shall
write c ≡ c(n, p, ν, L). Special constants will be denoted as c0, ch, etc. All such
constants, that is, those beginning with c, are assumed to be greater than or equal
to one.

In the following, given a set A ⊂ R
n with positive measure and a map g ∈

L1(A, R
n), we shall denote by

(g)A := −
∫

A
g(y) dy

its integral average over the set A. Finally, we recall that, under the assumptions of
Theorems 1.1–1.3, a weak solution u ∈ W 1,p(Ω) to (1.7) is a function such that∫

Ω

〈a(Du), Dϕ〉 dy =
∫

Ω

ϕ dμ

holds whenever ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

With s � 0 introduced in (1.8), we define

V (z) ≡ Vs(z) := (s2 + |z|2)(p−2)/4z , z ∈ R
n , (2.1)

which is easily seen to be a locally bi-Lipschitz bijection of R
n . A basic property of

the map V (·) is the following: For any z1, z2 ∈ R
n , and any s � 0, the inequalities

c−1
(

s2 + |z1|2 + |z2|2
)(p−2)/2

� |V (z2) − V (z1)|2
|z2 − z1|2

� c
(

s2 + |z1|2 + |z2|2
)(p−2)/2

(2.2)

hold for a constant c ≡ c(n, p). We refer the reader, for instance, to [30] for the last
inequality and more properties of the map V (·). The strict monotonicity properties
of the vector field a(·) implied by the left-hand side in (1.8)2 can be recast using
the map V . Indeed, there exist constants c, c̃ ≡ c, c̃(n, p, ν) � 1 such that the
following inequality holds whenever z1, z2 ∈ R

n :

c̃−1|z2 − z1|p � c−1|V (z2) − V (z1)|2 � 〈a(z2) − a(z1), z2 − z1〉 . (2.3)

Let us now consider a weak solution v ∈ W 1,p(A) to

div a(Dv) = 0 in A, (2.4)
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where A ⊆ Ω is an open subset of Ω . The next lemma encodes, in a suitable
integral way, the Hölder continuity properties of the Dv (see [9, Theorem 3.1] for
a proof).

Theorem 2.1. Let v ∈ W 1,p(A) be a weak solution to (2.4) under the assumptions
(1.8). Then there exist constants β ∈ (0, 1] and c0 � 1, both depending only on
n, p, ν, L, such that the estimate

−
∫

B�

|Dv − (Dv)B� | dy � c0

( �

R

)β −
∫

BR

|Dv − (Dv)BR | dy (2.5)

holds whenever B� ⊆ BR ⊆ A are concentric balls.

The following result, which can be also obtained from the previous one, is essen-
tially proved in [5,21,27,28]. See for instance [27, (2.4)–(2.5)]

Theorem 2.2. Let v ∈ W 1,p(A) be a weak solution to (2.4) under the assumptions
(1.8). Then there exist constants β ∈ (0, 1] and cl , ch � 1, all depending only on
n, p, ν, L, such that the estimates

‖Dv‖L∞(BR/2) � cl −
∫

BR

(|Dv| + s) dy (2.6)

and

|Dv(x1) − Dv(x2)| � ch

(
−
∫

BR

(|Dv| + s) dy

) ( �

R

)β

(2.7)

hold whenever BR ⊆ A is a ball and x1, x2 ∈ B� ⊂ BR/2.

Next, we present a “density improvement lemma” based on Theorem 2.2.

Lemma 2.3. Under the assumptions of Theorem 2.2, let B ⊂ A be a ball and

λ

Γ
� −

∫
σm B

(|Dv| + s) dy sup
B/2

(|Dv| + s) � Γ λ (2.8)

hold for some integer m � 1 and for numbers Γ � 1, λ � 0 and σ ∈ (0, 1/4),
such that

0 < σ �
(

1

8chΓ 2

)1/β

, (2.9)

where β and ch are the constants appearing in Theorem 2.2. Then

λ

4Γ
� |Dv| + s holds in σ B.

Proof. The first inequality in (2.8) implies that there exists a point x0 ∈ σm B such
that |Dv(x0)| + s > λ/(2Γ ). On the other hand, as (2.7) and the second inequality
in (2.8) give |Dv(x) − Dv(x0)| � chΓ λ(2σ)β whenever x ∈ σ B, the last two
inequalities and (2.9) then give

|Dv(x)| + s � |Dv(x0)| + s − |Dv(x) − Dv(x0)| � λ

2Γ
− λ

4Γ
= λ

4Γ
,

for all x ∈ σ B. ��
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In the rest of the section, the function u ∈ W 1,p(Ω) shall always be the one
considered in Theorem 1.3. Let us now consider a ball BR ⊂ Ω and define v ∈
u + W 1,p

0 (BR) as the unique solution to the following Dirichlet problem:

{
div a(Dv) = 0 in BR

v = u on ∂ BR .
(2.10)

Then, we give a comparison lemma.

Lemma 2.4. Under the assumptions of (1.8), let u ∈ W 1,p(Ω) be a solution to
(1.7), and v ∈ u + W 1,p

0 (BR) be as in (2.10). Then

∫
BR

|V (Du) − V (Dv)|2
(α + |u − v|)ξ dy � c

α1−ξ

ξ − 1
|μ|(BR) (2.11)

holds whenever α > 0 and ξ > 1, where c ≡ c(n, p, ν) � 1. Here, the function
V (·) has been defined in (2.1).

Proof. We begin with testing the weak formulation
∫

BR

〈a(Du) − a(Dv), Dϕ〉 dy =
∫

BR

ϕ dμ, (2.12)

valid whenever ϕ ∈ W 1,p
0 (B) ∩ L∞(B), by the functions

η1,ε := ± min{1, (u − v)±/ε},
where ε > 0, and

η2,ε := (α + (u − v)±)1−ξ η1,ε,

which both obviously belong to W 1,p
0 (B)∩ L∞(B). We recall the standard notation

(u − v)+ := max{u − v, 0} and (u − v)− := max{v − u, 0}.
Testing (2.12) by η1,ε, yields

0 �
∫

BR

〈
a(Du) − a(Dv), Dη1,ε

〉
dy =

∫
BR

η1,ε dμ � |μ|(BR). (2.13)

We then test (2.12) by η2,ε. As for the resulting term on the left-hand side we notice
∫

BR

〈
a(Du) − a(Dv), Dη2,ε

〉
dy

=
∫

BR

〈
a(Du) − a(Dv), Dη1,ε

〉 1

(α + (u − v)±)ξ−1 dy

+(1 − ξ)

∫
BR

〈a(Du) − a(Dv), D(u − v)±〉 η1,ε

(α + (u − v)±)ξ
dy.
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The first integral on the right can be majorized using (2.13) and the nonnegativity
of the first integrand in (2.13), as, whenever ε > 0, it holds

∫
BR

〈
a(Du) − a(Dv), Dη1,ε

〉 1

(α + (u − v)±)ξ−1 dy

� α1−ξ

∫
Ω

〈
a(Du) − a(Dv), Dη1,ε

〉
dy � α1−ξ |μ|(BR).

But since ∣∣∣∣
∫

BR

η2,ε dμ

∣∣∣∣ � α1−ξ |μ|(BR),

we obtain

(ξ − 1)

∫
Q

〈a(Du) − a(Dv), D(u − v)±〉
(α + (u − v)±)ξ

η1,ε dy � 2α1−ξ |μ|(BR)

and therefore, using (2.3) and the definition of η1,ε, we conclude with

∫
BR

|V (Du) − V (Dv)|2
(α + |u − v|)ξ min{1, |u − v|/ε} dy � cα1−ξ

ξ − 1
|μ|(BR).

Letting ε → 0 yields (2.11). ��
Another comparison result is

Lemma 2.5. Under the assumptions of (1.8), let u ∈ W 1,p(Ω) be a solution to
(1.7) as considered in Theorem 1.3, and v ∈ u + W 1,p

0 (BR) be as in (2.10). Then

−
∫

BR

|Du − Dv|q dy � c1

[ |μ|(BR)

Rn−1

]q/(p−1)

(2.14)

holds whenever

0 < q < min

{
p,

n(p − 1)

n − 1

}
=: pM , with c1 ≡ c1(n, p, ν, q). (2.15)

Proof. By approximation we can restrict our inquiry to the case μ ∈ L1. Indeed,
notice that with the assumption u ∈ W 1,p(Ω), it immediately follows that, as μ

belongs to the dual W −1,p′
(with dual norm depending on ‖u‖W 1,p(Ω)). This, in

turn, implies that if w ∈ W 1,p(BR) solves the Dirichlet problem
{

div a(Dw) = μ in BR

w = u on ∂ BR
,

then w = u (this is standard, just test by u − w as shown below). Therefore, by
approximation we can reduce to the case μ ∈ L1, as explained, for instance, in
[1,2]. In turn, this allows us to easily perform the scaling arguments used in [30,
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Lemma 4.1]. In turn, this allows us to reduce to the case BR ≡ B1 and |μ|(B1) � 1,
and to prove that

−
∫

B1

|Du − Dv|q dy � c(n, p, ν, q). (2.16)

Next, notice that pM � p if and only if p � n, and this case has been proved in
[30, Lemma 4.1]. The proof in the case p > n is actually simpler, as μ belong to
the dual W −1,p′

(with dual norm depending on |μ|(B1)), and we provide a sketch
here by actually showing that (2.16) holds for q = p. By testing (2.12) with u − v

(recall that p > n implies that u −w ∈ L∞) we easily get, via Morrey’s embedding
theorem and using |μ|(B1) � 1, that

‖Du − Dv‖p
L p � c‖u − v‖L∞|μ|(B1) � c‖Du − Dv‖L p ,

so that (2.16) with q = p follows via Young’s inequality. ��
Next, we collect a number of purely technical lemmas that will be useful later. From
now on, u and v denote the functions appearing in Lemmas 2.4–2.5.

Lemma 2.6. Assume that[ |μ|(BR)

Rn−1

]1/(p−1)

� λ and −
∫

BR

(|Du| + s) dy � λ

for some λ � 0. Then

sup
BR/2

|Dv| + s � c2λ holds with c2 ≡ c2(n, p, ν, L).

Proof. By using (2.6) and (2.14) we have

sup
BR/2

|Dv| + s � cl −
∫

BR

|Dv − Du| dy + cl −
∫

BR

(|Du| + s) dy � 2c1clλ.

��
Lemma 2.7. Let δ, θ ∈ (0, 1] and λ � 0. Suppose that[ |μ|(BR)

Rn−1

]1/(p−1)

� δn

c1
θλ and −

∫
BR

(|Du| + s) dy � λ,

where c1 ≡ c1(n, p, ν) is as in Lemma 2.5. Then the following lower bound holds:

−
∫

δBR

(|Du| + s) dy − θλ � −
∫

δBR

(|Dv| + s) dy. (2.17)

Proof. Use of (2.14) yields

−
∫

δBR

|Du| dy � −
∫

δBR

|Du − Dv| dy + −
∫

δBR

|Dv| dy

� δ−n −
∫

BR

|Du − Dv| dy + −
∫

δBR

|Dv| dy

� θλ + −
∫

δBR

|Dv| dy. (2.18)

��
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3. Proof of Theorem 1.3

In the following, given a ball B ⊂ Ω , we define the excess functional

E(Du, B) := −
∫

B
|Du − (Du)B | dy.

An elementary property of this functional is given by the following:

−
∫

B
|Du − (Du)B | dy � 2 −

∫
B

|Du − γ | dy for every γ ∈ R
n . (3.1)

Finally, given a map g : A → R
n , we define its oscillation on A as

oscA g := sup
x,y∈A

|g(x) − g(y)|.

The proof of Theorem 1.3 begins with a preliminary lemma which will also
play an important role in the proof of Theorem 1.5 in the next section. Given
δ1 ∈ (0, 1/2), we consider a ball B(x, 2r) ⊂ Ω and the shrinking balls

Bi := B(x, ri ), ri = δi
1r, (3.2)

whenever i � 0 is an integer. The related comparison solutions vi ∈ u + W 1,p
0 (Bi )

are as in (2.10), that is,
{

div a(Dvi ) = 0 in Bi

vi = u on ∂ Bi .
(3.3)

Then we have

Lemma 3.1. Assume that, for i � 1,

−
∫

Bi−1

(|Du| + s) dy � λ and −
∫

Bi

(|Du| + s) dy � λ (3.4)

hold for a number λ > 0 satisfying

[
|μ|(Bi )

rn−1
i

]1/(p−1)

+
[

|μ|(Bi−1)

rn−1
i−1

]1/(p−1)

� λ, (3.5)

together with

λ

H
� |Dvi−1| � Hλ in Bi and

λ

H
� |Dvi | � Hλ in Bi+1 (3.6)

for some constant H � 1. Then there exists a constant cH ≡ cH (n, p, ν, L , δ1, H)

such that the following inequality holds:

−
∫

Bi+1

|Du − Dvi | dy � cH λ2−p

[
|μ|(Bi−1)

rn−1
i−1

]
. (3.7)
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Proof. We fix parameters γ and ξ as

γ := 1

4(n + 1)(p + 2)
, ξ = 1 + 2γ, (3.8)

and introduce v̄i = vi/λ and v̄i−1 = vi−1/λ. In the case in which (3.7) does not
trivialize (that is the left-hand side is not zero) by (3.6) it will be sufficient to prove
that

−
∫

Bi

|Dv̄i |(p−2)(1+γ )|Du − Dvi | dy � cλ2−p

[
|μ|(Bi−1)

rn−1
i−1

]
(3.9)

holds for a constant c ≡ c(n, p, ν, L , δ1, H). To this aim, applying Hölder’s
inequality and keeping (2.2) in mind, yields, for any α > 0,

−
∫

Bi

|Dv̄i |(p−2)(1+γ )|Du − Dvi | dy

� c −
∫

Bi

[
λ2−p |V (Du) − V (Dvi )|2

(α + |u − vi |)ξ
]1/2

×
[
|Dv̄i |(p−2)(1+2γ )(α + |u − vi |)ξ

]1/2
dy

� c

(
λ2−p −

∫
Bi

|V (Du) − V (Dvi )|2
(α + |u − vi |)ξ dy

)1/2

×
(

−
∫

Bi

|Dv̄i |(p−2)(1+2γ )(α + |u − vi |)ξ dy

)1/2

� c

(
λ2−p |μ|(Bi )

rn
i

α1−ξ

)1/2 (
−
∫

Bi

|Dv̄i |(p−2)(1+2γ )(α + |u − vi |)ξ dy

)1/2

.

(3.10)

Above, c depends only on n, p, ν, because we have applied (2.11). As we are still
free to choose α, we fix it as

α :=
[(

−
∫

Bi

|Dv̄i |(p−2)(1+2γ ) dy

)−1

−
∫

Bi

|Dv̄i |(p−2)(1+2γ )|u − vi |ξ dy

]1/ξ

.

We may assume α > 0, since (3.6) would imply that (3.7) is trivial. Moreover, α is
finite, since in its definition the first integral is positive by (3.6), and, by (3.8), the
second one is easily seen to be finite by Hölder’s inequality and Sobolev embedding,
as both u and vi belong to W 1,p(Bi ). Now, (3.10) gives

−
∫

Bi

|Dv̄i |(p−2)(1+γ )|Du − Dvi | dy

� c

(
λ2−p |μ|(Bi )

rn
i

α1−ξ

)1/2

αξ/2
(

−
∫

Bi

|Dv̄i |(p−2)(1+2γ ) dy

)1/2

. (3.11)
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To estimate the last integral, note that

−
∫

Bi

|Dvi − Dvi−1|q dy � c −
∫

Bi

|Du − Dvi |q dy + c −
∫

Bi

|Du − Dvi−1|q dy

� c

[
|μ|(Bi )

rn−1
i

]q/(p−1)

+ cδ−n
1 −

∫
Bi−1

|Du − Dvi−1|q dy

� c

[
|μ|(Bi−1)

rn−1
i−1

]q/(p−1)

(3.12)

holds for all 1 � q � (p − 1)(1 + 2γ ) < pM , where c ≡ c(n, p, ν, δ1); here we
have used (2.14) and kept (3.8) in mind. It then follows, by using (3.5) in (3.12),
together with (3.6), that

−
∫

Bi

|Dv̄i |(p−2)(1+2γ ) dy � c −
∫

Bi

|Dv̄i − Dv̄i−1|(p−2)(1+2γ ) dy

+c −
∫

Bi

|Dv̄i−1|(p−2)(1+2γ ) dy � c(n, p, ν, L , H).

Using the last inequality in (3.11) then gives

−
∫

Bi

|Dv̄i |(p−2)(1+γ )|Du − Dvi | dy � c

(
λ2−p |μ|(Bi )

rn
i

α

)1/2

� ε
α

ri
+ c̃(ε)λ2−p

[
|μ|(Bi )

rn−1
i

]
. (3.13)

Notice that we have applied Young’s inequality in the last estimate and, with ε ∈
(0, 1), the constant is c̃(ε) ≡ c̃(n, p, ν, L , δ1, H, ε).

We start the estimation of α. We first apply (3.6) to estimate

−
∫

Bi

|Dv̄i |(p−2)(1+2γ ) dy � δn
1 −

∫
Bi+1

|Dv̄i |(p−2)(1+2γ ) dy � 1

c
, (3.14)

with c ≡ c(n, p, ν, L , δ1, H) > 1. Therefore we obtain

αξ � c −
∫

Bi

|Dv̄i |(p−2)(1+2γ )|u − vi |ξ dy, (3.15)

again for a constant c ≡ c(n, p, ν, L , δ1, H). In turn,

−
∫

Bi

|Dv̄i |(p−2)(1+2γ )|u − vi |ξ dy

� c −
∫

Bi

|Dv̄i−1|(p−2)(1+2γ )|u − vi |ξ dy

+c −
∫

Bi

|Dv̄i−1 − Dv̄i |(p−2)(1+2γ )|u − vi |ξ dy

=: I1 + I2. (3.16)
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To estimate I2, we use (3.12) and hence deduce by Hölder’s inequality, Sobolev
embedding and (2.14) that

I2 � cλ(2−p)(1+2γ )

[
−
∫

Bi

|Dvi−1 − Dvi |(p−1)(1+2γ ) dy

](p−2)/(p−1)

×
[
−
∫

Bi

|u − vi |ξ(p−1) dy

]1/(p−1)

� cλ(2−p)(1+2γ )

[
|μ|(Bi−1)

rn−1
i−1

](1+2γ )(p−2)/(p−1)

×r ξ
i

[
−
∫

Bi

|Du − Dvi |p−1 dy

]ξ/(p−1)

� cr ξ
i λ(2−p)(1+2γ )

[
|μ|(Bi−1)

rn−1
i−1

][ξ+(1+2γ )(p−2)]/(p−1)

.

The constant c depends on n, p, ν and δ1; here we have again used (3.8), which
ensures that (p − 1)(1 + 2γ ) < pM and that ξ � n/(n − 1). By definitions of γ

and ξ in (3.8) it readily follows that

I 1/ξ
2 � criλ

2−p

[
|μ|(Bi−1)

rn−1
i−1

]
, (3.17)

with c ≡ c(n, p, ν, δ1). Furthermore, appealing to (3.6) repeatedly, the term I1 is
first estimated by Sobolev embedding as

I1 � cr ξ
i

[
−
∫

Bi

|Du − Dvi | dy

]ξ

� cr ξ
i

[
−
∫

Bi

|Dv̄i−1|(p−2)(1+γ )|Du − Dvi | dy

]ξ

,

and therefore, with c ≡ c(n, p, H), we have

I 1/ξ
1 � cri −

∫
Bi

|Dv̄i−1|(p−2)(1+γ )|Du − Dvi | dy. (3.18)

By using the triangle inequality we further deduce

−
∫

Bi

|Dv̄i−1|(p−2)(1+γ )|Du − Dvi | dy � c −
∫

Bi

|Dv̄i |(p−2)(1+γ )|Du − Dvi | dy

+cλ−(p−2)(1+γ ) −
∫

Bi

|Dvi − Dvi−1|(p−2)(1+γ )|Du − Dvi | dy.
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The last integral can be estimated similarly to the case of I2, that is, by making use
of (2.14) and (3.12); indeed

−
∫

Bi

|Dvi − Dvi−1|(p−2)(1+γ )|Du − Dvi | dy

�
(

−
∫

Bi

|Dvi − Dvi−1|(p−1)(1+γ ) dy

)(p−2)/(p−1)

×
(

−
∫

Bi

|Du − Dvi |p−1 dy

)1/(p−1)

� c

[
|μ|(Bi−1)

rn−1
i−1

]1+γ (p−2)/(p−1)

.

Combining the last two inequalities and using (3.5) to estimate

λ−(p−2)(1+γ )

[
|μ|(Bi−1)

rn−1
i−1

]1+γ (p−2)/(p−1)

� λ2−p

[
|μ|(Bi−1)

rn−1
i−1

]
,

we obtain

−
∫

Bi

|Dv̄i−1|(p−2)(1+γ )|Du − Dvi | dy

� c −
∫

Bi

|Dv̄i |(p−2)(1+γ )|Du − Dvi | dy + cλ2−p

[
|μ|(Bi−1)

rn−1
i−1

]
.

Recalling (3.18) we thus end up with

I 1/ξ
1 � cri −

∫
Bi

|Dv̄i |(p−2)(1+γ )|Du − Dvi | dy + criλ
2−p

[
|μ|(Bi−1)

rn−1
i−1

]
.

The last estimate with (3.17), and eventually with (3.15)–(3.16), gives

α � c
(

I 1/ξ
1 + I 1/ξ

2

)

� cri −
∫

Bi

|Dv̄i |(p−2)(1+γ )|Du − Dvi | dy + criλ
2−p

[
|μ|(Bi−1)

rn−1
i−1

]
,

for c ≡ c(n, p, ν, L , δ1, H). Inserting the last inequality into (3.13) and choosing
ε ≡ ε(n, p, ν, L , δ1, H) = 1/(2c), we obtain

−
∫

Bi

|Dv̄i |(p−2)(1+γ )|Du − Dvi | dy

� 1

2
−
∫

Bi

|Dv̄i |(p−2)(1+γ )|Du − Dvi | dy + cλ2−p

[
|μ|(Bi−1)

rn−1
i−1

]
,

again with c ≡ c(n, p, ν, L , δ1, H), from which (3.9), and therefore (3.7), follows.
Notice that by (3.8) the quantity we are reabsorbing here is finite. ��
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The rest of the proof of Theorem 1.3 proceeds in four steps.
Step 1: Main characters in the proof. Let x ∈ Ω be a Lebesgue point of Du and let
B(x, 2r) ⊂ Ω be a ball; in the following all the balls considered will be centered
at x . We start by taking a positive number λ such that

λ := H1 −
∫

Br

(|Du| + s) dy + H2

(∫ 2r

0

|μ|(B�)

�n−1

d�

�

)1/(p−1)

, (3.19)

and fix the constants H1, H2 � 1 in a few lines (see (3.26) below), in a way that
makes them dependent only on n, p, ν, L; clearly, we may assume without loss of
generality that λ > 0. In the end we shall simply prove that

|Du(x)| � λ (3.20)

and, due to the fact that the ball B(x, 2r) ⊂ Ω is arbitrary, we shall conclude
with (1.2) by taking c := 2p−2 max{H1, H2}p−1 (and changing the radius r a bit).

We begin by defining the number

δ1 :=
(

1

108c0

)1/β
(

1

108chc2
2

)1/β

, (3.21)

where constants c0, β, ch and c2 appear in Theorems 2.1–2.2 and in Lemma 2.6. It
follows that δ1 depends only on n, p, ν, L . With such a choice of δ1 we consider
the balls in (3.2) and the related comparison solutions in (3.3). Moreover, with δ1
given in (3.21), we determine the new constant

c3 := cH (n, p, ν, L , δ1, H) with H := 104c2 (3.22)

according to Lemma 3.1. In this way we ultimately have that c3 depends only on
n, p, ν, L . We also define the composite quantity

Ci :=
i∑

j=i−2

−
∫

B j

(|Du| + s) dy + δ−n
1 E(Du, Bi ) (3.23)

for every integer i � 2. We meanwhile record the following inclusions, which hold
for every i � 0:

δ1 Bi = Bi+1 ⊂
(

1

108chc2
2

)1/β

Bi ⊂ (1/4)Bi ⊂ Bi . (3.24)

Next, we take k as the smallest integer satisfying

8ch(2δ1)
kβ � δn

1

108c2
2

and k � 3. (3.25)

In this way k depends only upon n, p, ν, L . We finally set

H1 := 108c2δ
−3n
1 and H2 := 108c1c2c3δ

−(k+3)n
1 , (3.26)
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where c1 ≡ c1(n, p, ν) has been fixed in Lemma 2.5. Notice that the choice of H1
also implies

Ci � 5δ−3n
1 −

∫
B0

(|Du| + s) dy � λ

107c2
(3.27)

for i = 2, 3, together with

s � λ

107c2
. (3.28)

Now, observe that
∫ 2r

0

|μ|(B�)

�n−1

d�

�
=

∞∑
i=0

∫ ri

ri+1

|μ|(B�)

�n−1

d�

�
+

∫ 2r

r

|μ|(B�)

�n−1

d�

�

�
∞∑

i=0

|μ|(Bi+1)

rn−1
i

∫ ri

ri+1

d�

�
+ |μ|(B0)

(2r)n−1

∫ 2r

r

d�

�

= δn−1
1 log

(
1

δ1

) ∞∑
i=0

|μ|(Bi+1)

rn−1
i+1

+ log 2

2n−1

[
|μ|(B0)

rn−1
0

]

� δn
1

∞∑
i=0

|μ|(Bi )

rn−1
i

. (3.29)

Therefore, by (3.19) and the choice in (3.26) it follows that

108c1c2c3δ
−4n
1

[ ∞∑
i=0

|μ|(Bi )

rn−1
i

]1/(p−1)

� λ (3.30)

and [
|μ|(Bi )

rn−1
i

]1/(p−1)

� δ
(k+2)n
1

108c1c2
λ � λ for every i � 0. (3.31)

Of course we are using constants like 108 to emphasize the fact that in certain places
in the proof, what it matters is to take very large or very small quantities.
Step 2: The exit time index. Starting from (3.27), let us show that without loss of
generality we may assume there exists an “exit time” index ie � 3, such that

Cie � λ

100
, C j >

λ

100
for every j > ie. (3.32)

Indeed, on the contrary, we would have C ji � λ/100, for every i ∈ N, for an
increasing subsequence { ji }, and then, as x is a Lebesgue point of Du, obviously

|Du(x)| � lim
i→∞ −

∫
B ji

(|Du| + s) dy � λ

100
,

and the proof would be finished.
Step 3: Basic properties of the comparison functions. Here, we record a few basic
properties of the functions {vi }.
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Lemma 3.2. Assume that for a certain index i � 0 the following inequality holds:

−
∫

Bi

(|Du| + s) dy � λ, (3.33)

where λ > 0 is defined in (3.19). Then

|Dvi | + s � c2λ in Bi/2 (3.34)

is satisfied with c2 ≡ c2(n, p, ν, L) appearing in Lemma 2.6. Moreover, if in addi-
tion it holds that i � ie − 2, then we also have

λ

104c2
� |Dvi | in Bi+1. (3.35)

Proof. The estimate (3.34) is a consequence of Lemma 2.6 applied with BR ≡ Bi ,
thanks to (3.33) and (3.31). It remains to prove (3.35), and for this we want to apply
Lemma 2.3. We start with

λ

200
�

i+k∑
j=i−2+k

−
∫

B j

(|Dvi | + s) dy, (3.36)

where k ≡ k(n, p, ν, L) has been defined in (3.25). By (3.31) we apply Lemma 2.7
three times, with the choice BR ≡ Bi , δ ∈ {δk

1, δk−1
1 , δk−2

1 } and θ = δ1/(108c2).
Summing up the inequalities resulting from the application of (2.17) yields

i+k∑
j=i−2+k

−
∫

B j

(|Du| + s) dy − λ

107c2
�

i+k∑
j=i−2+k

−
∫

B j

(|Dvi | + s) dy.

The definition of Ci in (3.23), in turn, gives

Ci+k − δ−n
1 E(Du, Bi+k) − λ

107c2
�

i+k∑
j=i−2+k

−
∫

B j

(|Dvi | + s) dy.

As i � ie − 2 and k � 3, we have Ci+k � λ/100 by (3.32); using this fact in the
inequality appearing in the latest display leads to

λ

100
− δ−n

1 E(Du, Bi+k) − λ

107c2
�

i+k∑
j=i−2+k

−
∫

B j

(|Dvi | + s) dy. (3.37)

To proceed in the estimation of the excess term we note that

−
∫

Bi+k

|Du − Dvi | dy � |Bi |
|Bi+k | −

∫
Bi

|Du − Dvi | dy � c1δ
−kn
1

[
|μ|(Bi )

rn−1
i

]1/(p−1)

,

where we have used (2.14) with q = 1. Using (3.32) again provides us

−
∫

Bi+k

|Du − Dvi | dy � δn
1

108c2
λ. (3.38)
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On the other hand, Theorem 2.2 (applied to vi on Bi , choosing BR ≡ Bi/2 in (2.7)),
estimate (3.34), and finally (3.25), give

2oscBi+k Dvi � 2chc2(2δ1)
kβλ � δn

1

108c2
λ,

so that, thanks to (3.1) and (3.38), we can estimate

E(Du, Bi+k) � 2 −
∫

Bi+k

|Du − (Dvi )Bi+k | dy

� 2E(Dvi , Bi+k) + 2 −
∫

Bi+k

|Du − Dvi | dy

� 2oscBi+k Dvi + δn
1λ

108c2

� δn
1λ

107c2
.

Inserting the last estimate into (3.37) yields (3.36). In turn, (3.36) implies that there
exists an index j ∈ {i − 2 + k, i − 1 + k, i + k} such that

λ

200
� 3 −

∫
B j

(|Dvi | + s) dy = 3 −
∫

δ
j−i
1 Bi

(|Dvi | + s) dy.

This inequality allows us to apply Lemma 2.3 with parameters B ≡ Bi , σ = δ1,
m = j −i � 1 (recall that k � 3 and observe that (3.34) is in force) and Γ = 600c2
(keep (3.21) in mind to check (2.9)), and therefore we conclude with

λ

2400c2
� |Dvi | + s in Bi+1 = δ1 Bi ,

which, together with (3.28), implies (3.35). ��
Step 4: Final iteration and conclusion. First, a lemma.

Lemma 3.3. Let (3.4) hold for a certain number i � ie − 1. Then

E(Du, Bi+2) � 1

4
E(Du, Bi+1) + c4λ

2−p

[
|μ|(Bi−1)

rn−1
i−1

]

holds for a constant c4 depending only on n, p, ν, L, which is given by c4 = 4δ−n
1 c3,

and, in turn, c3 ≡ c3(n, p, ν, L) is the constant appearing in (3.22).

Proof. Let us first prove that

−
∫

Bi+1

|Du − Dvi | dy � c3λ
2−p

[
|μ|(Bi−1)

rn−1
i−1

]
(3.39)
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holds, and for this we want to apply Lemma 3.1. To this aim, we repeatedly apply
Lemma 3.2 to both vi and vi−1; notice that, since we are assuming i � ie − 1, we
obviously have i − 1 � ie − 2. In conclusion, Lemma 3.2 gives

λ

104c2
� |Dvi−1| � c2λ in Bi and

λ

104c2
� |Dvi | � c2λ in Bi+1.

Therefore assumptions (3.6) are satisfied with H ≡ 104c2, while (3.5) holds by
(3.32), and hence (3.39) follows by Lemma 3.1.

Next, by using estimate (2.5) applied on vi and recalling the choice of δ1
in (3.21), we obtain

E(Dvi , Bi+2) � E(Dvi , Bi+1)

26 .

This last inequality, (3.39) and (3.1) give

E(Du, Bi+2) � 2 −
∫

Bi+2

|Du − (Dvi )Bi+2 | dy

� 2E(Dvi , Bi+2) + 2 −
∫

Bi+2

|Du − Dvi | dy

� E(Dvi , Bi+1)

25
+ 2δ−n

1 −
∫

Bi+1

|Du − Dvi | dy

� E(Du, Bi+1)

24 + 4δ−n
1 −

∫
Bi+1

|Du − Dvi | dy

� E(Du, Bi+1)

24 + c4λ
2−p

[
|μ|(Bi−1)

rn−1
i−1

]
.

��
To proceed with the proof of Theorem 1.3, denote in short

Ai := E(Du, Bi ) and ai = |(Du)Bi |.
By the definition in (3.23) and (3.32) we have

s +
ie∑

j=ie−2

a j + δ−n
1 Aie � Cie � λ

100
. (3.40)

We now prove, by induction, that

s + a j + A j � λ (3.41)

holds whenever j � ie. Indeed, by (3.40), the case j = ie of the previous inequality
holds. Then, assume by induction that (3.41) holds whenever j ∈ {ie, . . . , i}. This,
also taking (3.40) into account and recalling that the definition in (3.23) allows us
to control the averages of |Du| on the three balls Bie−2,Bie−1 and Bie , implies that

−
∫

B j

(|Du| + s) dy � λ for j ∈ {ie − 2, . . . , i}.
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We can thus apply Lemma 3.3, thereby getting

A j+2 � 1

4
A j+1 + c4λ

2−p

[
|μ|(B j−1)

rn−1
j−1

]
(3.42)

for all j ∈ {ie−1, . . . , i −1}. It immediately follows, by (3.41) inductively assumed
for ie � j � i and (3.30), that

Ai+1 � λ

4
+ c4λ

2−p

[
|μ|(Bi−1)

rn−1
i−1

]
� λ

4
+ λ

103 � λ

3
. (3.43)

Furthermore, summing up (3.42) for j ∈ {ie − 1, ie, . . . , i − 1} leads to

i+1∑
j=ie

A j � Aie + 1

4

i∑
j=ie

A j + c4λ
2−p

∞∑
j=0

[
|μ|(B j )

rn−1
j

]
, (3.44)

in turn yielding

i+1∑
j=ie

A j � 2Aie + 2c4λ
2−p

∞∑
j=0

[
|μ|(B j )

rn−1
j

]
. (3.45)

On the other hand, notice that

ai+1 − aie =
i∑

j=ie

(a j+1 − a j )

�
i∑

j=ie

−
∫

B j+1

|Du − (Du)B j | dy

=
i∑

j=ie

|B j |
|B j+1| E(Du, B j ),

and therefore (3.45) and eventually (3.30) give

ai+1 � aie + 2δ−n
1 Aie + 2δ−n

1 c4λ
2−p

∞∑
j=0

[
|μ|(B j )

rn−1
j

]
� 2Cie + λ

103 .

By (3.40) the previous estimate yields ai+1 � λ/3. This inequality together
with (3.28) and (3.43) allows us to finally verify the induction step, that is
s + ai+1 + Ai+1 � λ. Therefore (3.41) holds for every i � ie. Estimate (3.20)
finally follows since x is Lebesgue point of Du and therefore

|Du(x)| = lim
i→∞ ai � λ.
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4. Proof of Theorem 1.5

By (1.10) and Corollary 1.4 we may assume that Du ∈ L∞
loc(Ω, R

n).
In the rest of the Section we select open subsets Ω ′ � Ω ′′ � Ω , and prove that

Du is continuous in Ω ′. Due to arbitrariness of the choice of the open subsets this
is sufficient to prove Theorem 1.5. From now on, we denote

λ := ‖Du‖L∞(Ω ′′) + s. (4.1)

We recall that we may assume that μ(·) is defined on the whole of R
n by even-

tually setting μ to be zero outside of Ω . In the following we shall also set d :=
dist(Ω ′, ∂Ω ′′) > 0. As a preliminary, we prove the VMO-regularity of Du.

Proposition 4.1. Under the assumptions of Theorem 1.5, Du is locally VMO-reg-
ular in Ω . In particular, for every ε ∈ (0, 1), there exists a positive radius rε ≡
rε(n, p, ν, L , λ, μ(·), ε) < d such that

−
∫

B(x,�)

|Du − (Du)B(x,�)| dy < λε (4.2)

holds whenever � ∈ (0, rε] and x ∈ Ω ′.

Proof. Let us set, for ε ∈ (0, 1), as in the statement,

δ1 :=
(

ε

108c0

)1/β
(

ε2

108chc2
2

)1/β

, (4.3)

where c0, ch, c2 and β are the constants introduced in Theorems 2.1–2.2 and Lemma
2.6; they all depend only on n, p, ν, L and so the same dependence is inherited by
δ1. We then look at Lemma 3.1 and determine the constant

c5 := cH (n, p, ν, L , δ1, H) with H = 103c2

ε
. (4.4)

This ultimately yields c5 ≡ c5(n, p, ν, L , ε). Accordingly, we choose a positive
radius R ≡ R(n, p, ν, L , λ, μ(·), ε) < d such that

sup
0<��R

sup
y∈Ω ′

[ |μ|(B(y, �))

�n−1

]1/(p−1)

� δ3n
1 λε

108c1c5
, (4.5)

which, again, is possible by (1.10). Finally, we fix x ∈ Ω ′ and define the chain of
shrinking intrinsic balls

Bi ≡ B(x, ri ), ri = δi
1r, where r ∈ (δ1 R, R], (4.6)

for every integer i � 0, and define the related comparison solutions vi ∈ u +
W 1,p

0 (Bi ) as in (3.3). Notice now that, thanks to (4.1), Bi ⊂ Ω ′ holds for every
i ∈ N, and therefore

−
∫

Bi

(|Du| + s) dy � λ for every integer i � 0. (4.7)
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We shall prove that

E(Du, Bi+2) < λε for every i ∈ N ∩ [1,∞). (4.8)

Let us single out an index i � 1 and let us distinguish two cases; the first is when

−
∫

Bi+2

|Du| dy <
λε

50
,

so that we trivially have E(Du, Bi+2) < λε/25 and (4.8) follows. The other case
is fixed in the next lemma, so that (4.8) eventually follows via (4.1) and (4.5). ��
Lemma 4.2. Assume that

−
∫

Bi+2

|Du| dy � λε

50
. (4.9)

Then it holds that

E(Du, Bi+2) � ε

24 E(Du, Bi+1) + 4c5δ
−n
1 λ2−p

[
|μ|(Bi−1)

rn−1
i−1

]
. (4.10)

Proof. As a preliminary, we establish the validity of

−
∫

Bi+1

|Du − Dvi | dy � c5λ
2−p

[
|μ|(Bi−1)

rn−1
i−1

]
, (4.11)

for c5 ≡ c5(n, p, ν, L , ε) as determined in (4.4). We use Lemma 3.1; as (3.4) and
(3.5) are satisfied by (4.7) and (4.5), respectively, it remains to show that (3.6) is
satisfied for the choice of H made above, that is, H = 103c2/ε. Specifically, we
show that ⎧⎨

⎩
λε

103c2
� |Dvi−1| � c2λ in Bi

λε
103c2

� |Dvi | � c2λ in Bi+1

(4.12)

hold. By (4.5) and Lemma 2.7, applied to vi−1 and with B ≡ Bi−1, δ = δ3
1 and

θ = ε/100, we gain

−
∫

Bi+2

(|Du| + s) dy − λε

100
� −

∫
Bi+2

(|Dvi−1| + s) dy,

and therefore (4.9) allows us to conclude with

−
∫

Bi+2

(|Dvi−1| + s) dy � λε

100
.

Observe that by Lemma 2.6 we have |Dvi−1(x)|+ s � c2λ whenever x ∈ Bi−1/2,
and in particular whenever x ∈ Bi . Keeping (4.3) in mind, we are now ready to apply
the density Lemma 2.3, choosing B ≡ Bi−1, σ = δ1, m = 3 and Γ = 100c2/ε.
In this way the assertion about vi−1 in (4.12) is proved. Arguing in a completely
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similar way for vi , and replacing Bi−1 by Bi , we also obtain the assertions in (4.12)
concerning vi . Now, using Lemma 3.1 we gain (4.11).

Proceeding with the proof, by using estimate (2.5) applied to vi and recalling
the choice of δ1 in (4.3), we obtain

E(Dvi , Bi+2) � ε

26 E(Dvi , Bi+1).

In turn, by using this inequality, together with (4.11) and (3.1), we get (4.10):

E(Du, Bi+2) � 2 −
∫

Bi+2

|Du − (Dvi )Bi+2 | dy

� 2E(Dvi , Bi+2) + 2 −
∫

Bi+2

|Du − Dvi | dy

� ε

25
E(Dvi , Bi+1) + 2δ−n

1 −
∫

Bi+1

|Du − Dvi | dy

� ε

24 E(Du, Bi+1) + 4δ−n
1 −

∫
Bi+1

|Du − Dvi | dy

� ε

24 E(Du, Bi+1) + 4c5δ
−n
1 λ2−p

[
|μ|(Bi−1)

rn−1
i−1

]
.

��
To conclude the proof of Proposition 4.1, since all the estimates above are uniform
with respect to the choice of x ∈ Ω ′ and of the initial radius r ∈ (δ1 R, R] chosen
to build the chain in (4.6), we obtain (4.2) with rε = δ3

1 R. Indeed, let � � δ3
1 R;

this means there exists an integer m � 3 such that δm+1
1 R < � � δm

1 R. Therefore
we have � = δm

1 r for some r ∈ (δ1 R, R] and (4.2) follows from (4.8). The proof
is complete. ��
Proof of Theorem 1.5. We prove the continuity of Du by showing that it is the
(local) uniform limit of a net of continuous maps. More precisely, we consider the
family of maps, indexed in �, defined by

x → (Du)B(x,�) for 0 < � � d := dist(Ω ′, ∂Ω ′′),

which are obviously continuous. We shall then prove that, for every ε > 0, there
exists a radius rε � d/2, independent of the point x ∈ Ω ′ considered, such that

|(Du)B(x,�) − (Du)B(x,ρ)| � λε for every choice of �, ρ ∈ (0, rε]. (4.13)

The rest of the proof is dedicated to showing that (4.13) holds. A point worth stress-
ing here, and that makes things different from Section 3, is that (4.13) will prove
to be valid for every x ∈ Ω ′, not only for Lebesgue points of Du. Therefore, all
the inequalities will be derived by considering a fixed point x ∈ Ω ′, but will be
uniform to this choice.
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With ε > 0 being fixed in (4.13), we shall keep the choice of the constants
δ1 and c5 made in (4.3) and (4.4), respectively. Next, we take a positive radius
R � d/2 such that (4.5) holds, together with

sup
y

[∫ 2R

0

|μ|(B(y, �))

�n−1

d�

�

]1/(p−1)

� δ4n
1 λε

108c1c5
(4.14)

and

sup
0<��R

sup
y∈Ω ′

E(Du, B(y, �)) � δ4n
1 λε

108 . (4.15)

A computation similar to the one in (3.29) and (4.14) gives
[ ∞∑

i=0

|μ|(Bi )

rn−1
i

]1/(p−1)

� δ3n
1 λε

108c1c5
. (4.16)

We shall eventually show that the radius rε ≡ δ3
1 R, determined via the smallness

conditions (4.14)–(4.15), will work as rε in (4.13). With R just determined through
(4.14)–(4.15), we consider the balls {Bi } similarly to (4.6), that is, Bi ≡ B(x, ri )

and ri = δi
1 R. Finally, the functions vi ∈ u + W 1,p

0 (Bi ) are accordingly defined
exactly as in (3.3). We shall now prove that

|(Du)Bh − (Du)Bk | � λε

12
holds whenever 3 � k � h. (4.17)

For this we consider the set L defined by

L :=
{

i ∈ N : −
∫

Bi

|Du| dy <
λε

50

}
,

and, accordingly, we then define the set

Cm
i = { j ∈ N : i � j � i + m, i ∈ L, i + m + 1 ∈ L, j 
∈ L if j > i}

and call it maximal iteration chain of length m, starting at i . In other words, we
have Cm

i = {i, . . . , i + m} and each element of Cm
i but i lies outside of L; Cm

i is
maximal in the sense that there cannot be another set of the same type properly
containing it. Obviously, such sets do not exist when L = N. In the same way we
define C∞

i = { j ∈ N : i � j < ∞, i ∈ L, j 
∈ L if j > i} as the infinite maximal
chain starting at i . Notice that, in every case, the smallest element of such a chain
always belongs to L, being then the only one of the chain to have such a property.
Moreover, we define ie := min L. Note that we set ie = ∞ if L = ∅. We are now
ready for the proof of (4.17); for this we need to distinguish three cases. We shall,
of course, assume 3 � k < h, because otherwise (4.17) trivializes.

Case 1. k < h � ie. This, in particular, applies when ie = ∞, that is, when L is
empty. Now, if h −1 > k, then we can apply Lemma 4.2 repeatedly, and this yields

E(Du, Bi+1) � 1

2
E(Du, Bi ) + 4c5δ

−n
1 λ2−p

[
|μ|(Bi−2)

rn−1
i−2

]
(4.18)
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for every i ∈ {k, . . . , h − 2}. Summing up the previous inequalities, and making
elementary manipulations—see (3.44)–(3.45)—we have

h−1∑
i=k

E(Du, Bi ) � 2E(Du, Bk) + 8c5δ
−n
1 λ2−p

∞∑
i=0

[
|μ|(Bi )

rn−1
i

]
.

Then, using (4.15)–(4.16) yields

h−1∑
i=k

E(Du, Bi ) � δ2n
1 λε

50
.

The previous inequality follows in any case as, when h − 1 = k, it is a direct
consequence of (4.15). In turn, (4.17) follows since

|(Du)Bh − (Du)Bk | �
h−1∑
i=k

|(Du)Bi+1 − (Du)Bi |

�
h−1∑
i=k

−
∫

Bi+1

|Du − (Du)Bi | dy (4.19)

�
h−1∑
i=k

|Bi |
|Bi+1| E(Du, Bi )

= δ−n
1

h−1∑
i=k

E(Du, Bi )

� λε

50
. (4.20)

Case 2. ie � k < h. Let us prove that in this case we have

|(Du)Bh | � λε

25
and |(Du)Bk | � λε

25
. (4.21)

We prove the former inequality in (4.21), the proof of the latter being the same.
If h ∈ L, the first inequality in (4.21) follows immediately from the definition of
L. On the other hand, if h 
∈ L, then, as h � ie, it is possible to consider the
maximal iteration chain Cmh

ih
such that h ∈ Cmh

ih
. Note that h > ih as h 
∈ L � ih .

Then, iterating Lemma 4.2 as done after (4.18)—that is, replacing k by ih—we gain
the analogue of (4.20), that is |(Du)Bh − (Du)Bih

| � λε/50. In turn, using that
|(Du)Bih

| � λε/50 as ih ∈ L, we again obtain the first inequality in (4.21) and, in
any case, (4.21) follows. Estimating as

|(Du)Bh − (Du)Bk | � |(Du)Bh | + |(Du)Bk | � λε

25
+ λε

25
� λε

12
(4.22)

we have that (4.17) holds in the second case, too.
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Case 3. k < ie < h. Here we prove that (4.21) still holds and then we conclude
as in Step 2. Indeed, the first inequality in (4.21) follows as in Case 2. As for the
second estimate in (4.21), let us remark that, as ie ∈ L, we have that

|(Du)Bie
| � λε

50
. (4.23)

On the other hand, we can argue exactly as in Case 1, that is, this time replacing
h by ie, thereby obtaining |(Du)Bie

− (Du)Bk | � λε/50 that together with (4.23)
gives the second inequality in (4.21). In turn, (4.17) follows in this case as in (4.22).

We are now ready to show (4.13), thereby concluding the proof. As already
mentioned, we take rε = δ3

1 R, and then fix 0 < ρ < � � rε. This means that there
exist two integers, 3 � k � h, such that

δk+1
1 R < � � δk

1 R and δh+1
1 R < ρ � δh

1 R. (4.24)

Applying (4.15) we get

|(Du)B(x,�) − (Du)Bk+1 | � −
∫

Bk+1

|Du − (Du)B(x,�)| dy

� |B(x, �)|
|Bk+1| −

∫
B(x,�)

|Du − (Du)B(x,�)| dy

� δ−n
1 E(Du, B(x, �))

� λε

10
,

and in the same way

|(Du)B(x,ρ) − (Du)Bh+1 | � λε

10
.

Using the last two inequalities together with (4.17) establishes (4.13).

Proof of Corollary 1.6. The proof follows by the arguments in [12, Theorem 1.3]
and related references; it indeed follows that if μ ∈ L(n, 1) holds locally in Ω ,
then (1.10) is satisfied.

By carefully inspecting the proof of Proposition 4.1 we gain the following:

Theorem 4.3. Let u ∈ W 1,p(Ω) be a weak solution to the equation (1.7) under the
assumptions of Theorem 1.3. If I|μ|

1 (x, R) is locally bounded in Ω for some R > 0
and if

lim
R→0

|μ|(B(x, R))

Rn−1 = 0 locally uniformly in Ω w.r.t. x,

then Du is locally VMO-regular in Ω .
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5. General Measure Data Problems and Extensions

Theorems 1.1 and 1.3 have been stated for classical energy distributional solu-
tions, that is, u ∈ W 1,p(Ω). They nevertheless hold for solutions to measure data
problems, which in turn do not always belong to W 1,p. More precisely, Theo-
rems 1.1 and 1.3 extend to the so-called SOLA (Solution Obtained as Limits of
Approximations), which are solutions to the Dirichlet problems of the type

{−div a(Du) = μ in Ω

u = 0 on ∂Ω,
(5.1)

obtained as limits of solutions uk of similar problems, where this time μ ≡ μk

is a smooth function, typically obtained by a convolution. Here, however, we will
not recall the whole construction, which is rather long and available in several
papers. The original approach was introduced by Boccardo and Gallouet [1,2],
to which we refer the reader for the basic results and definitions (including that of
SOLA), together with [7], while for applications of (1.2) in this setting we refer
to [30, Section 4] and [9, Section 5]. We confine ourselves to reporting the main
outcome, that is,

Theorem 5.1. Let u ∈ W 1,p−1(Ω) be a SOLA to (5.1), under the assumptions of
(1.8), with μ being a Borel measure with finite total mass and Ω ⊂ R

n being a
Lipschitz domain. Then there exists a constant c, depending only on n, p, ν, L such
that the pointwise estimate (1.9) holds whenever B(x, R) ⊆ Ω and x ∈ Ω is a
Lebesgue point of Du.

We recall that SOLA are not known, in general, to be unique, but can be under a
few additional assumptions (for instance p = 2, or when μ ∈ L1(Ω)). We refer to
[15,24] for more results concerning the solvability of measure data problems.

We finally remark that Theorem 1.3 extends to more general equations with
coefficients of the type

−div a(x, Du) = μ,

where the main assumption on the x-dependence is that the partial map

x �→ a(x, z)

(|z|2 + s2)(p−1)/2

is Dini-continuous, uniformly with respect to z ∈ R
n . This will be shown in a

forthcoming paper.
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