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Abstract

We present an introduction to the qualitative theory of nonlinear control systems,

with the main emphasis on controllability properties of such systems. We introduce the

differential geometric language of vector fields, Lie bracket, distributions, foliations etc.

One of the basic tools is the orbit theorem of Stefan and Sussmann. We analyse the

basic controllability problems and give criteria for complete controllability, accessibility

and related properties, using certain Lie algebras of vector fields defined by the system.

A problem of path approximation is considered as an application of the developed

theory. We illustrate our considerations with examples of simple systems or systems

appearing in applications. The notes start from an elementary level and are self-

contained.

Keywords: Control system, vector fields, nonlinear, controllability, Lie bracket, orbits,
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1 Controllability and Lie bracket

Controllability properties of a control system are properties related to the following questions.
(Q1) Can the system be steered from a given initial state x0 to a given final state x1? (Q2)
Can this be done for any pair of initial and final states? (Q3) How large is the set of points
to which the system can be steered from a given initial state x0? (Q4) Which trajectories of
the system are realizable and how do we find controls realizing them?

Such questions can be motivated by practical problems and they are basic for any qual-
itative study of control systems. Our aim in these lectures will be to develop tools which
will enable us to answer such questions and to understand qualitative properties of nonlin-
ear control systems. We will see that for a large class of problems a control system can be
represented by a family of vector fields (dynamical systems). The qualitative properties of
the control system depend on the properties of the vector fields (dynamical systems) and in-
teractions between them. The basic tool which will enable us to understand the interactions
between different vector fields will be the Lie bracket.

1.1 Control systems and controllability problems

By a control system we shall mean a system of the form

Σ : ẋ = f(x, u),

where x, called state of Σ, takes values in an open subset X of IRn (or in a differentiable
manifold X of dimension n) and u, called control, takes values in a set U . We call X the
state space of the system and U the control set. When the control u is fixed the system
equation ẋ = f(x, u) defines a single dynamical system. Thus, the control system Σ can be
viewed as a collection of dynamical systems parametrized by the control as parameter. We
will see later that this interpretation is fruitful.

Example 1.1 Boat on a lake. Consider a motor boat on a lake. We can choose some
coordinate system in which the lake is identified with a subset X of IR2 and the state of the
boat with a point x = (x1, x2) ∈ X. The simplest mathematical model of the motion of the
boat is the following control system

ẋ = u

where the control u = (u1, u2) is the velocity vector which belongs to the set U = {u ∈ IR2 :

‖u‖ ≤ m}, where ‖u‖ =
√

u2
1 + u2

2 is the norm of u and m is the maximal possible velocity
of the boat.

A different version of the problem is obtained if we consider a motor boat (or a rowing
boat) on a river. Then the set of velocities of the boat F (x) depends on the current of the
river at this point. This means that in our model we have to change the equation ẋ = u for

ẋ = f(x) + u,

where the control u is in the set U = {u ∈ IR2 : ‖u‖ ≤ m} and f(x) denotes the velocity
vector of the current of the river at the point x. We could also keep the equation ẋ = u and
choose the control set Ũ(x) = f(x)+U depending on x (we will usually try to avoid the latter
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possibility as more complicated). Clearly, if the set of available velocities F (x) = f(x) + U
contains 0 in its interior then the boat can be steered from any initial position to any final
position if we use enough time.

Example 1.2 Sailing boat. A more interesting system is obtained when the boat is a sailing
boat. Assuming that the wind is stable (of constant direction and force) we can model the
motion of the boat on a lake by the equation

ẋ = v(θ),

where θ is the angle of the axis of the boat with respect to the wind. The angle θ is treated
as control and takes values in the set U = (α, 2π − α), where α is the minimal angle with
which the boat can sail against the wind. The velocity v, as a function of θ, depends on the
characteristics of the boat related to the wind and it usually looks like in Figure 1 (a). An

Figure 1

interesting problem for a sailor appears when the target is placed in the “dead cone” of the
boat, when we look at it from the starting point. In that case sailing consists of a series of
tacks chosen in such a way that the target is reached even if it is placed in the dead cone.
In fact, sailing against the wind can be restricted to using only two values of the control
θ = ±θopt, where θopt maximizes the parallel to the wind component of v(θ) (directed against
the wind). In this case the system reduces to two dynamical systems with two available
velocities v+ = v(θopt) and v− = v(−θopt). By changing the tacks (Figure 1 (b)) with the
time spent for each (left and right) tack proportional, respectively, to constants λ+ and λ−
(where λ+ + λ− = 1) the sailing boat changes its position as it was sailing with the average
velocity vav = λ+v(θopt) + λ−v(−θopt).

The observation of the above example can be generalized to the following informal (but
intuitively plausible)

Conclusion (principle of convexification). In analysing controllability properties of sys-
tems Σ we can replace the set of available velocities F (x) = {f(x, u) : u ∈ U} by its convex
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hull, the trajectories of the convexified system can be approximated (in C0 topology) by the
trajectories of the original system. In particular, if

0 ∈ int coF (x)

for all x ∈ X, then the system is completely controllable (any state can be reached from any
other state).

Example 1.3 Car parking I. Suppose we would like to unpark our car blocked by two other
cars parked on the side of the street (Figure 2 (a)). The simplest but not always applicable
strategy is to use a series of moves that gradually turn the car until it points to the free part
of the street (Figure 2 (b)).

We use the following mathematical model of our problem. We let x1 and x2 denote the
Euclidean coordinates of the geometric center of the back axle of the car and φ will denote
the angle between the axis of the car and the x1-axis. We assume that the street is parallel
to the x1-axis. It is enough to consider movements with two extreme positions of the steering
wheel. If we assume that the car moves with a constant angular velocity ±b then the velocity
of the center of the rear axle moves along a circle (at each position of the steering wheel).
The kinematic movements of the car in coordinates x = (x1, x1, φ) can be described by the
following two vector fields on IR2 × (−π, π) ⊂ IR3

f = (r cosφ, r sinφ, b)T , g = (r cosφ, r sin φ,−b)T ,

where r is a constant. Our strategy is to use a series of short moves (with equal length) where
we interchange moving forwards with the leftmost position of the steering wheel (the vector
field f) and moving backwards with the rightmost position of the steering wheel (the vector
field −g). Intuitively, the overall movement should be approximately described by the vector
which is a linear combination of the vectors f and −g. We have (1/2)f − (1/2)g = (0, 0, b)
which suggests that our series of movements can be approximated by a pure turn.

(a) (b) (c)

Figure 2

We shall later show that our approximation is justified by a suitable mathematical result
(Proposition 1.8). The above strategy cannot be used if the cars are approximately rectan-
gular and the blocking cars are parked very close to our car (then their geometry will not
allow for the turn of our car). In this case we have to use a more sophisticated strategy
(Example 1.10) based on the notion of Lie bracket of vector fields. This strategy allows,
approximately, to drive our car almost parallel in the direction perpendicular to the street
(Figure 2 (c)).
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In fact, we shall be able to show later the following much stronger controllability property
of the car. “Given ǫ > 0 and any compact curve in the state space X = {(x1, x2, φ) ∈
IR2 × S1}, there exist admissible moves of the car which approximately follow the curve.
More precisely, they bring it from the initial position of the curve to the final position of the
curve and the car is never at a distance (in the state space) larger than ǫ from the curve.”

1.2 Vector fields and flows

Let X denote an open subset of IRn, possibly equal to IRn (the reader familiar with the
theory of differentiable manifolds may assume from the beginning that X is a manifold).
We denote by TpX the space of tangent vectors to X at the point p. In the case where X
is an open subset of IRn one can identify TpX with IRn (this identification depends on the
coordinate system).

A vector field on X is a mapping

X ∋ p −→ f(p) ∈ TpX

which assigns a tangent vector at p to any point p in X (Figure 3). An analogous mapping
defined on an open subset of X, only, will be called partial vector field. In a given system of
coordinates f can be expressed as a column vector

f = (f1, . . . , fn)T ,

where “T” stands for transposition. We say that f is of class Ck if its components are of
class Ck.

Figure 3

We shall usually assume that the vector fields considered here are of class C∞. The space
of such vector fields forms a linear space (with natural, pointwise operations of summation
and multiplication by numbers) denoted by V (X).

For any vector field (or partial vector field) f we can write the differential equation

ẋ = f(x).

From theorems on existence of solutions of ordinary differential equations it follows that,
if f is of class Ck and k ≥ 1, then for any initial point p in the domain of f there is an
open interval I containing zero and a differentiable curve t → x(t) = γt(p), t ∈ I, which
satisfies the above equation and x(0) = γ0(p) = p. If f is of class C∞, then from elementary
properties of differential equations it follows that the map

(t, p) −→ γt(p)
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is also of class C∞ and is well defined on a maximal open subset of IR × X. The resulted
family γt of local maps of X (Figure 4), called the local flow or simply the flow of the vector
field f , has the following group type properties (“◦” denotes composition of maps)

γt1 ◦ γt2 = γt1+t2 , γ−t = (γt)
−1, γ0 = id. (1)

If the solution γt(p) is well defined for all t ∈ IR and p ∈ X, then the vector field f is

Figure 4

called complete and its flow forms a one parameter group of (global) diffeomorphisms of X.
Any one parameter family of maps which satisfies conditions (1) defines a unique vector field
through the formula

f(p) =
∂

∂t

∣

∣

∣

∣

∣

t=0

γt(p),

and the flow of this vector field coincides with γt.
We shall denote the local flow of a vector field f by γf

t or by exp(tf). A reason for the
latter notation will become clear later.

Example 1.4 The linear vector field f(x) = Ax is complete and the corresponding flow is
the one-parameter group of linear transformations p −→ eAtp, i.e.

γt = eAt,

where eAt =
∑

i≥0A
i ti

i!
.

1.3 Lie bracket and its properties

A nonlinear control system can be considered as a collection of dynamical systems (vector
fields) parametrized by a parameter called control. It is natural to expect that basic prop-
erties of such a system depend on interconnections between the different dynamical systems
corresponding to different controls. We represent our dynamical systems by vector fields as
this allows us to perform algebraic operations on them such as taking linear combinations
and a taking a product called Lie bracket. It is the Lie product which allows studying
interconnections between different dynamical systems in a coordinate independent way.

The Lie bracket of two vector fields is another vector field which, roughly speaking,
measures noncommutativeness of the flows of both vector fields. Noncommutativeness here
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means dependence of the result of applying the flows on the order of applying these flows.
These remark, as well as the definition of Lie bracket is made precise below.

There are three equivalent definitions of Lie bracket and each of them will be useful to us
later. We start with the easiest (but coordinate dependent) definition in IRn. Let X ⊂ IRn,
and let f and g be vector fields on X. The Lie bracket of f and g is another vector field on
X defined as follows

[f, g](x) =
∂g

∂x
(x)f(x) −

∂f

∂x
(x)g(x), (2)

where ∂f/∂x and ∂g/∂x denote the Jacobi matrices of f and g. We will call this the Jacobian

definition of Lie bracket.

Example 1.5 For the vector fields f = (1, 0)T and g = (0, x1)
T on IRn one easily finds that

[f, g] = (0, 1)T . Note that the Lie bracket of f and g adds a new direction to the space
spanned by f and g at the origin.

Let f = b be a constant vector field and g = Ax be a linear vector field. Then [f, g] =
[b, Ax] = Ab− 0 = Ab. Similar trivial calculations show that the following holds.

Proposition 1.6 The Lie bracket of two constant vector fields is zero. The Lie bracket of

a constant vector field with a linear vector field is a constant vector field. Finally, the Lie

bracket of two linear vector fields is a linear vector field.

The basic geometric properties of Lie bracket are stated in the following propositions.
The first one says that vanishing of Lie bracket [f, g] is equivalent to the fact that starting
from a point p and going along trajectory of f for time t and then along trajectory of g for
time s gives always the same result as with the order of taking f and g reversed (Figure 5).

Figure 5

Proposition 1.7 The Lie bracket of vector fields f and g is equal identically to zero if and

only if their flows commute, i.e.

[f, g] ≡ 0 ⇐⇒ γf
t ◦ γg

s (p) = γg
s ◦ γ

f
t (p) ∀s, t ∈ IR, ∀p ∈ X,

where the equality on the right should be satisfied for those s, t and p for which both sides are

well defined.
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Proof. To prove the implication “⇐=” it is enough to note that by computing the partial
derivatives (∂/∂t)(∂/∂s) at t = s = 0 of the left side of the equality γf

t ◦ γg
s (p) = γg

s ◦ γf
t (p)

and the same partial derivatives (but in reverse order) of the right side gives the equality
(∂f/∂x)g = (∂g/∂x)f . The converse implication will be shown after Proposition 1.13.

Two vector fields having the property of Proposition 1.7 will be called commuting.

Figure 6

Proposition 1.8 Let us fix a p ∈ X and consider the curve (Figure 6)

α(t) = γg
−t ◦ γ

f
−t ◦ γ

g
t ◦ γ

f
t (p).

Then we have that its first derivative at zero vanishes, α′(0) = 0 and the second derivative

is given by the Lie bracket:

α′′(0) = 2[f, g](p).

The above means that, after a reparametrization, the tangent vector at zero to the curve
t → α(t) is equal to 2[f, g](p) (see Figure 6). This implies that the points attainable from
p by means of the vector fields f and g lie not only in the “directions” f(p) and g(p), but
also in the “direction” of the Lie bracket [f, g](p). This fact will be of basic importance for
studying controllability properties of nonlinear control systems.

The proof of the above proposition is omitted and follows from a more general fact proved
in Section 4 (see also Spivak [Sp], page 224). Note that the formula in Proposition 1.8 can
be used for defining the Lie bracket [f, g].

Proposition 1.9 Suppose we are given two vector fields f and g on X and a point p ∈ X
and let λ1, λ2 be real constants. Define the following (local) diffeomorphisms of X

φt = γf
λ1t ◦ γ

g
λ2t, ψt = γg

−t ◦ γ
f
−t ◦ γ

g
t ◦ γf

t .

Then the families of curves (Figure 7)

αk(t) = φt/k ◦ · · · ◦ φt/k(p), k-times

βk(t) = ψt/k ◦ · · · ◦ ψt/k(p), k2-times

converge to the trajectories of the vector fields λ1f + λ2g and [f, g], respectively. More

precisely, we have the convergence

αk(t) −→ γλ1f+λ2g
t (p), and βk(t) −→ γ

[f,g]
t2 (p) as k −→ ∞.
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Figure 7

We will not prove this proposition here, sending the reader to Section 4. However, the
reader should find the first property about the convergence of αk intuitively clear (compare
the principle of convexification from Section 1.1). Namely, the movement which jumps
sufficiently often between trajectories of two vector fields (and the time spent for these
vector fields is proportional to some weights) follows, approximately, a trajectory of the
linear combination of these vector fields (with the same weights). This property is used, for
example, by sailors passing through narrow rivers or canals. A sailing boat can go against
the wind only with certain minimal positive or negative angle (Example 1.2). But, even
if the direction of the canal is in the “dead” cone and the boat cannot go straight in this
direction, the sailor tacks sufficiently often spending suitable amount of time for the left and
the right tacks to reach the desired direction.

The property of convergence of βk can be illustrated by the following example.

Example 1.10 Car parking II. Suppose the strategy of turning the car in Example 1.3 is
inadmissible because the blocking cars are too close. There is a better strategy for unparking
which works in any situation. Namely, we use repeatedly the following series of 4 moves:
LF, RF, LB, RB, where “L” and “R” stand for the leftmost and rightmost positions of the
steering wheel while “F” and “B” stand for forward and backward motions. This means
that our strategy is precisely the zig-zaging strategy described by βk(t) in Proposition 1.9.
Therefore, the resulting movement follows approximately the Lie bracket of the vector fields

f = (r cosφ, r sinφ, b)T , g = (r cosφ, r sin φ,−b)T .

We compute

∂f

∂x
=









0 0 −r sinφ

0 0 r cosφ

0 0 0









and
∂g

∂x
=









0 0 −r sinφ

0 0 r cosφ

0 0 0









and the Lie bracket of f and g equals to

[f, g] = 2br(− sin φ, cosφ, 0)T .

In particular, at φ = 0 we have that

[f, g] = (0, 2br, 0)T .

The zig-zaging strategy produces movement approximating the trajectory of the Lie bracket
[f, g], that is the movement keeping the axis of the car approximately constant (φ = 0) and
changing its x2-coordinate only (Figure 2 (c)). This means that we should be able to unpark
the car no matter how close the other cars are.
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1.4 Coordinate changes and Lie bracket

To study what happens with vector fields and flows under coordinate changes let us consider
a global diffeomorphism Φ : X −→ X (or a partial diffeomorphism i.e. a diffeomorphism
between two open subsets of X). As tangent vectors are transformed through the Jacobian

Figure 8

map of a diffeomorphism, our diffeomorphism defines the following transformation of a vector
field f (see Figure 8)

AdΦ(f)(p) = DΦ(q) f(q), q = Φ−1(p),

where DΦ denotes the tangent map of Φ (Jacobian mapping of Φ represented, in coordinates,
by the Jacobi matrix ∂Φ/∂x). Another commonly used notation for the linear operator on
V (X) corresponding to the change of coordinates Φ is

Φ∗f = AdΦ.

Note that the coordinate change p = Φ(q) transforms the differential equation ṗ = f(p)

into the equation q̇ = f̃(q) where f̃ = AdΦf .
If Φ is a global diffeomorphism of X, then the operation AdΦ is a linear operator on the

space of vector fields on X, i.e. AdΦ(λ1f1 + λ2f2) = λ1AdΦ(f1) + λ2AdΦ(f2). Additionally,
if Ψ is another global diffeomorphism of X, then

AdΦ◦Ψ(f) = AdΦAdΨ(f),

where “◦” denotes composition of maps.
For further reference we state the following fact.

Proposition 1.11 Consider the vector field AdΦ(f). The local flow of this vector field is

given by

σt = Φ ◦ γt ◦ Φ−1.

Proof. It is easy to see that σt satisfies the group conditions (1) and we have

∂

∂t

∣

∣

∣

∣

∣

t=0

Φ ◦ γt ◦ Φ−1(p) = DΦ(Φ−1(p)) f(Φ−1(p)) = (Adφf)(p).
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It is not immediately clear from the definition of Lie bracket in Section 1.3 that so defined
[f, g] is a vector field, that is, it is transformed with coordinate changes like a vector field.
There are also other disadvantages of this definition which are not shared by the following
geometric definition of Lie bracket. We define the Lie bracket of f and g as the derivative
with respect to t, at t = 0, of the vector field g transformed by the flow of the field f . More
precisely, we define (Figure 9)

[f, g](p) =
∂

∂t
Dγf

−t(γ
f
t (p)) g(γf

t (p)) =
∂

∂t
(Adγf

−t
g)(p). (3)

Figure 9

Let us check that this definition coincides with the Jacobian definition from Section 1.3.
By taking the partial derivative ∂/∂t at t = 0 and taking into account that γf

0 = id and

γf
0 (p) = p we find that the above definition, where t appears three times, gives

[f, g](p) =
(

D
∂

∂t

∣

∣

∣

∣

∣

t=0

γ−t

)

(p)g(p) +
∂

∂t

∣

∣

∣

∣

∣

t=0

D(id)(γt(p))g(p) + id
∂

∂t

∣

∣

∣

∣

∣

t=0

g(γt(p)),

where we interchanged the order of taking the tangent map “D” (which is a matrix of
partial derivatives with respect to the coordinates) and the partial derivative ∂/∂t in the
first expression. The first term gives −Df(p)g(p), the second is equal to zero, and the third
equals to Dg(p)f(p), which means that this definition coincides with the previous one.

It follows from the second definition of Lie bracket that [f, g] transforms with coordinate
changes like a vector field, that is via the Jacobi matrix of the coordinate change. Namely,
we have the following basic property of equivariance of Lie bracket with coordinate changes.

Proposition 1.12 If Φ is a (partial or global) diffeomorphism of X then

[AdΦf,AdΦg] = AdΦ[f, g].

Proof. As we have established earlier, the flow of the vector field AdΦf is equal to σt =
Φ ◦ γf

t ◦ Φ−1. Thus, applying the geometric definition of Lie bracket gives

[AdΦf,AdΦg](p) =
∂

∂t

∣

∣

∣

∣

∣

t=0

(AdΦ◦γf
−t◦Φ

−1AdΦg)(p)

=
∂

∂t

∣

∣

∣

∣

∣

t=0

(AdΦAdγf
−t

AdΦ−1AdΦg)(p) =
∂

∂t

∣

∣

∣

∣

∣

t=0

(AdΦAdγf
−t
g)(p) = AdΦ[f, g].
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From the geometric definition of Lie bracket we deduce the following relation. Note that
Adγf

t
f = f .

Proposition 1.13 We have

∂

∂t
Adγf

t
g = −[f,Adγf

t
g] = −Adγf

t
([f, g]).

Proof. To show the first equality it is enough to note that

∂

∂t
Adγf

t
g =

∂

∂h

∣

∣

∣

∣

∣

h=0

Adγf
h
Adγf

t
g

and apply the geometric definition of Lie bracket to the vector fields −f and Adγf
t
g. The

second equality follows analogously from ∂
∂t

∣

∣

∣

t=0
Adγf

t
g = ∂

∂h

∣

∣

∣

h=0
Adγf

t
Adγf

h
g.

Proof of Proposition 1.7. To show the converse implication note that from [f, g] ≡ 0 and the
equalities in Proposition 1.13 it follows that Adγf

t
g is independent of t, i.e. Adγf

t
g = Adγf

0
g =

g. Therefore, the flow of g is equal to the flow of the vector field Adγf
t
g, i.e. γf

t ◦γ
g
s ◦γ

f
−t = γg

s ,

by Proposition 1.11. This implies that γf
t ◦ γg

s = γg
s ◦ γf

t and the proposition is proved.

Below and in the following sections we shall use the following notation. We denote
adfg = [f, g]. Thus, adf is a linear operator in the space of vector fields V (X). We also
consider its iterations

ad0
fg = g and adi

fg = adf · · · adfg i-times.

The following dependence between the operations Ad and ad follows from the formula in
Proposition 1.13

∂

∂t
(Adγf

t
g)(p) = −(adf(Adγf

t
g))(p). (4)

In the analytic case we also have an expansion formula which follows from this relation.

Proposition 1.14 If the vector fields f and g are real analytic, then we have the following

expansion formula for the vector field g transformed by the flow of the vector field f :

(Adγf
t
g)(p) =

∞
∑

i=0

(−t)i

i!
(adi

fg)(p),

where the series converges absolutely for t in a neighborhood of zero (more precisely, each of

n components of this series converges absolutely).

Proof. Applying iteratively the formula (4) and taking into account that γf
0 = id we find

that
( ∂

∂t

)i
(Adγf

t
g)(p)|t=0 = (−1)iadi

fg(p).

Therefore, our equality is simply the Maclaurin series of the left hand side.
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1.5 Vector fields as differential operators

A smooth vector field f on X defines a linear operator Lf on the space of smooth functions
C∞(X) in the following way

(Lfφ)(p) =
∂

∂t

∣

∣

∣

∣

∣

t=0

φ(γf
t (p)) =

n
∑

i=1

fi(p)
∂

∂xi
φ(p). (5)

This operator is called directional derivative along f or Lie derivative along f and it is a
differential operator of order one.

Conversely, any differential operator of order one with no zero order term can be written
as

L =
n
∑

i=1

ai(x)
∂

∂xi

and it defines a unique vector field given in coordinates as f = (a1, . . . , an)T . (We can easily
check that the coordinate vector (a1, . . . , an) of the operator L transforms with a coordinate
change Φ by the Jacobi matrix ∂Φ/∂x. Thus so defined f is a vector field on X.) This
means that there is a unique correspondence

f → Lf

between vector fields and differential operators of order one (with no zero order term).
Because of the above correspondence mathematicians often identify vector fields f with

the corresponding differential operators Lf and write

Lf = f =
n
∑

i=1

fi
∂

∂xi
.

We will rather try to distinguish between these two objects.
We shall close this subsection with a third definition of Lie bracket and some useful

corollaries to it. Let f , g be vector fields and Lf , Lg the corresponding differential operators.
Consider the commutator of these operators defined by

[Lf , Lg] := LfLg − LgLf .

Proposition 1.15 The commutator [Lf , Lg] is a differential operator of order one which

corresponds to the Lie bracket [f, g], i.e.,

[Lf , Lg] = L[f,g].

Proof. Given any smooth function φ, we compute the composed differential operator on φ

LfLgφ =
∑

i

fi
∂

∂xi

(

∑

j

gj
∂

∂xj
φ
)

=
∑

ij

figj
∂

∂xi

∂

∂xj
φ+

∑

ij

fi
∂gj

∂xi

∂φ

∂xj
.

The analogous expression for LgLfφ has the same first summand, due to commutativeness
of partial derivatives with respect to xi and xj , thus we have

[Lf , Lg]φ = LfLgφ− LgLfφ =
∑

ij

fi
∂gj

∂xi

∂φ

∂xj

−
∑

ij

gi
∂fj

∂xi

∂φ

∂xj

.
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We see that [Lf , Lg] is a differential operator of order one. Using the Jacobian definition of
Lie bracket from Section 1.3 we see that L[f,g]φ gives the same expression

L[f,g]φ =
∑

j

(

∑

i

fi
∂gj

∂xi

− gi
∂fj

∂xi

) ∂φ

∂xj

,

which means that [Lf , Lg] = L[f,g].

If we identify vector fields f with the corresponding differential operators Lf , i.e. write
f = Lf =

∑

i fi∂/xi, then Proposition 1.15 suggests that we can equivalently define the Lie

bracket as the commutator

[f, g] = fg − gf =
∑

j

(

∑

i

∂gj

∂xi
fi −

∂fj

∂xi
gi

) ∂

∂xj
,

where g =
∑

j gj∂/∂xj . We shall call this the algebraic definition of Lie bracket. Clearly,
this definition coincides in a given coordinate system with the Jacobian definition, if we use
the identifications f = Lf , g = Lg.

Commutator of linear operators is antisymmetric and satisfies the Jacobi identity
[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (verify this using the definition [A,B] = AB − BA
of commutator). Therefore, we have the following properties of Lie bracket

[f, g] = −[g, f ] (antisymmetry),

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0 (Jacobi identity),

for any vector fields f , g, in V (X). The former property also follows easily from the first
definition of Lie bracket. Because of the above properties the linear space V (X) of smooth
vector fields on X, with the Lie bracket as product, is called the Lie algebra of vector fields

on X.
Further material concerning the basic geometric notions used in this and the following

chapters can be found in any textbook on differential geometry, we refer especially to [Bo]
and [Sp].

Appendix 1: Lie Algebras

A Lie algebra is a linear space L with a bilinear map [·, ·] : L × L −→ L which satisfies the
following properties

[f, g] = −[g, f ] (antisymmetry),

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0 (Jacobi condition).

The Jacobi condition can be equivalently written as the following Leibniz-Jacobi condition

[f, [g, h]] = [[f, g], h] + [g, [f, h]],

or equivalently
adf [g, h] = [adfg, h] + [g, adfh], (LJ1)



14 Geometric Nonlinear Control

where adf denotes the linear operator in L defined by the formula

adfg = [f, g].

The Leibniz-Jacobi condition has also the following equivalent form

ad[g,h]f = adgadhf − adhadgf = [adg, adh]f, (LJ2)

where the square bracket on the right denotes the commutator of linear operators in L:
[adg, adh] = adgadh − adhadg.

A linear subspace K of L which is closed under the product [·, ·] : L×L −→ L is called a
Lie subalgebra of L. A Lie subalgebra generated by a subset or simply Lie algebra generated

by a subset S ⊂ L is the smallest Lie subalgebra of L which contains S. A Lie ideal of L is
a linear subspace I ⊂ L such that [f, g] ∈ I, whenever f ∈ L and g ∈ I.

Example 1.16 The space gl(n) of all square n× n matrices with the commutator

[A,B] = AB − BA

forms a Lie algebra. There are various Lie subalgebras of this algebra which are interesting
and important for mathematics and physics. For example, skew symmetric matrices form a
Lie subalgebra of this Lie algebra.

Example 1.17 The space V (X) of smooth vector fields on a smooth manifold X (or simply
on X = IRn) forms a Lie algebra with Lie bracket as product. When the vector fields are
treated as differential operators of order one, then the Lie bracket becomes the commutator
of operators, as in the above case of square matrices (treated as linear operators). There is
no surprise about this, namely, there is a Lie subalgebra of the algebra of vector fields which
is formed by the space of linear vector fields: f = Ax, or in the operator form

f =
∑

i,j

aijxj
∂

∂xi

.

Here, the Lie bracket corresponds to taking commutators of the corresponding matrices
[Ax,Bx] = (BA−AB)x = [B,A]x.

Example 1.18 In the Lie algebra of linear vector fields as defined above there is an ideal
which consists of all constant vector fields.

An iterative application of the Leibniz-Jacobi identity (LJ2) and of antisymmetry of Lie
bracket leads to the following general property. Let f1,. . . ,fk be elements of a Lie algebra
L. We shall call an iterated Lie bracket of these elements any element of L obtained from
these elements by applying iteratively the operation of Lie bracket in any possible order, e.g.
[[f1, f4], [f3, f1]]. Left iterated Lie brackets will be brackets of the form [fi1 , . . . , [fik−1

, fik ] . . .].

Proposition 1.19 Any iterated Lie bracket of f1, . . . , fk is a linear combination of left it-

erated Lie brackets of f1, . . . , fk.

For example

[[f1, f4], [f3, f1]] = [adf1 , adf4] [f3, f1] = [f1, [f4, [f3, f1]]] − [f4, [f1, [f3, f1]]].
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Exercise Prove the above proposition (you may use induction with respect to the order of
Lie bracket).

Appendix 2: Equivalence of families of vector fields

To close this chapter we shall show that the Lie brackets taken at a point of an analytic
family of vector fields form a complete set of its invariants. As a control system can be
represented by a family of vector fields, this will have direct applications to control systems.
In another version of this result we will define a family of functions which forms a set of
complete invariants for state equivalence.

Consider two general families of analytic vector fields on X and X̃, respectively, param-
etrized by the same parameter u ∈ U

F = {fu}u∈U , F̃ = {f̃u}u∈U .

We shall call these families locally equivalent at the points p and p̃, respectively, if there is a
local analytic diffeomorphism Φ : X −→ X̃, Φ(p) = p̃ which transforms the vector fields fu

into f̃u locally, i.e.
AdΦfu = f̃u, for u ∈ U

locally around p̃.
Denote by L and L̃ the Lie algebras of vector fields generated by the families F and F̃ .

Recall that a family of vector fields is called transitive at a point if its Lie algebra is of full
rank at this point, i.e. the vector fields in this Lie algebra span the whole tangent space at
this point.

We shall use the following notation for left iterated Lie brackets

f[u1u2···uk] = [fu1 , [fu2, . . . , [fuk−1
, fuk

] . . .]]

and analogous for the tilded family. In particular, f[u1] = fu1 .

Theorem 1.20 If the families F and F̃ are transitive at the points p and p̃, respectively,

then they are locally equivalent at these points if and only if there exists a linear map between

the tangent spaces L : Tp −→ Tp̃ such that

L f[u1u2···uk](p) = f̃[u1u2···uk](p̃) (6)

for any k ≥ 1 and any u1, . . . , uk ∈ U .

Proof. Necessity. If f̃u = AdΦfu, then f̃u(p̃) = L fu(p) where L = dΦ(p). To prove condition
(6) in general it is enough to use iteratively the property of Lie bracket

[AdΦf,AdΦg] = AdΦ[f, g]

from which we get f̃[u1···uk] = AdΦf[u1...uk] and so the condition (6).

The proof of sufficiency is more involved an will be presented in the next section together
with other versions of the above result.
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2 Orbits, distributions, and foliations

2.1 Distributions and local Frobenius theorem

In this chapter we introduce notions and results which play a basic role in analysis and un-
derstanding the structure of nonlinear control systems. They are directly related to control-
lability properties of such systems. We denote by X an open subset of IRn or a diferentiable
manifold of dimension n.

Definition 2.1 A distribution on X is, by definition, a map ∆ which assigns to each point
in X a subspace of the tangent space at this point, i.e.

X ∋ p −→ ∆(p) ⊂ TpX.

The distribution ∆ is called of class C∞ if, locally around each point in X, there is a family
of vector fields {fα} (called local generators of ∆) which spans ∆, i.e. ∆(p) = span αfα(p).
∆ is called locally finitely generated if the above family of vector fields is finite. Finally, the
distribution ∆ is called of dimension k if dim ∆(p) = k for all points p in X, and of constant

dimension if it is of dimension k, for some k.

We will tacitly assume that our distributions are of class C∞.

Definition 2.2 We say that a vector field f belongs to a distribution ∆ and write f ∈ ∆
if f(p) ∈ ∆(p) for all p in X. A distribution ∆ is called involutive if for any vector fields
f, g ∈ ∆ the Lie bracket is also in ∆; [f, g] ∈ ∆. If the distribution has, locally, a finite
number of generators f1, . . . , fm then involutivity of ∆ means that

[fi, fj](p) =
m
∑

k=1

φk
ij(p)fk(p), i, j = 1, . . . , m,

where φk
ij are C∞ functions.

Involutivity plays a fundamental role in the following Frobenius theorem.

Theorem 2.3 If ∆ is an involutive distribution of class C∞ and of dimension k on X then,

locally around any point in X, there exists a smooth change of coordinates which transforms

the distribution ∆ to the following constant distribution

span {e1, . . . , ek},

where e1, . . . , ek are the constant versors ei = (0, . . . , 1, . . . , 0)T , with 1 at i-th place.

Proof. The proof will consist of two steps.
Step 1. We shall first show that the distribution ∆ is locally generated by k pairwise

commuting vector fields. Let us fix a point p in X and let f1, . . . , fk be any vector fields
which generate the distribution ∆ in a neighborhood of p. Treating fi as column vectors,
we form the n × k matrix F = (f1, . . . , fk). Note that multiplying F from the right by an
invertible k × k matrix of smooth functions does not change the distribution spanned by
the columns of F (it changes its generators, only). By a possible permutation of variables
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we achieve that the upper k × k submatrix of the matrix F is nonsingular. Multiplying F
from the right by a suitable invertible matrix we obtain that this submatrix is equal to the
identity, i.e. the new matrix F takes the form































1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

∗ ∗ . . . ∗
...

...
...

∗ ∗ . . . ∗































,

where “*” denote unknown coefficients. The new vector fields formed by the columns of this
matrix commute. In fact, since their first k coefficients are constant, the first k coefficients
of any Lie bracket [fi, fj] vanish. On the other hand, from involutivity it follows that this
Lie bracket is a linear combination of the columns of F . Both these facts can only hold when
the coefficients of this linear combination are equal to zero. This shows that the new vector
fields commute.

Step 2. Assume that the vector fields f1, . . . , fk generate the distribution ∆, locally
around p, and they commute. We can choose other n − k vector fields fk+1, . . . , fn so that
f1, . . . , fn are linearly independent at p. Define a map Φ by

(t1, . . . , tn) −→ exp(t1f1) ◦ exp(t2f2) ◦ · · · ◦ exp(tnfn)(p).

As the flows of the vector fields f1, . . . , fk commute, we see that the order of taking these
flows in the above definition can be changed. Therefore, an integral curve of a vector field
ei = (0, . . . , 1, . . . , 0)T , 1 ≤ i ≤ k is transformed to an integral curve of the vector field fi (as
we may place the flow of fi to the most left place). It follows that the map Φ sends the vector
fields e1, . . . , ek to the vector fields f1, . . . , fk and conversely does the inverse map Φ−1. This
inverse map is the desired map which transforms the distribution ∆ spanned by f1, . . . , fk

to the constant distribution spanned by e1, . . . , ek.

In order to state a global version of this theorem as well as other theorems related
to transitivity of families of vector fields and integrability of distributions we need more
definitions.

2.2 Submanifolds and foliations

Definition 2.4 A subset S ⊂ X is called a regular submanifold of X of dimension k if for
any x ∈ S there exists a neighborhood U of x and a diffeomorphism Φ : U −→ V ⊂ IRn onto
an open subset V such that

Φ(U ∩ S) = {x = (x1, . . . , xn) ∈ V | xk+1 = 0, . . . , xn = 0}

(see Figure 10). The regularity class of this submanifold is by definition the regularity class
of the diffeomorphism Φ (we shall assume that this regularity is C∞ or Cω).
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In other words, a regular submanifolds of dimension k is a subset which locally looks like
a piece of subspace of dimension k, up to a change of coordinates. A slightly weaker notion
of a submanifold is introduced in the following definition.

Figure 10

Definition 2.5 We call a subset S ⊂ X an immersed submanifold of X of dimension k if

S =
∞
⋃

i=1

Si, where S1 ⊂ S2 ⊂ S3 ⊂ · · · ⊂ S

and Si are regular submanifolds of X of dimension k.

In the case when S itself is a regular submanifold we can take Si = S and so S is also an
immersed submanifold.

Example 2.6 In Figure 11 (a) and (b) are regular submanifolds of IR2 while (c) and (d) are
only immersed submanifolds.

Figure 11

We shall later need two geometric properties of Lie bracket.

Property 1 If two vector fields f, g are tangent to an (immersed) submanifold S then also
their Lie bracket [f, g] is tangent to this submanifold.

This follows from the geometric definition of Lie bracket. In fact, if f is tangent to S,
then its flow transforms points of S into points of S when the time is sufficiently small.
Therefore, the tangent map to the flow Dγf

t transforms the tangent subspaces of S into tan-
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gent subspaces of S, in particular, it transforms the tangent vectors g(p) into vectors tangent
to S. Moreover, the vectors v(t) = (Adγf

−t
g)(p) are all in the tangent space TpS. Taking

derivative with respect to t of this expression, which appears in the geometric definition of
[f, g], gives a tangent vector to S.

Figure 12

Definition 2.7 A foliation {Sα}α∈A of X of dimension k is a partition

X =
⋃

α∈A

Sα

of X into disjoint connected (immersed) submanifolds Sα, called leaves, which has the fol-
lowing property. For any x ∈ X there exists a neighborhood U of x and a diffeomorphism
Φ : U −→ V ⊂ IRn onto an open subset V such that

Φ((U ∩ Sα)cc) = {x = (x1, . . . , xn) ∈ V | xk+1 = ck+1
α , . . . , xn = cnα},

where Pcc denotes a connected component of the set P and the above property should hold
for any such connected component, with the constants ciα depending on the leaf and the
choice of the connected component (Figure 12). Similarly as for submanifolds, the regularity
of the foliation is defined by the regularity of the diffeomorphism Φ.

Examples of foliations on subsets of IR2 are presented in Figure 13. A general example
of a foliation of dimension k = n− r is given by the following equations for leaves

Sα = {x ∈ X | h1(x) = c1α, . . . , hr(x) = crα},

where ciα are arbitrary constants and h = (h1, . . . , hr) is a smooth map of constant rank r
(i.e. its Jacobi map is of rank r).

Property 2 Assume that a vector field g is tangent to a foliation {Sα}α∈A, that is, it is
tangent to its leaves. Then, if the flow of another vector field f locally preserves this foliation,
the Lie bracket [f, g] is tangent to this foliation.

Here by saying that the flow of f locally preserves the foliation {Sα}α∈A we mean that
for any point p ∈ Sα there is a neighborhood U of p such that the image of a piece of a leaf
γf

t (Sα∩U) is contained in a leaf of the foliation (dependent on t), for any t sufficiently small.



20 Geometric Nonlinear Control

Figure 13

To prove this property let us choose coordinates as in the definition of the foliation and
assume that γf

t locally preserves {Sα}α∈A. It follows that the tangent map to γf
t maps

tangent spaces to leaves into tangent spaces to leaves. Therefore the vector Dγf
t (p)g(p) is

tangent to leaves and, in particular, its last n − k components are zero (here we use our
special coordinates). Differentiating with respect to t at t = 0 gives a vector with the last
n−k components equal to zero (and so tangent to a leaf), which by the geometric definition
of Lie bracket is equal to [f, g](p).

2.3 Orbits of families of vector fields

Consider a family of (global or partial) vector fields F = {fu}u∈U on X.

Definition 2.8 We define the orbit of a point p ∈ X of this family as the set of points of X
reachable from p piecewise by trajectories of vector fields in the family, i.e.

Orb(p) = {γuk
tk ◦ · · · ◦ γu1

t1
| k ≥ 1, u1, . . . , uk ∈ U, t1, . . . , tk ∈ IR},

where γu
t denotes the flow of the vector field fu. Of course, if some of our vector fields are

not complete then we consider only such t1, . . . , tk for which the above expression has sense.

The relation: “q belongs to the orbit of p” is an equivalence relation on the space X. In
fact, a point q belongs to the orbit Orb(p) if and only if it is reachable from p piecewise by
trajectories of the vector fields in the family F . It is evident that q is reachable from p if and
only if p is reachable from q (symmetry). Also, if q is reachable from p and r is reachable
from q, then r is reachable from p (transitivity).

It follows then that the space X is a disjoint union of orbits (equivalence classes).

Definition 2.9 Let Γ be the smallest distribution on X which contains the vector fields in
the family F (i.e. fu(p) ∈ Γ(p) for all u ∈ U) and is invariant under any flow γu

t , u ∈ U ,
that is

Dγu
t (p)Γ(p) ⊂ Γ(γu

t (p)).

for all p ∈ X, u ∈ U and t for which the above expression is well defined.
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Equivalently, we can write the invariance property (using partial vector fields) in the
form:

g ∈ Γ =⇒ Adγu
t
g ∈ Γ, for any u ∈ U and t ∈ IR.

The following theorem was proved independently by H.J. Sussmann and P. Stefan. We
state it here without proof.

Theorem 2.10 (Orbit Theorem) Each orbit S = Orb(p) of a family of vector fields F =
{fu}u∈U is an immersed submanifold (of class Ck if the vector fields fu are of class Ck).
Moreover, the tangent space to this submanifold is given by the distribution Γ,

TpS = Γ(p), for all p ∈ X.

Corollary 2.11 If the vector fields fu are analytic, then the tangent space to the orbit can

be computed as

TpX = L(p) = {g(p) | g ∈ Lie {fu }u∈U},

where Lie {fu}u∈U denotes smallest family of (partial) vector fields which contains the family

F and is closed under taking linear combinations and Lie bracket (this is the Lie algebra

of vector fields generated by the family F = {fu}u∈U in the case when fu are global vector

fields). In the smooth case the following inclusion holds

L(p) ⊂ Γ(p).

Proof. We shall first prove the inclusion. Using the second form of the invariance property
of Γ and the geometric definition of Lie bracket we obtain the following implication

g ∈ Γ =⇒ [fu, g] ∈ Γ.

Applying this implication iteratively, we deduce that the left iterated Lie brackets

[fuk
, · · · , [fu2, fu1 ] · · ·]

are in Γ. As all iterated Lie brackets are linear combinations of left iterated Lie brackets, it
follows that L(p) ⊂ Γ(p) for p ∈ X.

To prove the equality in the analytic case it is enough to use the formula

Dγu
t (q)fv(q) =

∑

i≥0

(−t)i

i!
adi

fu
fv(p), p = γu

t (q),

which shows that transformations of vectors under the tangent maps to flows of fu can
be expressed by taking (infinite) linear combinations of Lie brackets. This implies that
Γ(p) ⊂ L(p).

Example 2.12 The following system in the plane

ẋ1 = u1x1, |u1| ≤ 1,

ẋ2 = u2x2, |u2| ≤ 1,
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represented by the family of vector fields

fu = (u1x1, u2x2)T

has four 2-dimensional orbits (the open octants), four 1-dimensional orbits (open half-axes)
and one zero dimensional orbit which is the origin.

Example 2.13 The family of three vector fields which represent rotations around the three
axes

f1 = (0, x3,−x2)T , f2 = (x3, 0,−x1)T , f3 = (x2,−x1, 0)T

has a continuum of 2-dimensional orbits which are spheres with the center at the origin and
one zero dimensional orbit which is the origin itself. Note that the orbits form a 2-dimensional
foliation on the set X = IR3 \ {0}.

The following example shows that in the nonanalytic case the equality Γ(p) = L(p) may
not hold.

Example 2.14 Consider the family of the following two C∞ vector fields in the plane

f1 = (1, 0)T , f2 = (0, φ(x1))
T ,

where φ(y) is a smooth function on IR positive for y < 0 (for example φ(y) = exp(1/y)) and
equal to zero for y ≥ 0. Then the orbit of any point is equal to the whole IR2 and from the
orbit theorem it follows that dim Γ(p) = 2 for any p. On the other hand, we have that L(p)
is spanned by the first vector field only, when x1 ≥ 0, so dimL(p) = 1.

Corollary 2.15 (Chow and Rashevskii) If dimL(p) = n for any p ∈ X, then any point

of X is reachable from any other point piecewise by trajectories of F = {fu}u∈U (allowing

positive and negative times), i.e. Orb(p) = X for any p.

Proof. It follows from our assumption and the above corollary that Γ(p) is equal to the whole
tangent space TpX for any p. From the orbit theorem it follows then that the orbit of any
point is of full dimension, so it is an open subset of X. We conclude that X is a union of
disjoint open subsets and, as X is connected, only one of them can be nonempty. Therefore,
X consists of a single orbit and any point is reachable from any other point piecewise by
trajectories of our family of vector fields.

2.4 Integrability of distributions and foliations

The above results, especially the orbit theorem, allow us to give criteria for integrability of
distributions and prove some classical theorems.

Definition 2.16 We say that a distribution of constant dimension p −→ ∆(p) on X is
integrable if there exists a foliation {Sα}α∈A on X such that for any p ∈ X

TpS = ∆(p),

where S is the leaf passing through p.
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Finding the foliation which satisfies the condition of the above definition is usually called
integrating this distribution, while the foliation and its leaves are called integral foliation
and integral (sub)manifolds of the distribution.

Theorem 2.17 (Global Frobenius theorem) A smooth distribution of constant dimension

∆ is integrable if and only if it is involutive. The integral foliation of ∆ is the partition of X
into orbits of the family of (partial) vector fields {g | g ∈ ∆}.

Proof. Assume that our distribution is integrable and choose two vector fields f, g ∈ ∆ and
any point p ∈ X. Then f and g are tangent to the leaf S passing through p, therefore their
Lie bracket [f, g] is also tangent to this leaf by Property 1. As this happens for any p, it
follows that [f, g](p) ∈ TpS = ∆(p) for all p and so [f, g] ∈ ∆.

Assume now that our distribution is involutive. Consider the family of partial vector
fields F = {f | f ∈ ∆}. We shall prove that the partition of X into orbits of this family
gives the desired foliation.

Let f1, . . . , fk,∈ ∆ span this distribution in a neighborhood of p. We shall show that ∆
is invariant under the flows of the vector fields f ∈ ∆, that is the distribution Γ in the orbit
theorem coincides with ∆. We have to prove that

Dγf
t (p)∆(p) = ∆(q), q = γf

t (p),

for f ∈ ∆. The left hand side subspace is spanned by the vector fields

gi
t = Adγf

t
fi, i = 1, . . . , k.

From the involutiveness assumption we have that [f, fi] =
∑

j φijfj . Denote the functions

aij
t = −φij ◦ γ

f
−t. From Proposition 1.13 it follows that the spanning vector fields satisfy

pointwise the following system of linear differential equations

d

dt
gi

t = −Adγf
t
[f, fi] =

∑

j

gj
ta

ij
t .

As the solution of a linear differential equation depends linearly on its initial conditions, it
follows that

gi
t =

∑

j

ψij
t g

j
0 =

∑

j

ψij
t fj ,

where ψij
t are functions. Therefore, the subspace Dγf

t (p)∆(p) is spanned by the vectors
f1(p), . . . , fk(p) and so it is equal to ∆(p).

It follows from the orbit theorem that ∆ gives the tangent space to the orbits and
completes the proof.

To complete the proof it is enough to show that the orbits indeed form a foliation of X.
This follows immediately from the local version of the Frobenius theorem. In fact, our
distribution is constant in appropriate coordinates and so the connected components of
intersections of leaves look like in the definition of a foliation.

In order to define integrability of distributions which are not of constant dimension we
have to weaken the notion of foliation. We will do this in such a way that partitions of the
space X into orbits of a family of vector fields form foliations in this weaker sense.
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Definition 2.18 A foliation with singularities is a partition

X =
⋃

α∈A

Sα

of X into immersed submanifolds such that, locally, there is a family of vector fields {gβ}β∈B

such that TpSα = span {gβ(p) | β ∈ B} for all p and α.
A distribution onX is called integrable if there exists a foliation with singularities {Sα}α∈A

which satisfies TpS = ∆(p) for any p and S denoting the leaf which passes through p.

Theorem 2.19 (Nagano) Any analytic involutive distribution ∆ is integrable.

Proof. We take the partition of X into orbits of the family of vector fields {f | f ∈ ∆}
as a candidate for the integral foliation. From the orbit theorem and the corollary to it
follows that the tangent space to the leaf passing through p is equal to Γ(p) = L(p) = ∆(p)
(involutivity implies that the space of vector fields {f |f ∈ ∆} =: F is closed under the Lie
bracket and so coincides with Lie {F} = L. This means that the partition into orbits is the
integral foliation of ∆ indeed.

Appendix: Global equivalence of families of vector fields

We close this chapter with a proof of sufficiency of the theorem about equivalence of families
of vector fields and a global version of this result. The theorem of Nagano will be helpful in
this proof.

Proof of Theorem 1.20. Sufficiency. In the proof we shall use the method of graph of Cartan
and the theorem of Nagano. The method of graph consists of considering the product space
Z = X × X̃ and constructing the graph of the desired diffeomorphism Φ : X −→ X̃ as an
integral manifold of a distribution of vector fields on Z.

Define the product vector fields on Z by hu = fu × f̃u, u ∈ U , where, in IRn,

fu × f̃u = (f 1
u , . . . , f

n
u , f̃

1
u , . . . , f̃

n
u )T .

Consider the distribution spanned by the Lie algebra Lie {H} generated by the family
H = {hu}u∈U of these vector fields. Nagano’s theorem says that the distribution Z ∋ z −→
Lie {H}(z) is integrable, i.e. for each point z ∈ Z there is an integral manifold of Lie {H}
passing through this point.

Take the point z0 = (p, p̃) ∈ Z. We claim that the integral submanifold S passing through
z0 is of dimension n and it is the graph of a local diffeomorphism between X and X̃. Since S
is the integral manifold, its dimension is equal to the dimension of the distribution Lie {H}
at z0. But the vectors defining Lie {H}(z0) are of the form

h[u1···uk] = (f[u1···uk], f̃[u1···uk]) = (f[u1···uk], Lf[u1···uk]),

the latter equality following from the assumption. From transitivity of Lie {F} at p and
the above form of the vector fields h[u1···uk] it follows that the dimension of Lie {H}(z0) is
at least n. On the other hand, since the second component of these vector fields depends
on the first through the same linear map L, it follows that this dimension is precisely equal
to n.
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It follows that the integral submanifold S is of dimension n. To show that it defines a
graph of a local diffeomorphism between X and X̃ we should check that the projections of
the tangent space to S onto the tangent spaces of X and X̃ are “onto”. From continuity, it
is enough to show this at the point z0. But Tz0S = Lie {H}(z0) and the “ontoness” follows
immediately from the above form of vectors h[u1···uk] and the transitivity of F and F̃ .

Let Φ be the local diffeomorphism from X to X̃ defined in a neighborhood of p via
the submanifold S, Φ(p) = p̃. Since among the vectors tangent to S there are vectors

hu = (fu, f̃u), and S is the graph of Φ, it follows that there is the following relation between

the domain component fu of hu and its codomain component f̃u:

f̃u(Φ(x)) = DΦ(x)fu(x), or f̃u(x̃) = DΦ(x)fu(x), x = Φ−1(x̃).

The latter equality means that f̃u = AdΦfu, u ∈ U . The proof of sufficiency is complete.

Theorem 2.20 (Sussmann) Assume that F and F̃ are analytic transitive families of vector

fields on compact, simply connected, analytic manifolds X and X̃ and the relation between

the Lie brackets as in the local theorem holds. Then there exists a global diffeomorphism

Φ : X −→ X̃ such that AdΦfu = f̃u, u ∈ U .

Proof. The proof of this theorem is an extension of the above proof. Namely, it is enough
to prove that under our assumptions the map Φ defined above is a global diffeomorphism.

We shall first show that the projection maps from S to X and X̃ are onto (and so they
are coverings of X and of X̃, respectively). It is enough to show this for X. Take any point
q on X. From the theorem of Chow and Rashevskii it follows that this point is reachable
from p piecewise by the trajectories of the vector fields in F . Consider the point z1 on S
which corresponds to q and is reachable from z0 piecewise by the lifted trajectories of the
corresponding vector fields in H . It is easy to see that the projection of z1 onto X is equal
to q. Therefore, S is a covering of X.

As X is simply connected, it follows that this covering is a single covering, i.e. a dif-
feomorphism of S and X. In a similar way we show that the projection of S onto X̃ is a
diffeomorphism. We conclude that the families F and F̃ are diffeomorphic.

3 Controllability and accessibility

3.1 Basic definitions

We shall be dealing with two classes of control systems, the general nonlinear systems

Σ : ẋ = f(x, u),

where x(t) ∈ X and u(t) ∈ U , and the control-affine systems

Σaff : ẋ = f(x) +
m
∑

i=1

uigi(x),

where x(t) ∈ X and u(t) = (u1(t), . . . , um(t)) ∈ U . The state space X is assumed to be
an open subset of IRn or a smooth differential manifold of dimension n. The control set
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U is an arbitrary set (with at least two elements), in the case of system Σ, and a subset
of IRm, in the case of Σaff . The vector fields fu = f(·, u), defined by Σ, are assumed to be
smooth (of class C∞). Similarly, we assume that the vector fields f , g1, . . . , gm defined by
Σaff are smooth. We will not need regularity of f(x, u) in Σ with respect to u when we will
use piecewise constant controls. Otherwise, we will assume that f(x, u) together with the
first partial derivatives with respect to u are smooth as functions of x and continuous with
respect to (x, u).

We begin with the formal definition of reachable sets.

Definition 3.1 We shall call the set of points reachable from p ∈ X for system Σ its
reachable set from p and denote it by R(p). For the class of piecewise constant controls this
is the set of points

γuk
tk ◦ · · · ◦ γu1

t1 (p), k ≥ 1, u1, . . . , uk ∈ U, t1, . . . , tk ≥ 0.

Similarly, the set of above points with t1 + · · · + tk = t will be called the reachable set at

time t from p and denoted by Rt(p), and the set of such points with t1 + · · ·+ tk ≤ t will be
referred to as the reachable set up to time t from p and denoted by R≤t(p).

It is unreasonable to expect that the reachable set of a nonlinear control system will have
a simple structure, in general. Almost never it will be a linear subspace, even if X = IRn

and U = IRm. For example, for the system in the plane

ẋ1 = u2
1, ẋ2 = u2

2

with U = IR2 the reachable set from the origin is the positive ortant.
Therefore, our aim will be to establish qualitative properties of the reachable sets. One

of such basic properties is the following.

Definition 3.2 We shall say that the system Σ is accessible from p if its reachable set R(p)
has a nonempty interior. Similarly, we will call this system strongly accessible from p if the
reachable set Rt(p) has a nonempty interior for any t > 0.

3.2 Taylor linearization

We begin with a presentation of a rough sufficient condition for strong accessibility. Suppose
that the set of admissible controls consists of piecewise continuous controls with values in
U ⊂ IRm.

Let (x0, u0) be an equilibrium point of our system Σ, i.e. f(x0, u0) = 0. Assume that f
is of class C1 with respect to (x, u). Denote

A(x, u) =
∂f

∂x
(x, u), B(x, u) =

∂f

∂u
(x, u),

and let A0 = A(x0, u0), B0 = B(x0, u0).

Theorem 3.3 If u0 ∈ intU and the pair (A0, B0) satisfies the controllability rank condition,

then the system is strongly accessible from x0.
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A corresponding result outside an equilibrium can be stated as follows. Let u∗(·) be an
admissible control and let x∗(·) be the corresponding trajectory of system Σ. Denote

A(t) =
∂f

∂x
(x∗(t), u∗(t)), B(t) =

∂f

∂u
(x∗(t), u∗(t)).

Theorem 3.4 If u∗(t) ∈ intU and the linear system ẋ = A(t)x + B(t)u, x(0) = 0 with-

out constraints on the control is controllable on the interval [0, T ], then the reachable set

RT (x0) of system Σ has a nonempty interior. In particular, if the Grammian rank condition

rank G(0, t) = n is satisfied for our linear system for some t > 0 (equivalently, for any

t > 0), then system Σ is strongly accessible.

The Grammian matrix used above is defined by

G(0, t) =
∫ t

0
S(τ)B(τ)BT (τ)ST (τ)dτ,

where S(t) is the fundamental solution of Ṡ(t) = A(t)S(t), S(0) = I.
For the proof we shall need the following lemma of the theory of ordinary differential

equations, which will be stated without proof.
Let ū be a measurable, essentially bounded control and consider an admissible control in

the form of the following variation
uǫ = u∗ + ǫū.

Denote by xǫ the trajectory of system Σ, xǫ(0) = x0, corresponding to the control uǫ.
Introduce the variation of the trajectory by

x̄(t) =
∂

∂ǫ

∣

∣

∣

∣

∣

ǫ=0

xǫ(t).

Lemma 3.5 If f = f(x, u) is of class C1, then the variation of the trajectory satisfies the

following equation, called variational equation

˙̄x = A(x∗(t), u∗(t))x̄ +B(x∗(t), u∗(t))ū, x̄(0) = 0.

Both above theorems follow from the criteria on controllability of linear systems without
constraints (see the contribution of Zabczyk in this volume) and from the following lemma.

Lemma 3.6 If the variational system (treated as a linear system without constraints on the

control) is controllable, then the original system is strongly accessible.

Proof. Denote the matrices A(t) and B(t) as above. As the variational system is controllable,
there exist (bounded) controls vi which steer this system from 0 to ei = (0, . . . , 1, . . . , 0)T

(with 1 at i-th place) at time T , i = 1, . . . , n. Take the control

u = u(λ1, . . . , λn) = λ1v
1 + · · · + λnv

n.

When applied to the original system with the initial condition x(0) = x0 it gives a final state
x(T ) dependent on the parameters λ = (λ1, . . . , λn) in a differentiable way. In particular,
the variation

∂x(T )

∂λi

∣

∣

∣

∣

∣

λ=0

= x̄i
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satisfies the variational equation with the control ū = vi. As x̄i(T ) = ei, it follows that the
Jacobi map of the nonlinear mapping

(λ1, . . . , λn) −→ x(T )

is of full rank. Therefore, it follows from the inverse function theorem that this mapping
maps a neighborhood of the origin onto a neighborhood of the origin. As u(λ1, . . . , λn)
form admissible controls, for λi small, it follows that the reachable set RT (x0) contains a
neighborhood of the point x∗(T ).

3.3 Lie algebras of control system

We shall be using the following families of vector fields associated to the system Σ. Denote

fu = f(·, u),

and define the following families of vector fields

F = {fu}u∈U

and
G = {fu − fv | u, v ∈ U}.

We define the Lie algebra of system Σ as the smallest linear space L of vector fields on X
which contains the family F and is closed under Lie bracket:

f1, f2 ∈ L =⇒ [f1, f2] ∈ L,

or equivalently
f1 ∈ F , f2 ∈ L =⇒ [f1, f2] ∈ L.

Remark 3.7 Equivalence of both conditions follows by iterative application of the Jacobi
identity written in the form

ad[g,h]f = adgadhf − adhadgf

and from bilinearity of Lie bracket (cf. Appendix 1, Section 1).

We also define the Lie ideal of system Σ as the smallest linear space L0 of vector fields
on X which contains the family G and is closed under Lie bracket:

f1 ∈ L, f2 ∈ L0 =⇒ [f1, f2] ∈ L,

or equivalently
f1 ∈ F , f2 ∈ L0 =⇒ [f1, f2] ∈ L0.

L0 is closed under Lie bracket and so is a Lie algebra in the usual sense (cf. Appendix 1,
Section 1).
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One can see from both definitions that L and L0 can be equivalently defined through the
iterative Lie brackets as follows

L = span {[fu1, · · · , [fuk−1
, fuk

] · · ·] | k ≥ 1, u1, · · · , uk ∈ U},

L0 = span {[fu1, · · · , [fuk−1
, fuk

− fuk+1
] · · ·] | k ≥ 1, u1, · · · , uk+1 ∈ U}.

It follows then that

L = span {fu∗ , L0},

where u∗ is any fixed element of U . In fact, directly from the definitions we obtain that
L0 ⊂ L, and also fu∗ ∈ L. The converse inclusion L ⊂ span {fu∗ ,L0} follows from the
equalities

fu1 = fu∗ + fu1 − fu2 , u2 = u∗,

[fu1 , · · · , [fuk−1
, fuk

] · · ·] = [fu1 , · · · , [fuk−1
, fuk

− fuk+1
] · · ·],

where uk+1 = uk−1.
For the control-affine system Σaff the corresponding Lie algebras can be expressed as

L = Lie {f, g1, . . . , gm} = span {[gi1 , · · · , [gik−1
, gik ] · · ·] | k ≥ 1, 0 ≤ i1, . . . , ik ≤ m},

L0 = span {[gi1, · · · , [gik−1
, gik ] · · ·] | k ≥ 1, 0 ≤ i1, . . . , ik ≤ m, ik 6= 0},

where g0 = f .

Remark 3.8 L0 is a Lie ideal in the Lie algebra L.

Example 3.9 For illustration and also for further use we shall compute the Lie algebra and
the Lie ideal of the linear system

ẋ = Ax +Bu = Ax+
m
∑

i=1

uibi,

where bi are constant vector fields being columns of the matrix B. Taking into account that
g1 = b1,. . . ,gm = bm, f = g0 = Ax, and that Lie bracket of constant vector fields is zero, we
find that in the above formula for L0 the only nonzero iterated Lie brackets are

[Ax, bi] = −Abi, [Ax, [Ax, bi]] = [Ax,−Abi] = A2bi, . . . ,

adAx · · ·adAxbi = adj
Axbi = (−1)jAjbi.

Therefore, the Lie ideal L0 consists of constant vector fields only,

L0 = span {Ajbi | j ≥ 0, 1 ≤ i ≤ m} = span {Ajbi | 0 ≤ j ≤ n− 1, 1 ≤ i ≤ m},

and L = span {Ax,L0}, where in the second equality we use the Cayley-Hamilton theorem.
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3.4 Accessibility criteria

Given a family of vector fields H, we shall use the notation

H(x) = span {h(x) | h ∈ H}.

In particular, L(x) and L0(x) will denote the space of tangent vectors at x defined by the
Lie algebra and the Lie ideal of system Σ. The following result was first proved by Sussmann
and Jurdjevic [SJ].

Theorem 3.10

(a) If for a state smooth system Σ the Lie algebra is of full rank at x0, dimL(x0) = n, then

the attainable set up to time t from x0 has the nonempty interior and so the system is

accessible from x0.

(b) If the system is state analytic and dimL(x0) < n, then the system is not accessible from

x0.

We present a proof of the first statement (due to A. Krener) which is very simple and
gives insight to the problem of accessibility.

Proof of (a). It follows from the assumption dimL(x0) = n that dimL(x) = n for x in a
neighborhood of x0 (the full rank is realized by n vector fields which are linearly independent
in a neighborhood of x0). It also follows from the same assumption that there is a u1 ∈ U
such that fu1(x0) 6= 0. Otherwise, it would follow from the Jacobian definition of Lie bracket
that all the vector fields in L vanished at x0 and so dimL(x0) = 0. The trajectory γu1

t1 x0,
t ∈ V1 = (0, ǫ1), ǫ1 > 0, forms a one dimensional submanifold of X which we denote by S1.

We now claim that there is a u2 ∈ U such that the vector fields fu1 and fu2 are linearly
independent at a point x1 ∈ S1. Otherwise, all the vector fields in F would be tangent to
the submanifold S1. As taking linear combinations and Lie bracket of vector fields tangent
to a submanifold gives vector fields tangent to this submanifold, we would have that all the
vector fields in L were tangent to S1 which would contradict dimL(x0) = n (if n > 1).

Let fu1 and fu2 be linearly independent at x1 = γu1
t1 x0 ∈ S1, 0 < t1 < ǫ1. Define the map

V2 ∋ (t1, t2) −→ x = γu2
t2 ◦ γu1

t1 (x0),

where V2 is an open subset of IR2: V2 = (0, ǫ1) × (0, ǫ2), ǫ2 > 0. For ǫ2 sufficiently small
the image of this map contains a submanifold of X of dimension 2 (this follows from linear
independence of fu1 and fu2) which we denote by S2.

By an argument analogous to the above there exists a u3 ∈ U and a point x2 ∈ S2 such
that the vector field fu3 is not tangent to S2 at x2. Thus the image of the map

V3 ∋ (t1, t2, t3) −→ x = γu3
t3

◦ γu2
t2

◦ γu1
t1

(x0)

(where V3 = (0, ǫ1) × (0, ǫ2) × (0, ǫ3)) contains a submanifold S3 of X of dimension 3. Of
course, Si, i = 1, 2, 3 are subsets of the reachable set.

After n steps of such a construction we obtain a submanifold Sn of X of dimension n,
i.e. an open subset of X, which is contained in the reachable set R(x0) and, more precisely,
in the reachable set R≤t(x0), where t = ǫ1 + · · ·+ ǫn. Since ǫ1, . . . , ǫn could have been taken
arbitrarily small, it follows that any attainable set Rt, t > 0 has the nonempty interior.
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Proof of (b). From the corollary to the orbit theorem it follows that the tangent space
to the orbit from x0 is equal to L(x0). When dimL(x0) < n, it follows that this orbit is a
submanifold of dimension smaller than n. Thus, its interior is empty. As the reachable set
is a subset of the orbit, its interior is empty also.

The analyticity assumption in statement (b) cannot be dropped. This can be seen in the
example presented after the orbit theorem in Section 2 (showing that in the smooth case we
can have Γ(x) 6= L(x)) by taking an initial point with positive second coordinate.

If the dimension of the Lie algebra of the system is not full at some point, still we have
the following positive result.

Corollary 3.11 If the system Π is state analytic, then the interior in the orbit Orb(x0) of

the reachable set R(x0) is nonempty.

Proof. If dimL(x0) = n, then this is simply statement (a) of our theorem. When this
dimension is smaller we can restrict our system to the orbit passing through the initial
point. The corollary to the orbit theorem says that dimL(x0) is equal to the dimension of
the orbit. Thus, our system reduced to the orbit satisfies the assumptions of statement (a)
of our theorem and our result follows.

Example 3.12 Consider the system with the scalar control u ∈ U = IR

ẋ1 = u, ẋ2 = xk
1, k ≥ 2.

It is easy to check that the Taylor linearization of this system, at the equilibrium x0 = 0 and
u0 = 0, is not controllable. Our system is control-affine with f = (0, xk

1)T and g = (1, 0)T .
Then

[g, f ] = (0, kxk−1
1 )T , [g, [g, f ]] = (0, k(k − 1)xk−2

1 )T , adk
gf = (0, k!)T ,

and so dimL0(x) = dimL(x) = 2 for all x, in particular the system is strongly accessible
from the origin.

There is an analogous relation between the Lie ideal L0 and the attainable set at time t
which is established by the following theorem.

Theorem 3.13

(a) If the system is state smooth and dimL0(x0) = n, then the attainable set Rt(x0) has a

nonempty interior for any t > 0.
(b) If dimL0(x0) < n, then intRt(x0) = ∅ for any t > 0.

Example 3.14 Consider the system on IR2

ẋ1 = 1, ẋ2 = u x2
1,

and take x0 = (0, 0), and U = IR. We have

F = {(1, u x2
1)T | u ∈ IR}, G = span {(0, x2

1)
T}.

The Lie algebra L contains the vector fields

f1 = (1, 0)T , f2 = (1, x2
1)

T , f3 = [f1, f2] = (0, 2x1)
T , [f1, f3] = (0, 2)T .
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Therefore, dimL(x0) = 2 and so the system is accessible from x0. (Note that one gets
the same result if the set U is restricted to two values U = {0, 1}). On the other hand
L0(x0) = span {(0, 1)T} and so the interior of the attainable set at time t, t > 0, is empty.
In fact, it can be proved that the attainable set R(x0) is equal to the open right half plain
including the origin and the set Rt(x0) is equal to the set x1 = t, x2 ∈ IR.

Example 3.15 Accessibility of linear systems without constraints.

As we computed earlier, for autonomous linear system Λ with unconstrained control we have
L(x) = Im [B,AB, . . . , An−1B] and L(x) = span {Ax,L(x)}. Thus, such a system is strongly
accessible from x if and only if the controllability matrix

[B,AB, . . . , An−1B]

is of rank n (such linear systems are called controllable).
Noncontrollable linear system may be accessible from x. This happens when dimL(x) =

n but Ax /∈ Im [B,AB, . . . , An−1B]. Then the system is accessible from those x at which Ax
is not in the image of the controllability matrix. The system is not accessible from the linear
subspace of points at which Ax is in this image (this subspace is the counterimage under A
of the image of the controllability matrix).

Exercise Analyse the orbits of the linear system without constrains on the control. Show
that this system may have one orbit, three orbits, or a continuum of orbits. (The Kalman
decomposition theorem for linear systems is helpful here.)

Example 3.16 Accessibility of linear systems with constraints.

Consider now a linear autonomous system with the constraints u(t) ∈ U ⊂ IRm. If the
interior of U is nonempty, then the controllability rank condition implies that the system
is strongly accessible, as we have already established in the section about linear systems.
When U has the empty interior then the situation is more complicated. One possibility is
to use the principle of convexification. We will use the above theorems on accessibility and
strong accessibility. It is more convenient to consider the system in the form

ẋ = Ax + v, v ∈ V,

where V is the image of U under the linear map B : IRm −→ IRn. Let us introduce the set

W = {v′ − v′′ | v′, v′′ ∈ V }.

The one can easily compute that the Lie algebra of our system contains the vector fields
Ax + v′ − (Ax + v′′) = v′ − v′′ ∈ W , i.e. all constant vector fields f = w, w ∈ W . Thus,
it contains also the Lie brackets [w,Ax + v] = Aw, w ∈ W , and by induction it contains
all the constant vector fields Aiw, i ≥ 0, w ∈ W . It follows then from the Cayley-Hamilton
theorem that the linear system with constraints is strongly accessible from x0 if and only if

dim span {Aiw | 0 ≤ i ≤ n− 1, w ∈W} = n.

It is accessible from x0 if and only if the same collection of vectors together with any fixed
vector Ax0 + v, v ∈ V , span the whole space.
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Example 3.17 Space-craft with two jets. Consider a spacecraft with two pairs of jets placed
so that they angular momenta are parallel to principal axes of the spacecraft. Then, the
equations of motion for the angular velocities take the form

ω̇1 = a1ω2ω3 + u1,

ω̇2 = a2ω3ω1 + u2,

ω̇3 = a3ω1ω2.

Here the constants are given by the principal momenta of inertia: a1 = (I2 − I3)/I1, a2 =
(I3 − I1)/I2, and a3 = (I1 − I2)/I3. Our system is control-affine with

f = (a1ω2ω3, a2ω3ω1, a3ω1ω2)
T , g1 = (1, 0, 0)T , g2 = (0, 1, 0)T .

We compute
[f, g1] = −(0, a2ω3, a3ω2)

T , [f, g2] = −(a1ω3, 0, a3ω1)T ,

[g1, [g2, f ]] = (0, 0, a3)
T .

It follows easily that

dimL0(x) = 3 ⇐⇒ dimL(x) = 3 ⇐⇒ a3 6= 0,

for any x = (ω1, ω2, ω3). It follows then that the above system is accessible (equivalently,
strongly accessible) if and only if the momenta of inertia of the space-craft along the axes
with two pairs of jets are different.

Example 3.18 Space-craft with one jet. The analysis of the space-craft with one jet, with
the equations

ω̇1 = a1ω2ω3 + u,

ω̇2 = a2ω3ω1,

ω̇3 = a3ω1ω2,

gives a different result. We have that

f = (a1ω2ω3, a2ω3ω1, a3ω1ω2)
T , g = (1, 0, 0)T ,

[f, g] = −(0, a2ω3, a3ω2)
T = −(ω1)−1f + (ω1)

−1a1ω2ω3g.

Computing the higher order Lie brackets does not give anything new:

[g, [f, g]] = 0, [f, [f, g]] = (∗, 0, 0)T = φg,

where φ is a function. It follows that

L(x) = span {g(x), [f, g](x)}

and these two vector fields span an involutive distribution. From the form of g and [f, g] it
follows that the orbits of the system consist of the Cartesian product of lines along the first
coordinate and the trajectories of the vector field (a2ω3, a3ω2)

T along the last two coordinates.
In particular, if a2 6= 0 6= a3, then there is one 1-dimensional orbit of the system (the
first coordinate axis) corresponding to the equilibrium of the vector field (a2ω3, a3ω2)T , and
continuum of 2-dimensional orbits. Our system is not accessible from any x = (ω1, ω2, ω3).
We conclude that if there is only one pair of jets which gives the angular momentum parallel
to one of the principal axes of inertia of the space-craft then, contrary to the case of two
pairs of jets, the system is never accessible.
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4 Controllability and path approximation

4.1 Time-reversible systems

In general, the reachable set is a proper subset of the orbit. It is reasonable to ask for
which systems the reachable set coincides with the orbit. One class of such systems is called
time-reversible systems.

Below we will also consider piecewise continuous controls, as admissible controls. By def-
inition these will be functions u : [0, T ] → U defined on finite intervals [0, T ] and continuous,
except at a finite number of points, having left and right limits at such points (the set U
will be assumed a subset of IRm or a metric space). We shall say that a function g(x, u)
is of class Ck,0 (respectively, of class Ck,∅) if U is a metric space and g is continuous as a
function of (x, u) together with all partial derivatives with respect to x of order not exceeding
k (respectively, U is any set and g(x, u) is of class Ck with respect to x, for any fixed u ∈ U).

Definition 4.1 We will call a system Σ : ẋ = f(x, u) time-reversible if there are a function
U ∋ u → v(u) ∈ U and a positive valued function λ(x, u) of class C1,∅ such that

f(x, u) = −λ(x, u)f(x, v(u)) for any (x, u) ∈ X × U.

Similarly, Σ is called feedback time-reversible if there are functions U ∋ u → v(x, u) ∈ U and
λ(x, u) (the latter positive valued) of class C1,0 such that

f(x, u) = −λ(x, u)f(x, v(x, u)) for all (x, u) ∈ X × U.

Example 4.2 The system ẋ =
∑m

i=1 uigi(x) is time reversible if the set U ⊂ IRm is symmetric
with respect to the origin (then we can take λ ≡ 1 and v(u) = −u) or U contains a
neighborhood of the origin.

Proposition 4.3 For any time-reversible system with f(x, u) of class C1,∅ and piecewise

constant controls (respectively, for any feedback time-reversible system Σ with f of class C1,0

and piecewise continuous controls) we have

R(x0) = Orb(x0).

Proof. In the definition of the reachable set it is not allowed to go backward in time along
trajectories of the vector fields fu = f(·, u), contrary to the case of the orbit. This means
that, for piecewise constant controls, we have the inclusion R(x0) ⊂ Orb(x0) but, possibly,
no converse inclusion. For a time-reversible system going backward in time along a trajectory
of fu can be replaced (up to time scale defined by λ) by going forward with the control v(u).
Therefore, for a time-reversible system the points which are piecewise forward-backward
reachable by trajectories of fu, u ∈ U , (definition of the orbit) are also forward reachable
by such trajectories and the inclusion R(x0) ⊃ Orb(x0) follows. The same argument works
for proving this inclusion in the case of feedback time-reversible systems, where we use the
control ũ(t) = v(x(t), u) in order to go backwards along the trajectory of fu. In the case
of piecewise continuous controls the inclusion R(x0) ⊂ Orb(x0) follows from the following
proposition.
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Consider the system ẋ = ux, with x ∈ IR and u ∈ IR. It has three orbits: the half-lines
(−∞, 0), (0,∞), and the point {0}. The (unbounded) control u(t) = 1/(t− 1) produces the
trajectory x(t) = t−1, t ∈ [0, 2], starting at t = 0 from x0 = −1 in the first orbit and ending
up at the point x(2) = 1 in the second orbit. This phenomenon cannot occur for piecewise
continuous controls (having left and right limits at points of discontinuity).

Namely, the following proposition says that, for piecewise continuous controls, trajectories
of Σ starting from x0 ∈ X cannot leave the orbit Orb(x0).

Proposition 4.4 If U is a metric space and f(x, u) is of class C1,0 then, for piecewise

continuous controls, we have the inclusion

R(x0) ⊂ Orb(x0).

In other words, any trajectory of Σ corresponding to a piecewise continuous control and

starting from x0 stays in Orb(x0) for all times t for which it is defined in X.

Proof. We shall first prove the following weaker statement. If x0 is a point in X, u : [0, T ] →
U is a piecewise continuous control and t0 ∈ (0, T ), then there exists a neighborhood I of
t0 in [0, T ] such that the trajectory x(t) of Σ corresponding to u(·) satisfying x(t0) = x0 is
well defined, for t in I, and x(t) ∈ Orb(x0) for t ∈ I. To prove this statement notice that
S := Orb(x0) is a submanifold, by the orbit theorem, and f(x, u) ∈ TxS for any x ∈ S
and u ∈ U . This means that the system Σ can be restricted to S =: X̃ (in suitable local
coordinates S can be locally identified with an open subset of Rk, where k = dimS). The

right hand side f̃(x̃, u) of the restricted system is also of class C1,0, so we have existence

(in S) and uniqueness of solution of the equation ˙̃x = f̃(x̃, u), with the initial condition
x̃(t0) = x0. This solution coincides with the unique solution of ẋ = f(x, u). This implies our
statement.

To prove the proposition assume that the converse holds, i.e., there exists a piecewise
continuous control u : [0, T ) → U such that the corresponding trajectory x(t) leaves the
orbit S := Orb(x0) at time t∗ ∈ [0, T ). This means that [0, t∗) is the maximal right-open
interval such that x([0, t∗)) is contained in the orbit S. Suppose that the point p∗ := x(t∗)
is in S. Taking p = p∗ and t0 = t∗ in the statement proved above we see that x(t) ∈ S for
t > t∗ sufficiently close to t∗. This contradicts the maximality of the interval [0, t∗). Suppose
thus that p∗ = x(t∗) is not in S. Then p∗ is in another orbit, namely in Orb(p∗). Again,
we choose p∗ as initial point of the trajectory x(t), x(t∗) = p∗, corresponding to the original
control. Then, by the above statement, the trajectory stays in Orb(p∗), for some t < t∗.
Since S = Orb(x0) and Orb(p∗) are disjoint, this contradicts to the fact that x(t) is in S for
all t < t∗. The proof is complete.

Proposition 4.5 For any time-reversible system and piecewise constant controls (or feed-

back time-reversible system and piecewise continuous controls), with the vector fields fu of

class C∞, we have

dimL(x0) = n =⇒ x0 ∈ intR(x0).

Proof. From our theorem on accessibility of systems and the Lie algebra rank condition
dimL(x0) = n it follows that the reachable set corresponding to piecewise constant controls
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has a nonempty interior. Let x1 be a point in this interior, contained together with its
neighborhood W in the reachable set. Thus

x1 = γuk
tk ◦ · · · ◦ γu1

t1
(x0),

for some k ≥ 1, u1, . . . , uk ∈ U and t1, . . . , tk ∈ (0,∞), where γu
t denotes the flow of fu.

The forward time trajectories of fu1, . . . , fuk
can be followed backward using the controls

v1 = v(u1), . . . , vk = v(uk) (defined in our definition of time-reversible systems), choosing
suitable positive times τ1, . . . , τk so that the point

x2 = γv1
τ1

◦ · · · ◦ γvk
τk

◦ γuk
tk ◦ · · · ◦ γu1

t1
(x0) = γv1

τ1
◦ · · · ◦ γvk

τk
(x1)

coincides with x0. This point is also in the interior of the reachable set as the composition
of flows γv1

τ1 ◦ · · · ◦ γvk
τk

is a local diffeomorphisms and maps the neighborhood W of x1 onto
a neighborhood V of x2 = x0. Since W was contained in the reachable set R(x0), V is also
contained in R(x0). It follows that x0 lies in the interior of the reachable set from x0.

In the case of feedback time-reversible systems the proof is similar. In this case the flows
of autonomous vector fields fu corresponding to constant controls have to be replaced by the
flows of nonautonomous vector fields fu(t) corresponding to continuous controls t→ u(t).

As a corollary we obtain another proof of the Chow-Rashevskii theorem (this proof is
independent of the orbit theorem).

Corollary 4.6 If the system is time-reversible, X is connected, fu are of class C∞ and

dimL(x) = n for all x ∈ X, then any point of X is forward reachable from any other by

piecewise constant controls, i.e. R(x) = X for any x ∈ X.

Proof. From Proposition 4.3 it follows that the reachable set R(x) coincides with the orbit.
Moreover, it follows from Proposition 4.5 that R(x) is open since, after reaching any point,
we can also reach a neighborhood of this point. Thus reachable sets coincide with orbits
and are open subsets of X. As X is a disjoint union of orbits, it is a disjoint union of open
orbits. From connectedness of X it follows that X consists of one orbit. Thus, for any x0

the orbit of x0 is equal to X. As the reachable set of x0 coincides with the orbit, it is also
equal to X.

Example 4.7 Our example of the motion of a car (Examples 1.3 and 1.10) gives a time-
reversible system if, together with the forward motions given by the vector fields f and g
we introduce also backward motions −f and −g. It follows from the above result that the
reachable set is the whole X, which means that we can reach any position of the car. In
fact, a much stronger result can be proved. Namely, the car can “approximately follow” any
continuous curve in its state space. This will follow from the main result of the following
subsection.

4.2 Approximating curves by trajectories

In this section we will show other controllability properties of the system which are related
to its orbits. In particular, we will show that for a time-reversible system any curve lying in
a single orbit can be C0 approximated (up to time reparametrization) by trajectories of the
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system. We assume that X ⊂ IRn. The same can be done for X a differential manifold, if we
replace the Euclidean distance used below by the distance defined by a Riemannian metric
on M .

Consider a continuous curve
c : [0, 1] → X.

We denote by Im c = c([0, 1]) the image of the curve in X and p0 := c(0).

Definition 4.8 We say that c(·) can be C0 approximated by trajectories of Σ if for any ǫ > 0
there exist T > 0, an admissible control u : [0, T ] → U , and a strictly increasing continuous
function τ(t), τ(0) = 0, τ(T ) = 1, such that x(T, p0, u(·)) = c(1) and

‖x(t, p0, u(·)) − c(τ(t))‖ < ǫ

for all t ∈ [0, T ], where x(t, p0, u(·)) is the trajectory starting at t = 0 from p0 and ‖ · ‖
denotes the Euclidean norm.

Relations between the following conditions will be discussed below.

(i) The image Im c lies in a single orbit of Σ.

(ii) The curve c : [0, 1] → X can be C0 approximated by trajectories of Σ.

(iii) The image Im c lies in the closure in X of a single orbit of Σ.

Theorem 4.9

(a) For f(x, u) of class C1,0 and piecewise continuous controls we have (ii) ⇒ (iii), for any

continuous curve c : [0, 1] → X.

(b) If Σ is time-reversible, the vector fields fu = f(·, u), u ∈ U , are analytic and the controls

are piecewise constant then (i) ⇒ (ii), for any absolutely continuous curve c : [0, 1] → X.

The requirement fu ∈ Cω can be replaced by fu ∈ C∞ and TpOrb(p) = L(p), for any

p ∈ Im c.

Proof. (a) Assume that Im c does not lie in the closure of a single orbit. Then there exists
s∗ ∈ [0, 1] such that p∗ := c(s∗) 6∈ cl(S), where S = Orb(p0) — the orbit of the point p0. This
means that dist(p∗, S) = ǫ > 0. However, this inequality implies that the curve c cannot
be approximated with accuracy better than ǫ by trajectories starting from p0 (since all such
trajectories stay in S, by Proposition 4.4). This means that (ii) implies (iii).

(b) The implication (i) ⇒ (ii) will follow from the Chow-Rashevskii theorem stated in
the preceding section. Choose ǫ > 0. We cover Im c with open, connected sets Vi in S,
each contained in an ǫ-ball in X with center in Im c, such that Vi ∩ S are connected. By
compactness of Im c we can choose a finite number of such open sets V0, . . . , Vr ordered in
such a way that p0 = c(0) ∈ V0, pr+1 := c(1) ∈ Vr, and Vi−1 ∩ Vi ∩ Im c 6= ∅, for i = 1, . . . , r
(this is possible by connectedness of Im c and openess of Vi). Let us choose some points
pi = c(si) in Vi−1 ∩ Vi ∩ Im c, i = 1, . . . , r, so that 0 =: s0 < s1 < · · · < sr ≤ sr+1 := 1.
From the assumption fu ∈ Cω and the orbit theorem it follows that TpS = L(p), for any
p ∈ S. Therefore, the system Σ restricted to the open subset Vi of the orbit S satisfies the
Lie algebra rank condition dimL(p) = dim X̃, where X̃ = Vi. It follows from Corollary 4.6
that the point pi ∈ Vi can be joined to pi+1 ∈ Vi, with a trajectory not leaving Vi. Each point
on this trajectory is at a distance not larger than 2ǫ from any point of the piece c([si, si+1])
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of Im c (since Vi has the diameter not larger than 2ǫ and c([si, si+1]) is contained in Vi by
the assumptions that pi = c(si) ∈ Vi, pi+1 = c(si+1) ∈ Vi and Vi ∩ Im c being connected).
Concatenating the consecutive trajectories joining p0 = c(0) to p1 in V0, then p1 to p2 in V1

etc., and finally pr to pr+1 = c(1) in Vr we obtain a trajectory which approximates c with
accuracy 2ǫ (we can define the reparametrization of c, which appears in the definition of
C0 approximation, as continuous piecewise linear function [0, T ] ∋ t → s(t) ∈ [0, 1] which
is linear on the intervals [Ti−1, Ti] corresponding to the trajectories joining pi−1 to pi and
satisfies s(Ti) = si, i = 0, . . . , r + 1). As ǫ was chosen arbitrarily, we see that (ii) holds.

Note that, instead of using analyticity of fu in the above proof (which implies TpS = L(p),
for p ∈ S) it is enough to use the assumption that TpS = L(p) for p ∈ Im c. Namely, this
assumption implies the equalities Tpi

S = L(pi), for i = 0, . . . , pr+1, which in turn imply
analogous equalities in neighborhoods of pi, so that we can assume that TpS = L(p) holds
on Vi. (The equality Tpi

S = L(pi) implies the analogous equality in a neighborhood in S
of pi. This follows from two facts: (a) we always have L(p) ⊂ TpS, for p ∈ S; (b) the equality
dimL(pi) = dimS = k extends to a neighborhood in S of pi, since L(pi) is spanned by some
k linearly independent vector fields, which remain linearly independent in a neighborhood
of pi.)

Example 4.10 Condition (ii) does not imply (i). An example of such a system Σ is the
system with the state space X equal to the 2-dimensional torus T 2 = IR2/Z2, with all vector
fields fu equal to the same “constant” vector field with the “slope” irrational. Then the
orbit of any point p0 ∈ T 2 is a one dimensional immersed submanifold which is dense in T 2.
Its closure is the whole of T 2, however, any curve which is transversal to the orbit cannot
be C0 approximated by the trajectories of Σ.

The conditions (i) and (iii) in the above theorem may be difficult to check. However,
given an absolutely continuous curve c : [0, 1] → X, the following sufficient condition for C0

approximation by trajectories is checkable.

(iv) There exists a neighborhood W of Im c in X such that dimL(p) = const, for p ∈ W ,

and
dc

ds
(s) ∈ L(c(s)) for almost all s ∈ [0, 1].

Theorem 4.11

(a) If fu, u ∈ U , are of class C∞ then (iv) ⇒ (i), for any absolutely continuous curve

c : [0, 1] → X.

(b) If Σ is time-reversible, the vector fields fu = f(·, u), u ∈ U , are analytic and the

controls are piecewise constant then (iv) ⇒ (ii), for any absolutely continuous curve

c : [0, 1] → X. The requirement fu ∈ Cω can be replaced by fu ∈ C∞ and TpOrb(p) =
L(p), for any p ∈ Im c.

Proof. (a) We have to show that Im c is contained in S = Orb(p0). Assume that the contrary
holds and let s∗ be the infimum of s ∈ [0, 1] such that c(s) 6∈ S. Define p∗ = c(s∗). Since
c(s) ∈ S for all s < s∗, we have p∗ ∈ S, by continuity of the curve. Consider a neighborhood
V of p∗ in which dimL(p) = const = k. Then the distribution p → L(p) is of constant
dimension on V and involutive (since L = Lie {fu}u∈U is a Lie algebra). Applying the local
version of the Frobenius theorem we can assume, after a change of coordinates, that in a
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neighborhood V1 of p∗ we have L(p) = span {e1, . . . , ek}, where ei denotes the i-th coordinate
versor. This implies that the k-submanifold of V1 defined by {x ∈ V1 : xk+1 = p∗k+1, . . . , xn =
p∗n}, with p∗i -coordinates of p∗, is contained in S (by the Chow-Rashevskii theorem applied
to the system restricted to V1). Since the vectors in L(p) have zero components along the
last n − k versors, from the assumption (dc/ds)(s) ∈ L(c(s)) it follows that the last n − k
coordinates of the curve c are constant, equal to the coordinates of p∗, for s ≥ s∗ sufficiently
close to s∗. This implies that c(s) is in S = Orb(p0) for such s, which contradicts our
definition of s∗ and the assumption that Im c 6⊂ S. Thus (iv) implies (i).

(b) From statement (a) it follows that (iv) implies (i). Using statement (b) of Theorem
4.9 we see that (i) implies (ii). (Note that in the proof of the latter implication we have
shown existence of controls giving approximating trajectories, but the controls were not
constructed.)

The following result shows that, for any analytic, time reversible system, a point p ∈ X,
and a given vector v ∈ L(p), there is a piecewise constant control producing an infinitesimal
movement of the state “in the direction v” from p.

Theorem 4.12 If Σ is time reversible and the vector fields fu, u ∈ U , are smooth then, for

any p ∈ X and v ∈ L(p), there exists a 1-parameter family of piecewise constant controls

uǫ(t) such that for the corresponding trajectory xǫ(t) starting from p we have

xǫ(T (ǫ)) = p+ ǫv +O(ǫ1+1/N )

for ǫ > 0, where T (ǫ) depends continuously on ǫ and T (ǫ) → 0, if ǫ → 0. The constant N
is the smallest integer k such that v is spanned by the vector fields fu, u ∈ U , and their Lie

brackets up to order k, evaluated at p.

The following corollary is an immediate consequence of the theorem.

Corollary 4.13 Under the assumptions of the above theorem the set of vectors at p ∈ X
tangent to the curve of ends of 1-parameter families of trajectories [0, T (ǫ)] → X of Σ
coincides with L(p).

If we drop the assumption that the system is time reversible, the set K(p) of vectors
tangent to curves of ends of 1-parameter families of trajectories is, in general, a proper
subset of L(p). Its explicit description is of basic importance. We state it as open problem.

A research problem

(a) Prove that K(p) is a cone (not difficult).
(b) Describe K(p) explicitly, assuming the vector fields of fu of the system analytic. (Lie

bracket should play a basic role.) Consider the case X = IR2 or IR3.

(c) Find conditions for path approximation analogous to conditions in Theorems 4.9 and

4.11.

The proof of Theorem 4.12 will follow from the following two basic propositions. The
proofs of these propositions should give some insight to the above problem.

Let Φ1
ǫ , . . . ,Φ

k
ǫ be families of diffeomorphisms of X which are of class Cr with respect to

(x, ǫ), r ≥ 1, and are defined for ǫ close to 0. Assume that

Φ1
0 = id, . . . , Φk

0 = id.
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For example, we can take as Φi
ǫ the flow of a time dependent vector field, with ǫ playing

the role of time. (In fact, it will be enough to assume less, namely that Φi
ǫ are partial

diffeomorphisms of X, i.e., each Φi
ǫ is a diffeomorphism of an open subset of X onto an open

subset ofX and the set of (x, ǫ) for which Φi
ǫ is defined is open in X×IR and contains X×{0}.)

Note that a composition of such families gives a family of diffeomorphisms satisfying the same
conditions.

From Φi
0 = id it follows that ǫ → Φi

ǫ(p) is a Cr curve passing through p, for each i and
p ∈ X. Thus we can define

f1(p) :=
∂Φ1

ǫ

∂ǫ
(p)
∣

∣

∣

ǫ=0
, . . . . . . , fk(p) :=

∂Φk
ǫ

∂ǫ
(p)
∣

∣

∣

ǫ=0
,

where f1, . . . , fk are vector fields on X of class Cr−1.

Proposition 4.14 For any constants λ1, . . . , λk ∈ IR we have

∂

∂ǫ
Φ1

λ1ǫ ◦ · · · ◦ Φk
λkǫ(p)

∣

∣

∣

ǫ=0
= λ1f1(p) + · · · + λkfk(p).

The above formula can be equivalently written in the form

Φ1
λ1ǫ ◦ · · · ◦ Φk

λkǫ(p) = p+ ǫV (p) +O(ǫ2),

where

V (p) = λ1f1(p) + · · · + λkfk(p).

This means that the composition of such diffeomorphisms gives infinitesimal movement along
the vector λ1f1(p) + · · · + λkfk(p). In particular, if we start with vector fields fu1, . . . , fuk

and define Φi
ǫ = exp(ǫfui

) — the flows of fui
, then we get fi = fui

.

Now we want to construct a family of diffeomorphisms which gives infinitesimal movement
along the iterated Lie bracket of the vector fields f1, . . . , fk. Given two diffeomorphisms Φ
and Ψ of X, we define their commutator as the diffeomorphism

[Φ,Ψ] = Φ−1 ◦ Ψ−1 ◦ Φ ◦ Ψ.

If Θ is another diffeomorphism of X and we denote χ = [Φ,Ψ], we define the third order
commutator

[[Φ,Ψ],Θ] = χ−1 ◦ Θ−1 ◦ χ ◦ Θ

= Ψ−1 ◦ Φ−1 ◦ Ψ ◦ Φ ◦ Θ−1 ◦ Φ−1 ◦ Ψ−1 ◦ Φ ◦ Ψ ◦ Θ.

Analogously we can define higher order commutators of diffeomorphisms and, in partic-
ular, commutators of our families of diffeomorphisms Φ1

ǫ , . . . ,Φ
k
ǫ . The infinitesimal vector

field corresponding to the iterated commutator of such families of diffeomorphisms appears
to be equal to the iterated Lie bracket of the vector fields f1, . . . , fk. Note that if one of the
diffeomorphisms is equal to identity then the commutator is also equal to identity.
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Proposition 4.15 If Φi
ǫ are of class Cr with respect to (x, ǫ) and r ≥ k + 1, then

(

∂

∂ǫ

)j

[· · · [Φ1
ǫ ,Φ

2
ǫ ], · · · ,Φ

k
ǫ ](p)

∣

∣

∣

ǫ=0
= 0, for 1 ≤ j < k,

and
(

∂

∂ǫ

)k

[· · · [Φ1
ǫ ,Φ

2
ǫ ], · · · ,Φ

k
ǫ ](p)

∣

∣

∣

ǫ=0
= k! [fk, · · · , [f2, f1] · · ·](p),

where the commutator of vector fields f1, . . . , fk is of class Cr−k+1.

The above equalities are equivalent to the Taylor formula

Φ1
ǫ ◦ · · · ◦ Φk

ǫ (p) = p+ ǫkV (p) +O(ǫk+1),

and, after reparametrization,

Φ1
ǫ1/k ◦ · · · ◦ Φk

ǫ1/k(p) = p+ ǫV (p) +O(ǫ1+1/k),

where
V (p) = [fk, · · · , [f2, f1] · · ·](p).

This means that the commutator of such diffeomorphisms gives infinitesimal movement along
the vector [fk, · · · , [f2, f1] · · ·](p). (If we define Φi

ǫ = exp(ǫfui
) — the flows of fui

, then we
get fi = fui

and this infinitesimal movement is along the iterated Lie bracket of the vectors
fields fu1 , . . . , fuk

defined by a control system Σ.)

Proof of Theorem 4.12. Since v ∈ L(p), where L = Lie {fu}u∈U , we can write

v = λ1v1 + · · · + λrvr,

where λi are real constants, vi = Vi(p), and Vi are some of the vector fields fu, u ∈ U , and
their iterated Lie brackets. Since any iterated Lie bracket is equal to a linear combination
of left iterated Lie brackets, after possibly rearranging the above sum we can assume that

Vi = [fui
k(i)
, · · · , [fui

2
, fui

1
] · · ·]

for i = 1, . . . , r. We define the families of diffeomorphisms as iterated commutators of the
flows,

Φi
ǫ := [· · · [exp(ǫfui

1
), exp(ǫfui

2
)], · · · , exp(ǫfui

k(i)
)].

Define
y(ǫ) = Φ1

λ1ǫ1/k(1) ◦ · · · ◦ Φr
λ1ǫ1/k(r)(p).

Taking the derivative of dy/dǫ at ǫ = 0 and using Propositions 4.14 and 4.15 and the
definitions of Φi

ǫ we obtain the formula

dy

dǫ
(0) = λ1V1(p) + · · · + λrVr(p).

It remains to show that in the above construction of the 1-parameter family of points y(ǫ)
we can use true forward-time trajectories of system Σ. Notice that the coefficients λ1, . . . , λr
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in the linear combination which gives v can be taken positive. In fact, if λi is negative then
we can change the order of the vector fields fui

1
and fui

2
and then Vi and λi change signs.

In the definition of the diffeomorphisms Φi
ǫ we use commutators of flows, where we apply

the flows exp(−ǫfu), with ǫ > 0. We can replace such transformations by “time-forward
movements” by using the control v = v(u) given by the definition of time reversible system
(if the function λ(x, u) in this definition is not constant, the portion of time needed for
obtaining the equivalent of the transformation exp(−ǫfu) varies with trajectories). In this
way we can replace all time-backward steps by time-forward steps. This shows the main
formula in the theorem. The other statements are easy to see by our construction.

Proof of Proposition 4.14. Consider the function ǫ→ h(ǫ) = f(s1(ǫ), . . . , sk(ǫ)) where

f(s1, . . . , sk) = Φ1
s1
◦ · · · ◦ Φk

sk
(p)

and si(ǫ) = λiǫ. Then the equality f(0, . . . , si, . . . , 0) = Φi
si

(p) and the chain rule give

d

dǫ
h(0) =

k
∑

i=1

∂f

∂si

(0, . . . , 0)λi =
k
∑

i=1

λi

∂Φi
si

∂si

(p)|si=0 = λ1f1(p) + · · · + λkfk(p)

which proves the proposition.

Proof of Proposition 4.15. Consider the function ǫ→ h(ǫ) = fk(s1(ǫ), . . . , sk(ǫ)) where

f(s1, . . . , sk) = [· · · [Φ1
s1
,Φ2

s2
], · · · ,Φk

sk
](p)

and si(ǫ) = ǫ. Then the chain rule gives

(

d

dǫ

)j

h(0) =
∑

j1+···+jk=j

j!

j1! · · · jk!

(

∂

∂s1

)j1

· · ·

(

∂

∂sk

)jk

f(0, . . . , 0).

Since the iterated commutator is equal to identity, if one of the diffeomorphisms Φi
si

is
identity, any term in the above sum is equal to zero if ji = 0, for some i. This implies that
the derivative is equal to 0 if j < k, which shows the first equality in the proposition.

If j = k then only one term, with all ji 6= 0, can be nonzero and we get

dk

dǫk
h(0) = k!

∂

∂s1
· · ·

∂

∂sk
f(0, . . . , 0)

= k!
∂

∂s1
· · ·

∂

∂sk
[· · · [Φ1

s1
,Φ2

s2
], · · · ,Φk

sk
](p)

∣

∣

∣

s1=···=sk=0
.

The above expression gives the second equality in Proposition 4.15 by the following
formula (we denote Φ∗f = AdΦf , see Section 1.4).

Proposition 4.16

∂

∂sk
· · ·

∂

∂s1
[· · · [Φ1

s1
,Φ2

s2
], · · · ,Φk

sk
](p)

∣

∣

∣

s1=···=sk=0

=
∂

∂sk
· · ·

∂

∂s2
((Φk

sk
)−1
∗ · · · (Φ2

s2
)−1
∗ f1)(p)

∣

∣

∣

s1=···=sk=0
= [fk, · · · , [f2, f1] · · ·](p).
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Proof. The second equality follows by induction from the formula

∂

∂sk
· · ·

∂

∂sm
((Φk

sk
)−1
∗ · · · (Φm

sm
)−1
∗ [fm−1, · · · , [f2, f1] · · ·])(p)

∣

∣

∣

sm=···=sk=0

=
∂

∂sk
· · ·

∂

∂sm+1
((Φk

sk
)−1
∗ · · · (Φm+1

sm+1
)−1
∗ [fm, · · · , [f2, f1] · · ·])(p)

∣

∣

∣

sm+1=···=sk=0
,

which is a consequence of (∂/∂s)(Φm
s )−1

∗ g = [fm, g]. The latter formula can be verified
directly in the same way as formula (3) in Section 1.4.

In order to check the first equality we use induction with respect k. Denote Φs̄ :=
[· · · [Φ1

s1
,Φ2

s2
], · · · ,Φk−1

sk−1
], where s̄ = (s1, . . . , sk−1). Then, at s1 = · · · = sk = 0,

∂

∂sk

· · ·
∂

∂s1

[Ψs̄,Φ
k
sk

](p) =
∂

∂sk

· · ·
∂

∂s1

(Ψs̄)
−1 ◦ (Φk

sk
)−1 ◦ Ψs̄ ◦ Φk

sk
(p)

=
∂

∂sk

· · ·
∂

∂s1

(Φk
sk

)−1 ◦ Ψs̄ ◦ Φk
sk

(p) =
∂

∂sk

· · ·
∂

∂s2

((Φk
sk

)−1
∗

∂

∂s1

Ψs̄)(p),

where the middle equality follows from the fact that Ψs̄|s1=0 = id, so differentiating with
respect to s1 appearing in (Ψs̄)

−1 gives a term independent of sk and its derivative ∂/∂sk

vanishing. The derivatives ∂/∂si, i = 2, . . . , k− 1, commute with (Φk
sk

)−1
∗ , thus the required

equality follows from the inductive formula, at s1 = · · · = sk−1 = 0, ∂/∂sk−1 · · ·∂/∂s1Ψs̄(p) =
∂/∂sk−1 · · ·∂/∂s2((Φk−1

sk−1
)−1
∗ · · · (Φ2

s2
)−1
∗ f1)(p).

Problems

Problem 1 For vector fields

f1 = x3
∂

∂x2
− x2

∂

∂x3
, f2 = x1

∂

∂x3
− x3

∂

∂x1
, f3 = x2

∂

∂x1
− x1

∂

∂x2
,

on IR3, with x = (x1, x2, x3), show that:
(a) the flow of f1 is the rotation around the first axis:

γf1
t (x) = (x1, x2 cos t+ x3 sin t,−x2 sin t+ x3 cos t)T ;

(b) the Lie bracket [f1, f2] is equal to f3.

Problem 2 Using a result stated in lecture notes justify the property: the motion along
the vector field f3 in Problem 1 can be approximated by a composition of motions along
the vector fields f1 and f2. How this composition should be chosen? (This property can
be stated as follows: “the sequence .......... of small rotations along the x1-axis and x2-axis
produces, approximately, a rotation along the x3-axis”.)

Problem 3 Show that the following system is accessible, but not strongly accessible, at any
point p ∈ IR2 different from the origin:

ẋ1 = x2 + ux1, ẋ2 = −x1 + ux2,

where the control set U = IR. Find the reachable sets R(p) and Rt(p).
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Problem 4 Consider three vector fields on IR3 given in coordinates by

f = (x2,−x1, 0)T , g = (0, x3, x2)T , h = (x3, 0, x1)
T .

(a) Compute the Lie brackets [f, g], [f, h], [g, h] and show that the Lie algebra Lie{f, g, h}
generated by f, g, h is a linear subspace of dimension 3, in the linear space of all smooth
vector fields on IR3. Show that it spans a subspace L(x) of dimension 2 of tangent
vectors at any point x 6= 0.

(b) Show that the orbits of this family of 3 vector fields are hiperboloids x2
1 +x2

2−x
2
3 = const

(or cones of revolution) and they are all of dimension 2, except of one orbit (which one?).
Show that the partition of X = IR3\{0} into orbits forms a foliation of X of dimension 2.

Problem 5 (Optional) Solve the research problem given in the text of Lecture 4.

For further reading the reader is referred to the contributions of Kawski, Respondek and
Agrachev in this volume. The reader may also find useful the textbooks [Is] and [So], as
well as the collections of expository papers [Su] and [JR]. A brief account of problems and
results in nonlinear geometric theory is given in [Br].
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