Measure Theory mid-term exam, 15.11.2019

Jan Peszek, Piotr Rybka

The rules. The exam runs from 17:00 on Friday, 15.11.2019 until midnight. No paper is accepted after 0:00. Paper may be submitted only as pdf file. A link to cloud disk is acceptable, but it may not be password protected. A student submits solution of only up to five problems. This is an open-book-exam, students may communicate only with their peers attending this class. However, solutions are to be written independently.

Problem 1 Let \mathbb{X} be any infinite set and $x_{0} \in A \subset \mathbb{X},\left\{x_{0}\right\} \neq A$. We define set functions $\mu, \nu: P(\mathbb{X}) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ by the following formulas,

$$
\mu(E)=\left\{\begin{array}{ll}
0, & \text { if } \mathbb{X} \backslash E \text { is infinite }, \\
1, & \text { if } \mathbb{X} \backslash E \text { is finite, }
\end{array} \quad \nu(E)= \begin{cases}0, & \text { if } x_{0} \notin E, \\
1, & \text { if } x_{0} \in E, A \nsubseteq E, \\
+\infty, & \text { if } A \subseteq E\end{cases}\right.
$$

(a) Check if μ or ν are outer measures.
(b) If μ or ν is an outer measure, then characterize its σ-field of measurable sets.

Problem 2 Let us suppose that μ is an outer measure defined on a set \mathbb{X}. Prove that μ is σ-finite if and only if there exists a positive μ-summable function f.

Definition 1 An outer measure μ on \mathbb{R}^{n} is said to be translation invariant if for all $x \in \mathbb{R}^{n}$ and all $A \subset \mathbb{R}^{n}$ we have $\mu(A)=\mu(x+A)$. Here $x+A:=\{x+a: a \in A\}$.

Problem 3 Let μ be a translation invariant outer measure on \mathbb{R}, such that

$$
\int_{\mathbb{R}^{2}}(x+y)^{2} \mathrm{~d}(\mu \times \mu)<\infty .
$$

Prove that

$$
\int_{\mathbb{R}} x^{2} \mathrm{~d} \mu<\infty
$$

Problem 4 Let μ and ν be a pair of finite Radon measures on \mathbb{R}^{n} such that

$$
\int_{\mathbb{R}^{n}} \phi \mathrm{~d} \mu=\int_{\mathbb{R}^{n}} \phi \mathrm{~d} \nu
$$

for all continuous and bounded functions ϕ. Prove that $\mu(A)=\nu(A)$ for all $A \subset \mathbb{R}^{n}$.
Problem 5 (a) Let μ be a Radon measure on \mathbb{R}^{n} and let f be a continuous function with compact support. Prove that

$$
\begin{equation*}
\lim _{y \rightarrow 0} \int_{\mathbb{R}^{n}}(f(x+y)-f(x)) \mathrm{d}_{x} \mu=0 \tag{1}
\end{equation*}
$$

(b) Prove (1) for a μ-summable function f.

Problem 6 Let μ be the counting measure on \mathbb{N}, i.e. for all $n \in \mathbb{N}$ we have $\mu(\{n\})=1$. Let us suppose that $f_{n}: \mathbb{N} \rightarrow \mathbb{R}$ and the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges in measure to f. Show that $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to f uniformly.

