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Golab’s theorem corresponds to N = 1. As we shall see, the general case
follows rather easily. As far as the author knows, Corollary 15 is not much simpler
to prove than Theorem 4.

Corollary 15 is one more illustration of the fact that for sets with finite H L
measure, connectedness is a quite strong regularity property. Once again compare
with the counterexample just after (4.4).

We start the proof of Corollary 15 by reducing to the case when N = 1. Note
that any subsequence of our initial sequence {Ejy} satisfies the same hypotheses
as {Ey} itself. We can use this to reduce to the case when L = limy 4o H'(Eg)
exists, as for (5). [Take a subsequence for which H'(E}) converges to the right-
hand side of (16).]

Let N (k) denote the number of connected components of .. A second se-
quence extraction allows us to suppose that N (k) is constant. Call N’ this constant
value. Denote by E}, EZ, ..., E,f:V' the components of F}. (any choice of order will
do). We can use Proposition 34.6 to extract a new subsequence for which each
sequence {Ell;:}kz() converges to some (closed) limit E'. If Corollary 15 holds for
N =1, we get that

HY(EY) < liminf H'(E}). (17)
k—+o00

, N - .
Now E ={J,_, E' (because one can check from the definition of convergence
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in particular because the E,"‘:, 1 <1 < N’, are disjoint.

Thus it is enough to prove Corollary 15 when N = 1. So let us assume that
each E} is connected.

If £ is empty or reduced to one point, then H'(£) = 0 and there is nothing
to prove. So we may assume that § = diam(FE) > 0. Let us check that for each
e >0, {E}} satisfies H(e, C.) with C. = 3. Let x € E be given, and take r(x) =
Min{é§/3,dist(z,R™ \ ©Q)}. Then let r < r(z) be given. Choose xy € Ey, k = 0,
so that {zx} converges to z. Also choose z € K, with |z — x| > 40/10, and then
2k € Ej, such that {z;} converges to z. Thus |z, — x| > /3 for k large enough.

As usual, we may as well assume that L = limy .~ H'(Ey) exists. If L =
+00, there is nothing to prove. Otherwise, H'(E}) < +oo for k large enough.
This allows us to apply Proposition 30.14 and find a simple arc v, C £}, that goes
from zj to z,. Then let y be a point of v N OB(xy,7/2). Such a point exists,
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because . is connected and zy, lies outside of B(zg,r) C B(wk, (x)). [Recall that
r(z) <4§/3.]

Each of the two disjoint arcs that compose v \ {yx} goes from yi to a point
that lies outside of By = B(yx,r/3). Thus H'(E, N By) > H' (v N Bg) > 27/3.
That is, By satisfies (3) with & = 0. Also, B, € QN B(z,r) for k large enough.
This completes the verification of H(e, C:), Theorem 4 applies, and we get (16).
Corollary 15 follows. a

Exercise 19 (the isodiametric inequality). We want to check that
|A] < wg2~%(diam A)* (20)

for all Borel sets A C R?. Here |A] is the Lebesgue measure of A, and wy is the
Lebesgue measure of the unit ball in R?. Notice that (20) is an equality when A
is a ball.

We shall follow [Fe], 2.10.30, and use Steiner symmetrizations.

Let A c R? be a Borel set and H a hyperplane through the origin. The
Steiner symmetrization of A with respect to H is the set S 1 (A) such that, for
each line L perpendicular to H, Sg(A) N L is empty if AN L is empty, and is the
closed interval of L centered on H N L and with length H'(AN L) otherwise.

1. Check that Sy is measurable and |Sg(A)| = |Al.
2. Let E, I be Borel sets in R and I, J intervals centered at 0 and such that
HY(I) = H'(E) and H'(J) = H'(F). Show that
sup {|lz —y|;z € and y € J} <sup{lr —y|;z € Eand y € F}.

3. Show that diam Sy (A) < diam A.
4. Set A = inf {diam A; A € R is a Borel set and [A| = wq}, and

Y = {A CR%; As closed, |A| = wq, and diam A = A}.

Show that ¥ is not empty. [Hint: use Fatou.]

5. Now set o = inf{r > 0; we can find A € ¥ such that A c B(0,r)}. Show
that ¥, = {A € ¥; A C B(0,a)} is not empty.

6. Show that Sp(A) € ¥y when S € ¥ and H is a hyperplane through the
origin.

7. Let A € ¥, be given, and suppose that z € dB(0,a) and € > 0 are such that
9B(0,a) N B(z,¢) does not meet A. Let H be a a hyperplane through the
origin and call w the symmetric image of z with respect to H. Show that
S (A) does not meet 0B(0,a) N [B(z,¢) U B(w,e)].

8. Show that 9B(0,a) C A for A € ;. Then show that A = B(0,a), hence
A =2 and (21) holds.
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Proposition 14. Let ' ¢ R™ be o compact connected set such that H'(I') < 4oo0.
Then for each choice of To,yo € I', with yo # xo, we can find an injective Lipschitz
mapping f:[0,1] — T such that f(0) = zy and f(1) =yp.

A reasonable option would be to take an arc in I’ from ro to yo and then
remove the loops in it until it becomes simple (see for instance [Fal]). Since we like
to minimize things here, let us try to find f directly, essentially by minimizing the
length of the corresponding arc. Let T, z, Yo be given, as in the statement, and
set

M = inf { m; there is an m-Lipschitz function f:00,1] —-T
(15)
such that f(0) = xy and f() = yn}.
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We know from Theorem 1 that M < +o0o: we can even find Lipschitz mappings
from [0, 1] onto I'. Let {fx} be a minimizing sequence. That is, fi. : [0,1] — T’
is my-Lipschitz, fix(0) = xo, fr(1) = yo, and {my} tends to M. As before, we
can extract a subsequence, which we shall still denote by {fi}, that converges
uniformly on [0, 1] to some limit f. Then f is M-Lipschitz, f(0) = o, f(1) = yo,
and f([0,1]) C T (because I' is compact).

Suppose f is not injective. We can find 0 < ¢; < to < 1 such that f(t,) =
f(t2). Then we can remove the needless loop between ¢, and t3, reparameterize our
arc [0, 1], and get an (1 —t2+¢,)M-Lipschitz mapping fwith the usual properties.
Namely, we can take

F() = f((1=ta+t)t) for Ogtgﬁﬁl’ "
f(t):.f((l—t2+t1)t+(t2—t1)) for :ﬁ;_k—tlﬁtﬁl-

The existence of )7 contradicts (15), so f is injective and satisfies all the
required properties. Proposition 14 follows. O



