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some M that does not depend on k), and equicontinuous on H. This last means
that for each & > 0 we can find 17 > 0 (independent of k) such that | fx(x)— fx(y)| <
€ as soon as |x —y| <.
1. Show that there is a subsequence of {fi} that converges uniformly on H.
[You may use a dense sequence {x,,} in H, and reduce to the case when each
{ fe(xm) te>0 converges.]
2. Show that if the fj are uniformly bounded and equicontinuous on H, and if
{fx} converges to some function, then the convergence is uniform.

35 Uniform concentration and lower semicontinuity
of Hausdorff measure

We are now ready to see why Dal Maso, Morel, and Solimini cared so much about
the uniform concentration property of Section 25.

Let us set notation for the next theorem. We are given an open set 2 C R"™,
and a sequence {Ey }r>o of relatively closed subset of 2. We assume that

lim FEy=F (1)
k—+o00

for some set F C €, which we naturally assume to be closed in 2. Here we use the
notion of convergence introduced in the last section. That is, we take an exhaustion
of Q by compact subsets H,, and define the corresponding pseudodistances d,,
as in (34.1); then (1) means that d,,(FEy, £) tends to 0 for each m > 0. See
Definition 34.4.

We want to give a sufficient condition under which

H(E) < liminf H*(Ey), (2)

where 0 < d < n is a given integer. Note that something is needed, (2) is not true
in general. See the simple counterexample just after (4.4) (i.e., dotted lines). Our
main hypothesis is the following. For each £ > 0, we assume that we can find a

constant C. > 1 such that the following property H(e, C:) holds.

H(e, C.): for each x € E, we can find r(x) > 0 with the following property. Let
0 < r < r(z) be given. Then for k large enough we can find a ball B(yk, pr) C
QN B(x,r) such that py > C-'r and

HII(EIV N B(yk,v /)k:)) > (]- - 5) Wd p;‘l (3)

Here wy denotes the Lebesgue (or H ’l—) measure of the unit ball in R%.

Theorem 4 [DMS], [MoSo2]. If { Ex}i>0 is a sequence of (relatively) closed subsets
of Q, E is a closed subset of Q, and if for every ¢ > 0 we can find Cc such that
H(e, C.) holds, then we have the semicontinuity property (2).
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The reader may be surprised that we did not include (1) in the hypotheses.
It is not really needed; the main point is that because of H(e,C:), every x € E is
a limit of some sequence of points zy € Ej N B(yk, pr). The fact that points of the
E} lie close to E is not needed for (2). But (1) will always hold when we apply
Theorem 4 anyway.

Our proof will essentially follow [MoSo2|. Before we start for good, let us
notice that we can reduce to the case when

L= lim HYE),) exists. (5)

k— 400

Indeed we can always find a subsequence { £y, } for which H*(E},,) converges
to the right-hand side of (2). This subsequence still satisfies the hypotheses of
Theorem 4, and if we prove (2) for it, we also get it for {E}} itself.

So we assume (5) and try to prove that H?(F) < L. By the same argument
as above, we shall always be able to replace {E)} with any subsequence of our
choice (because the hypotheses are still satisfied and the conclusion is the same).
We shall use this possibility a few times.

Let € be given, and let C. be such that H(e,C:) holds. For each z € E,
H(e, C.) gives us a radius r(z). For each integer N, set ry(x) = Min{2~ N r(z)}
and By (z) = B(x,ry(z). We can cover E by countably many balls By (x), because
each EN H,,, H,, compact, can be covered by finitely many such balls. Now take
all the balls that we get this way (when N varies). This gives a quite large, but
still countable, family {B;};c; of balls centered on E. By construction,

{B;}icr is a Vitali covering of £ (6)

(see Definition 33.9).

Let i € I be given. Write B; = B(x;,r;), with x; € E and 0 < r; < r(z;). We
know from H(e, C.) that for k large enough we can find a ball D, , = B(yi.k, pik)
such that

Clri < pi s Dy CcQnB;, (7)

and
H’I(EkﬂD,,;ﬁk) > (1 —s)w,,/);]”k,. (8)
Since we can replace { E}} with any subsequence and I is at most countable,

we can assume that for each ¢ € I, the sequence {y; .} converges to some limit y;,

and similarly {p; x} converges to some p; € [C-'r;, 7).

Set D; = B(y;, (1 + €)pi). Note that D, , C D; for k large enough. Hence
HYE,ND;) > HY(Ex N Dig) > (1= e)waply > (1 — ) wapf (9)

for k large enough.
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Note that B, C 3C.D; by (7), hence (6) says that {D;}ier is a Vitali family
for E (see Definition 33.10). Now we want to apply Theorem 33.12. Pick any
A< HYE) and 7 > 0. We get a set Iy C I such that

the D;,i € Iy, are disjoint, (10)
diam D; < 7 for i € Iy, (11)
and
Cd Z(diam Di)d >\ (12)
iclo

Let us choose a finite set I C Iy such that

A< (1+4¢)eq Z(diam D)4 = (1 +¢)*t! 24c, Z pt. (13)

€1y i€l

Recall that ¢ is the constant in the definition of H¢ (see Definition 2.6). We
need to know that 2%c; < wg, where as before wg = H4(B) and B is the unit
ball in R%. This is a nasty little verification, which amounts to checking that in
the definition of H%(B), covering B with little balls is asymptotically optimal. See
[Fe], 2.10.35 (and compare with 2.10.2 and 2.7.16 (1)) or look at Exercises 19 and
21.

For k large enough, (9) holds for all i € Iy, and then

A< (+e)w Y pl<(l-e)20+ ey > HY (BN D))
il i€l (14
< (1 . 6)42(1 + €)d+1Hd(Ek),

by (13), (9), and (10). We can let k tend to oo ; we get that A < (1 — £)72(1+
)L, where L = limj 400 H4(Ey) as in (5). Now A was any number strictly
smaller than H(E), so HY(E) < (1—¢)%(14+¢)?*' L. Finally, this holds for every
choice of ¢ > 0, and (2) follows. This completes our proof of Theorem 4. O

Theorem 4 has the following simple consequence (essentially, Golab’s theo-
rem).

Corollary 15. Let { Ey} be a sequence of closed sets in Q C R™. Suppose that {Ey}
converges to some closed subset E of Q, and that there is an integer N such that
each By has at most N connected components. Then

H'(E) < 1kim+ian1(Ek). (16)




