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for any set A C o whose Lebesgue measure is less than 26. Thus, if we choose
s, and t; above so close to $ and ¢ that (s; —s)+ (t—t1) < 5, then (9) and (10)
imply that
Jo v (v) < Jor(w) + 58 < My + 6¢ (11)
for all pairs (s',t") € Q2 such that 8’ <s <t = ¢ and (s —s')+ ' —1) < J.
Note that ), and then d, depend only on € and €. Since the function ms ¢ is

nondecreasing in ¢ and nonincreasing in s, its continuity on Qo % Q, follows from
(11), which proves (5).

A direct consequence of our definitions is that

N-1 N
m = inf { Z e(t;) + Z”M,’Al,t,}v (12)

i=1 i=1

where the infimum is taken over all finite sequences {tiYo<i<N such that top <
ty < -0 <IN and to and tn are the endpoints of (). Moreover, we know that
we can restrict to N < C, because ¢ is bounded from below. If in addition c¢ is
lower semicontinuous (which means that c(x) < liminfr—joo () whenever {zk}
converges to ), then (5) allows us to find a finite sequence {ti}o<i<n such that

N-1 N
m= Z c(ti) + zmti_l,,,,.

i=1 i=1

Because of this, it is enough to study the individual functionals Js ¢, which
is substantially easier than what happens in higher dimensions. In particular, the
same convexity argument as in Section 3 gives the existence (and uniqueness) of
minimizers for Js¢ if mse < 400 and under mild nondegeneracy conditions on
the functions a and b (for instance, if they are locally bounded from below). The
existence of minimizers for J follows.

Before we get to counterexamples, let us record that minimizers for J .1 satisfy
a differential equation with Neumann conditions at the endpoints. To simplify the
notation, let us only consider bounded intervals.

Lemma 13. Ifb is of class O and does not vanish on [s, t], and if u € Wlf;'z(s,t)

C

is such that Jsi(u) = msp < 100, then u is of class C* on [s,t], u” € L*((s,1)),

b(x)u" () + W (x)u'(x) = a(z)(u(z) —g(x)) on (s,t), (14)
and u'(s) = u'(t) = 0.
First observe that u' € L*(s,t), because Jyi(u) < oo and bis bounded from
below. Similarly, a(u — g) € L?%(s,t), because a is bounded and f: alu — g)* <
Js1(u) < +00. Let us proceed as in Proposition 3.16, pick any smooth function
¢ (not necessarily compactly supported in (s,1) yet), and compare u with its
competitors u + Ap, A € R. We get the scalar product condition

/ [a(x)(u(@) = g(x))e(x) + b(.’]j)’u/(.’lf)(p/(:l?)] dz =0, (15)
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as in (3.18). When we take ¢ compactly supported in (s,t), we get that (bu') =
a(u — g) in the sense of distributions. But this forces bu’ to be the indefinite
integral of a(u — g) (which lies in L?(s,t), as we just noticed); see Exercise 59. In
particular bu’ is bounded, and hence also u’, because b is bounded from below. Now
u' = b (bu') and b~ is O, so uw” = b~ (bu) — Vb 2bu’ = b a(u—g) — Vb,
both in the sense of distributions and pointwise almost everywhere (see Exercise
59 again). The first part of (14) follows.

Next, v’ is continuous on [s, t], because it is the indefinite integral of u” € L?.
In particular, u’(s) and u/(t) are well defined. To prove that u/(t) = 0, we apply
(15) with a smooth nondecreasing function ¢ such that ¢(z) = 0 for z < t' and
@(x) = 1 for z > t, where t’ < t is very close to t. The contribution ]s' a(x)(u(z) —
g(z))p(x)dr to (15) tends to zero as t' tends to t (because ¢ is bounded and
a(u — g) € L?), while f:b(:c)u'(;c)cp’(:lr)dx tends to b(t)u'(t). This proves that
b(t)u'(t) = 0; hence u'(t) = 0 because b(t) > 0. Of course u/(s) = 0 for similar
reasons, and Lemma 13 follows. O

Example 16. Take n = 1, Q = [~1,1],a = b =c = 1, and g\ = Ay for A > 0.
It is clear now that there are only two possible minimizers. The first one is given
by K = {0} and u = gy, and then J(u, K) = 1. The second one is for K = () and
u = uy, where uy is the only minimizer of J_; ; in (3). We could easily use Lemma
13 to compute uy, but the main point is that uy = Auy, so that J(uy, ) = AN?,
where A = [[(uy — g1)? + (u})?] is a fixed positive constant.

For A\* < A~!, the only minimizer for .J is (uy, ), while for A > A~! the
only minimizer is (gx,{0}). And for A* = A~!  we have exactly two minimizers.
Thus uniqueness and smooth dependence on parameters fail in a very simple way.
The principle behind all our other examples will be the same.

b. Simple examples in dimension 2

Here we return to the usual Mumford-Shah functional in (2.13), witha = b= ¢ =
1. We start with the product of a line segment with Example 16.

Example 17. (A white square above a black square.) This is taken from [DaSe5]
but the example could be much older. We take 2 = (0,1) x (—1,1) € R? and
9= g = Mg+, where QT = (0,1) x (0,1) and X is a positive parameter. We shall
denote by L = (0,1) x {0} the singular set of gy.

There are two obvious candidates to minimize .J. The first one is the pair
(gx, L) itself. The second one is (uy,0), where @ (x,y) = ux(y) and wuy is the
C'-function on (—1,1) for which

2 ‘ ;
1= /( ) = Ay ) + I o) (18)
-1,1

is minimal. Thus u) is the same as in Example 16. Set

m = Min(J(gx, L), J (ix, 0)) ; (19)
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we want to check that
J(u, K) > m for all (u,K) € A. (20)

So let (u, K) € A be an admissible pair (see (2.1) for the definition). We may as
well assume that v minimizes J with the given set K. This will not really change

the proof; it will only make it a little more pleasant because we know that u is C' !
on 2\ K. Set

X = {xe (0,1); K0 [{z} x (~1,1)] :w}. (21)

For z € X, the function y — u(z,y) is C' on (—1,1); then
[ ol vaP (22)
Xx(-1,1)
5 |0u 2 !
> [ { e, 5) = Mo ()2 + |55 (e, 0)|[dy o = HY(X) L,
Jx M J=11) ’ dy

where I is as in (18). On the other hand, (0,1) \ X = w(K), where 7 is the
orthogonal projection on the first axis. Since 7 is 1-Lipschitz, Remark 2.11 says
that H'(K) > H'((0,1)\ X) = 1 — H'(X). We can combine this with (22) and
get that

J(u, K) > /

[l = a2 [Vul?] + H' () = H(X) T+ (1= H' (X)) (28)
JX x(=1,1)

Thus J(u, K) is a convex combination of I and 1. Since I = J(uy, () and
1= J(gx, L), (20) follows from (23) and (19).

With just a little more work, we could prove that if J(u, K) = m, then
(u, K) = (ay,0) or (u, K) = (gx, L), modulo adding a set of measure 0 to K.

Thus at least one of our two favorite candidates is a minimizer for .J. Since
I is obviously proportional to A?, there is a value of A for which I = 1, and for
this value J has two minimizers. Of course one could object that this example is
very special, and that we are using the two vertical sides of 0€2, so we shall give
two other ones.

Example 24. Take g = A1p( 1), in the domain @ = R? or Q = B(0,R) C R?,
where A > 0 and R > 1 are given constants.

It is tempting here to use the symmetry of the problem to compute things
almost explicitly. By an averaging argument similar to the proof of (20) above
(but radial), we can show that for each (u, K) € A there is a radial competitor
(u*, K*) such that J(u*, K*) < J(u, K) (see [DaSe5], page 164, for details). Here
radial means that K* is a union of circles centered at the origin, and u*(pe”) is
just a function of p. Then the choice can be reduced to two competitors, as follows.
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for all A > 0. Thus, p* € L, (R™). Note that this applies in particular to
dp = f(x)dz, with f € L'(R", dx).

Hint: cover Q) = {z € R"; p*(x) > A} by balls B(z,r) such that w(B(z,r)) >
Ar™, and apply Lemma 1.

Exercise 41 (Sard). Let Q C R? be open, and f : @ — R" be of class C'. Set
7 = {x € Q; Df(x) is not injective}. We want to show that

HY(f(2)) =0. (42)

1. Let © € Z be given. Show that there is a constant C, such that for each
£ > 0 we can find ro such that for 7 < ro, f(B(z,r)) can be covered by less
than C,e'~4 balls of radius er. Hint: show it first with f replaced with its
differential D f(x) at x.

2. Show that for each choice of z € Z, 7 > 0, and n € (0,1), we can find r, >0
such that r, < 7, B(x,r,) C ©, and f(B(z,5r,)) can be covered by finitely
many balls D;, with 3~ (diam D) < nrd.

3. Pick R > 0 and cover Z N B(0, R) by balls B(z,r,) as above. Then apply
Lemma 1. Show that this yields

H(f(Z N0 B(0,R))) < Cnl2n B(0, R)|. (43)

Conclude.

34 Local Hausdorff convergence of sets

The main goal of this section is to give a natural (and of course very classical)
definition of convergence for closed subsets of an open set {2 C R™. The main point
will be to make sure that we can extract convergent subsequences from any given
sequence of sets in 2. Note that for Q@ = R", say, the usual Hausdorff distance
between sets is too large for this; what we need is something like convergence for
-~ the Hausdorff metric on every compact subset.

So let © C R™ be a given open set, and let {H,, },n>0 be an exhaustion of
" by compact subsets. This means that each Hy, is compact, H,, C interior(H,,+1)
- form >0, and @ =U,, Hp. When @ = R", a good choice is H,, = B(0,2™). We
- set

m

dn(A, B) = sup{dist(z, B); © € AN Hp, } + sup {dist(y, A); y € BN Hy} (1)

; for A,B C © and m > 0. We use the convention that dist(z, B) = +00 when
. B= 0, but sup{dist(x, B) ;z € ANH,,} = 0 when ANH,, = (. Thus d,,(A,B) =0
- when AN H,, =BNH, =0,but d,(A,0) =+oo if ANH,, # 0.
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We shall find it more convenient here to use d,, (A, B), rather than the Haus-
dorff distance between A N H,, and B N H,,. Recall that the Hausdorff distance
between A and B is

dn (A, B) = sup dist(z, B) + sup dist(y, A). (2)
T€A yeB

Here it could happen that d,,(A, B) << dyn(ANH,,, BNH,,), for instance because
points of ANH,, can be close to B, even if B does not meet H,,. Thus our functions
d, are a little less sensitive to boundary effects. Also, they have the nice feature
that

dm(A,B) <di(A,B) for 0 <m <, (3)
because H,, C H;.

Definition 4. Let {Ar} be a sequence of subsets of 2, and B C §2. We say that
{Ax} converges to B if

kliI}-l dpm(Ax,B) =0 for all m > 0. (5)

This is the notion of convergence that we shall systematically use in the
following sections. A few comments may be useful here. The reader may be worried
because we did not restrict to closed sets. This is not really needed, but anyway
{A)} converges to B if and only if the sequence { Ay} of closures in 2 converges
to B. Also, convergence to B is equivalent to convergence to B, and if we want to
have uniqueness of the limit, we can require that it be closed. [See Exercise 15.] In
the later sections, we shall always apply the definition to sequences of closed sets,
and take a closed limit.

It is fairly easy to check that our notion of convergence does not depend on
the choice of exhaustion {H,,}. See Exercise 17.

We now come to the main point of this section.

Proposition 6. For each sequence { Ay} of subsets of 1, we can find a subsequence
of {Ak} that converges to some closed subset of €.

This is a very standard exercise on complete boundedness, Cauchy sequences,
and the diagonal process. We nonetheless give the proof for the convenience of the
reader. Let us say that {Ax} is a Cauchy sequence if

lim  d,,(Ag, A)) =0 for every m > 0. (7)

k,l—+o00
It is easy to see that if {Ax} converges to some B C €, it is a Cauchy sequence.

Lemma 8. FEvery Cauchy sequence has a limit.
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Let {Ag} be a Cauchy sequence, and set
B={xeQ; lim dist(z, Ax) = 0}. 9)
k——+o00

Note that B is closed. We want to check that {Ay} converges to B. Let m > 0 be
given. First note that the functions fr = dist(-, Ax) are 1-Lipschitz, so they are
equicontinuous on Hyy,. Since they converge to 0 on B, the convergence is uniform
on BN H,,. [See Exercise 22.] Hence

kEToo { sup {dist(z, Ax); © € BN Hm}} =0. (10)
Note that
B={ze€Q; l’;lminf dist(x, Ax) =0}, (11)

because { Ay} is a Cauchy sequence. Indeed, if z lies in this last set and ¢ is small,
. we can find arbitrarily large values of k for which Ay, meets B(z, ). Then all Ayl
large enough, meet B (x,2¢), because dm (A, Ar) < €, where we choose m so large
that B(x,e) C H,,. The other inclusion is trivial. Next we want to check that

kli»liloo { sup{dist(z, B); © € Ax N Hm}} =0 (12)
for all m > 0. Let € be given, s0 small that B(z,2¢e) C Hm41 for x € H,,. Let ko
be such that dpmi1(Ak, A1) < € for k,l > ko. If k > ko and z € Ax N Hyp,, then
B(z,c) meets A; for all [ = k. Thus B(z, ) contains points of adherence of the
sequence {A;}. These points lie in B, by (11). This proves (12), and the lemma
follows because of (10). O

Remark 13. If { A} } converges to B and B is closed in €, then B is given by both
formulae (9) and (11). This follows from our proof of Lemma 8 and the uniqueness
of the limit (given that it is closed). See Exercise 15 for this last point.

Now we can prove Proposition 6. Let {Ax} be any sequence of sets in Q. It
is enough to show that we can extract a Cauchy subsequence.

For each m > 0 and N > 0, cover H,, by finitely many balls Bmn,N,s, S €
S(m, N), that are centered on H,,, contained in Hyny1, and with radii smaller
than 2~ V. Then define functions gm N,s O N by gm.ns(k) =1 if By, n,s meets
Ay, and g, N.s(k) =0 otherwise. We can use the diagonal process to extract a
- subsequence {k;} such that every {gm, ~.s(ki)}i has a limit Ly, n,s at infinity. Let

us check that {Ag,} converges.

Let m and N be given, and let io be so large that gm, N,s(ki) = Lm,Ns for
i>1i9and s € S(m,N). Let 1,7 = ip and x € Hp, N Ag, be given. Then z lies
in some By, n,s, and gm.N s(ki) = 1 by definition. Then gm. n,s(kj) = 1 also, and

B, N,s meets Ay, . Hence dist(x, Akj) < 2-N+1 The same reasoning can be done
- with z € Ay, and altogether A (Ag,, Ax,) < - N+1L,

: Since this can be done for all m and N, {Ay,} is a Cauchy sequence, as
. desired. Proposition 6 follows. |




