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Since
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for all G € C2°(D,R?), (11) says that
IVEllzz(py < liminf ||Vug||z2p) - (13)

This is what we get when we consider a single relatively compact open set
D cc Q. By the diagonal process, we can extract a subsequence so that the
computations above work for every D CC 2. Then there is a function u € W2(Q\
K), that coincides on each D with the corresponding function pp, and such that

/ u(z)f(x)de = lim ug(z) f(x)dz for every feCo(Q\K). (14)
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Moreover,
/ |Vul? < liminf |Vug|?, (15)
WK k—+oo Jo\ K,

by (13) and because for each choice of D CC €, the right-hand side of (13) is
smaller than or equal to the right-hand side of (15).

The same reasoning, but a little simpler because we don’t have to integrate
by parts, yields

/ lu — g|* < liminf lug, — g|*. (16)
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Altogether we constructed a pair (u, K') € Uy such that

J(u,K)=/|u—g|2+/|Vu|2+H1(K)
Q Q

< liminf/ |Vug|? 4 lim inf lug — g|? + liminf H'(K}) (17)
k—+oo Jo\ K, k—+oo Jo\ K, k—+o00

< liminf J(ug, Kx) = mp,
k—+4o00

by (1), (15), (16), (6), and (3).

So we can find a minimizer (uy, Ky) for the restriction of J to Uy, and
this for each N > 1. Now we want to repeat the argument and show that some
subsequence of {(uy, Ky)} converges to a pair (u, K) that minimizes J on Y.

We may assume that inf{.J(u, K); (u, K) € U} < 400 because otherwise
there won’t be minimizers. Note that this is the case if €2 is bounded. Let us also
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assume that my < +oo for N large. One could also prove this (this is somewhat
easier than (21) below), but let us not bother.

We can proceed as above with the sequence {(un,Kn)}, up to the point
where we applied Corollary 35.15 to prove (6). Here we have no reason to believe
that the sets K UOS) have less than M components for some fixed M, so we need
to find something else.

We want to get additional information from the fact that (uy, K ) minimizes
J on Uy . First, we can assume that none of the components of K is reduced to
one point. Indeed, if z is an isolated point of Ky, uy has a removable singularity
at x, by Proposition 10.1. Then we can simply remove x from Ky, keep the same
function uy, and get an equivalent competitor with one less component.

Claim 18. The sets Ky are locally Ahlfors-regular (as in Theorem 18.1), have
the property of projections (as in Theorem 24.1), and more importantly have the
concentration property described in Theorem 25.1. All these properties hold with
constants that do not depend on N.

The proof is the same as in Sections 18-25. Let us try to say why rapidly. All
the estimates that we proved in these sections were obtained by comparing our
initial minimizer (or quasiminimizer) (u, K) with other competitors (u, K'). Our
point now is that for all the competitors (i, K) that we used, K UdQ never has
more connected components than K U 0 itself.

For instance, to get the trivial estimates (18.20), we replaced K N B(z,r) with
OB(z,r). This does not increase the number of components as soon as B(x,r) C
and KNB(z, ) is not empty, which is always the case when we use (18.20). For the
local Ahlfors-regularity, we removed K N B(x,r) from K for some ball B(z,r) C €2
such that 0B(z,r) does not meet K, and this is also all right. The stories for
Theorems 24.1 and 25.1 are similar.

We are now ready to continue the argument above. We have a subsequence of
{(un, Kn)} that converges to some limit (u, K). Because of Claim 18, this subse-
quence satisfies the hypotheses of Theorem 35.4. [Take 7(x) = Min(ry, dist(z, R?\
2)) and compare H(e,C:) in Section 35 with the conclusion of Theorem 25.1].
Hence

H'(K) < liminf H'(Ky). (19)

N —+o00

The analogues of (15) and (16) hold with the same proofs, and finally

J(u,K) < lim J(uy,Ky)= lim mpy, (20)
—+00 N—+o00
as in (17), because (uy, Ky) minimizes J on Up.
Recall also that {my} is nonincreasing. Since we want to show that (u, K)
minimizes J on U, it is enough to check that

inf {J(u, K); (u, K) eUU} = Nlim my. (21)

—+00
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In other words, for each ¢ > 0, we have to find some pair (v,G) € U suc
J(v,G) <inf {J(u, K); (u, K) € U} +¢, and for which G'UON has a finite nu,

of connected components.

To do this, the idea is to start from a pair (v, Go) € U such that J(vo, Gp) —
inf {J(u,K);(u,K) € U} << &, and modify it slightly. As far as the author
knows, (21) is not proved like this in [DMS], where the authors prefer to use
the existence result from the SBV approach, nor in [MoSo02], where they avoid
the issue. There is a (hopefully) complete argument in [BoDa], Sections 6-8, but
which is somewhat more painful than needed because a slightly more complicated
version of the Mumford-Shah functional is studied there. Recall that a full proof
of existence (in any dimension) is given in [MaSo3]; Probably it contains a proof
of (21), but I did not check.

Let us also mention that F. Dibos and E. Séré [DiSé] showed that in dimension
2, the minimum is approached by competitors for which K is composed of arcs of
circles.

No matter how, the argument cannot be too simple. The difficulty with it is
that we need to show that many of the good properties of minimizers (like local
Ahlfors-regularity, or rectifiability) hold on very large parts of the set Gy. This
needs the same sort of arguments as in Sections 20-24, but one needs to be more
careful because the little piece of Gy where the Ahlfors—regularity fails, say, could
play nasty tricks on you when you want to deal with the property of projections,
for instance. In the case of minimizers, this issue simply did not arise because the
little piece was empty. In particular, it would seem that the use of some covering
lemma is really unavoidable here. We leave the details and refer the reader to
[BoDa] or [MaSo3] for a full proof.

Once we have (21), our proof of existence of minimizers for the Mumford-
Shah functional .J in (1) is complete. O



