B. Functions in the Sobolev Spaces W7

In the next six sections we want to record elementary properties of functions in
Wl})‘(’,” that will be used later. These include absolute continuity on almost every
line, traces and limits on hyperplanes, Poincaré estimates, and a few others. These
sections are present for self-containedness, but most readers should be able to go
through them very rapidly, or skip them altogether. One may also consult (Zi] for
a much more thorough treatment of these topics.

We shall also include in Sections 15-17 a few standard facts on functions f
that (locally) minimize the energy [ |V f]* with given boundary data. Things like
harmonicity, the Neumann condition at the boundary, or conformal invariance in
dimension 2. These sections also should be skippable to a large extent.

9 Absolute continuity on lines

We start our study of the Sobolev spaces WP with the absolute continuity of
Sobolev functions on almost-every line.

Let © C R™ be open. Recall from Definition 2.2 that Whr(Q) is the set of
functions f € Ll .(Q) whose partial derivatives ;)QIL (in the sense of distributions)
lie in LP(). [Note that we do not require that f € LP(£2), as many authors do.]
Similarly, WP () is the set of functions f € L} () such that g;L e L} () for
1<i<n.

We start with the simple case when n = 1.
Proposition 1. Let I C R be an open interval and f € Wl(l)’(.l(I). Denote by [’ €
L) .(I) the derivative of f (in the sense of distributions). Then

fly) - flz) = / Ftydt for myel 2)

Moreover, [ is differentiable almost-everywhere on I, and its differential is equal
to f' almost-everywhere.

This is what we shall mean by absolute continuity on /. To prove the propo-
sition, fix z € I and set F(y) = [} f'(t)dt for y € I. Since F is continuous, it
defines a distribution on I and we can talk about its derivative F’. We want to
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show that F' = f’, so let p € C2°(I) be given, and let [z, z2] denote a compact
interval in I that contains the support of p. Then

- | Fly)¢' [F(y x1)]¢' (y) dy (3)
J /

- /Il {/f dt / / F )¢ (y) 1<y (t,y) dydt
- / PO = (1),

by definition of F’, because [¢'(y)dy = 0, and by Fubini. Thus (F' — f)" =
distributionwise, and it is easy to see that it is constant (exercise!). This proves (2)
For the remaining part of Proposition 1, we apply the Lebesgue differentiation
theorem (see for instance [Ru] or [Mat2]) to the function f’ € L] (I), to get that
!

(F', )

1 y+e

Tm o= [0 - Sl =0 (1)

y—e
for almost-every y € I. Proposition 1 follows, because (4) implies that f is differ-
entiable at y, with derivative f'(y). a

We may now consider larger dimensions.

Proposition 5. Let Q = Q1 x Q5 C R™ x R™ be a product of open sets, and let

f € WHY(Q). Denote by (z,y) € Q1 x Qo the points of Q, and call f; = JF,L €

LY(), 1 < j < n, the derivatives of f with respect to the last variables. For
almost-every x € 1, the function F, defined by F.(y) = f(x,y) lies in W11(£y),
and %—% = fi(z,-) (distributionwise) for j =1,...,n

Comments. We shall mostly be interested in the case when n = 1 (and y is any
of the coordinate functions). Our btatement concerns functions in W1, but it is
easy to localize (to treat functions in Wlo( ). Also, we get a similar statement for
functions in W ons P > 1, because these functions lie in W . " and our statement

says how to compute %f;

In the statement of Proposition 5 (and similar ones later) we assume that
a representative in the class of f € L} . has been chosen, and similarly for the
functions f;, and our statements concern these representatives. Thus the bad sets
where F,, ¢ WH1(Q,) or %}L # fj(z,-) may depend on our choice of representa-
tives, but this is all right.

The proof of Proposition 5 will be an exercise on distributions and Fubini.
By definition,
0P
|t g tandady = (150 = ~(f5.9) = = [ @) 0wy dody
Yj JQ ©)
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for all test functions ® € C°(£2). We only want to apply this to decomposed
functions of the form ¢(z)1(y), with ¢ € C°(Q1) and ¢ € C°(22); then (6)
becomes

BT AP
/S Fw)ea) G () dady = - / L) pla) ) dedy, (1)

Since f and f; are locally integrable on €2, Fubini says that for each compact
set K C Qo,

J U+ Vs u)lhdy < +oo ®)

for almost every x € €. In fact, since we can cover {23 by countably many compact
subsets, we can find a set Z C €y, of measure zero, such that forz € Q1 \ Z, (8)
holds for all compact subsets K C §2a.
Fix any ¢ € C2°(£)2). For each z € Q1 \ Z we can define
o
A@)= [ f(z,y) @(y) dy 9)

J S J
and

B(z) = — o fiz,y)¥(y)dy . (10)

By Fubini, we even know that A and B are locally integrable on ;. Moreover,
(7) says that
Alz)p(x)de = / B(z)p(z)dx (11)
o o
for all p € C2°(Q;). Hence A(x) = B(z) almost-everywhere.
Let us apply this argument for ¢ € D, where D C C(£22) is a countable
set of test functions. For each ¢ € D we get functions A and B and a set Z(1)
of measure zero such that A(z) = B(z) on Q \ Z(). Set Z1 = Z U (dU’D Z(y)).
=

Thus Z; is still negligible.

Let © € Q; \ Z; be given. We know that

o
floy) 35— dy = = | fil@y) vly)dy (12)
J€2 Yj Qa

for all 1) € D, because A(z) = B(z) with the notation above. Let us assume that
we chose D so large that, for each ¢ € C}(£2), we can find a sequence {;} inD
such that the 1); have a common compact support in Q2 and {v,} converges to ¥
for the norm ||th||sc + ||V¥||co- (This is easy to arrange.) Then (12) extends to all
P € CH(), because since = ¢ Z, (8) holds for all compact sets KcC Q.

Continue with z € Q; \ Z, fixed. Set Fi(y) = f(x,y), as in the statement
of the proposition. Note that f;(z,-) € Li,.(€2) because (8) holds for all compact
sets KC Q. Since (12) holds for all ¢y € C°(§22) we get that %{% = f;{z,). To
complete the proof of Proposition 5 we just need to observe that f;(z,-) € L*(2)
(and not merely L} (£22)). This is the case, by Fubini. O
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Corollary 13. If Q = Qq x I for some open interval I, and f € W](l)’({'(Q) for some
p € [1,400), then for almost every x € Q, f(x,-) is absolutely continuous on I
(i.e., satisfies the hypotheses and conclusions of Proposition 1). Furthermore, its

derivative equals %5(3:, y) almost-everywhere.

This is easy to prove. First note that we can restrict to p = 1, because
Wli’cp C Wl(l)c1 anyway. Since we only assumed f to be locally in W7 we need

a small localization argument. Cover €2y by a countable collection of relatively
compact open subsets 2 , CC €2, and similarly cover I by an increasing sequence
of open intervals I, CC I. Then f € WI’I(QM, x Iy) for each k, and Proposition 5
says that for almost every x € Q4 x, f(x,.) is absolutely continuous on [, with a
derivative that coincides with %(x, .) almost-everywhere. The conclusion follows:
when z € Q; does not lie in any of the exceptional sets in the €, f(x,.) is
absolutely continuous on I, still with the same derivative. O
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10 Some removable sets for W7

Proposition 1. Let Q C R™ be open, and let K C § be a relatively closed subset
such that
H" Y (K)=0. (2)

If1<p<+oo and f € WHP(Q\ K), then f € W'P(Q), with the same derivative.

Note that we do not need to extend f to €, because K has vanishing Lebesgue
measure by (2) (see Exercise 2.20). For the same reason, the derivatives OQFL are
initially defined almost-everywhere on ©\ K, but we can easily (and uniq{xely)
extend them to €.

Proposition 1 says that closed sets of H"~!-measure zero are removable for
WP functions. There are lots of other removable sets, but Proposition 1 will be
enough here.

It is enough to prove the proposition with p = 1, because the derivative of f
on ) is the same as on Q\ K. The proof will be somewhat easier in the special
case when we know that

f e Lll()(f(Q)’ (3)

which we shall treat first. (Note that (3) is not automatic: we only know that f
lies in L) .(Q\ K), and a priori it may have monstrous singularities near K.) In
our applications to Mumford-Shah minimizers, this special case would often be
enough because f is bounded.

So let us assume that f € WH(Q\ K) and that (3) holds. All we have to do
is show that the distributional derivatives % on '\ K also work on €. Let us

only do this for j = 1. We want to show that for all ¢ € C2°(%),
of
—(z

= — x)dx. 4
O ().’L'l Q axl (p( ) ( )

Clearly the problem is local: it is enough to check (4) when ¢ is supported in a
small rectangle R CC Q (because we can cut the original ¢ into finitely many
small pieces).

So let us assume that ¢ is supported in R = Ix.J, where [ is a (bounded) open
interval and .J is a (bounded) product of open intervals. Denote by (x,y) el xJ
the points of R, and call 7 : (x,y) — y the projection on the hyperplane that
contains J. Set

Z =n(KNR). (5)

Then H"'(Z) = 0, by (2) and because 7 is Lipschitz (see Remark 2.11). Also, Z
is closed if we took R relatively compact in Q. Set F,(z) = f(z,y) fory € J\ Z
and z € I. Since f € WH'(I x (J \ Z)), Corollary 9.13 says that for almost-every
y e J\ Z, F, is absolutely continuous on [, with derivative

0
F(x) = 6—£(;1:, y) for almost every x € I. (6)
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Call J' C J\ Z the set of full measure for which this holds. Then

[ t@n gy = [ { [ r@nFEaar}ay
:/{ | F@ete.nds}ay
/,/6 z,y)p(z,y)dedy = — /l%w, (7)

by Proposition 9.1 and (6). This is just (4) with different notations; our verification
is now complete in the special case when (3) holds.



