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Exercise 21. We want to use Exercise 19 to show that 20, = wq. We keep the
same notation.

1. Let {A;}icr be a covering of B(0, 1) in R by countably many sets. Use (20)
to show that ) (diam B;)? > 24,

2. Show that w,; > 24¢,. [Recall that c; was chosen so that Hd(B(O, 1)) = wa.]

3. Let 7 > 0 be given. Show that we can find disjoint balls B; B, of diameters
less than 7, and such that |B(0,1) \U; Bi| = 0. You may use Theorem 33.12
and Remark 33.37.

4. Show that for each £ > 0 we can cover B(0,1)\ U, B; by (countably many)
sets D; of diameters less than  and for which 37 (diam D;)4 < ¢

5. Show that H(B(0, 1)) < ca Y- (diam B;)4 4 ¢ e < ca2¢wi HY(B(0, 1))+cqe.
Conclude.

36 A little more on the existence of minimizers

In this section we return briefly to the issue of existence of minimizers for the
Mumford-Shah functional on a domain Q. We want to say how it is possible to
get these minimizers as limits of suitable sequences of nearly minimizing pairs,
using in particular the lower semicontinuity result of the previous section. Our
description here will be a little more precise than what we did in Section 4, but
we shall not give a complete proof. Also, we shall restrict to dimension 2, as often
in this book. The technique that we describe in this section also works in higher
dimensions; see [MaSo3].

We should remind the reader that the standard, and somewhat simpler way
to prove existence for this sort of functional is to use its weak description in terms
of SBV functions, and then the compactness theorem from [Am]. This is well
described in [AFP3]; here we take the slightly silly attitude of trying to see what
we can get without using SBV.

The idea of trying to use the uniform concentration property from Section 25
to get existence results for minimizers comes from [DMS]. It is also described in
[MoSo2], but in both cases the authors do not go all the way to a complete proof
without SBV, due to technical complications. See the comments near the end of
this section.

Let us start our description. Let O be a domain in the plane, g € L>(Q)
and set

)

_ u— al? 2 1
J(u,m—/mkl 4 +/Q\KIV 2+ HY(K), (1)

where the competitors lie in the class U of pairs (u, K ) for which K is a relatively
closed set in © such that H(K) < 00, and u € W'2(Q\ K) is defined on \ K
and has one derivative in 7,2 there. See Section 2. It is customary to assume that
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Q) is bounded, but the main point is to find competitors for which J(u, K) < oc.
However, to make the proof below work more easily, we shall assume that 02 has
finitely many connected components, and H 109) < oo.

Our first goal will be to minimize J in the smaller class

Uy = {(u, K) €U; K UOQN has at most N connected components}, (2)

where N > 1 is a given integer. So let (ux, Ki) € Un be given, with

k-ETooJ(uk’Kk) =mpy, (3)
where we set
my = inf {J(u, K); (u, K) € Un'}. (4)

We may assume that my < +o0o and that ug minimizes J(uk, Kj) with the
given Ky, i.e., that

J(uk,Kk):inf{J(v,Kk);vEWI’Q(Q\K;C)}. (5)

This is possible, because Proposition 3.3 says that for any given K, the infimum
in (5) is reached.

We want to extract from {(ux, Kx)} a convergent subsequence, and then
show that the limit minimizes J on Uy. We extract a first subsequence (which
we shall still denote {(ug, Kx)} to keep the notation reasonably pleasant), so that
the sets Kx U 09 converge (in R™) to some closed set K*. Here we can use con-
vergence for the Hausdorff metric on compact sets, or equivalently the notion of
convergence from Section 34. The existence of the desired subsequence follows
from Proposition 34.6, say.

Set K = K*\ 02 C Q. Because of Corollary 35.15,

HY(K)=HYK*) - H'(09) < lk';m+ian1(Kk uanN) — H(99) = gmianl(Kk).
(6)

We shall need to know that K* = K U0 has at most N connected compo-
nents. First note that we can find a subsequence for which each Ky U 0N has the
same number of components, and moreover each of these converges to some limit
(see the first lines of the proof of Corollary 35.15). For the separate existence of
limits for the components, we can also proceed as follows. Each component K} of
K, U OQ has a finite length L' < HY(K,U0Q) <mn + H'Y(09) + 1 < +o0, by
(1) and (3), and if k is large enough. Then Proposition 30.1 says that we can find
a CL!-Lipschitz mapping f, from [0,1] onto K} . Since Lt <my+ HY(0Q)+1
for k large, we can extract a subsequence so that each { fx}x converges. Then the
sets { E 1}k also converge. Also, each limit set is connected, since it is a Lipschitz
image of [0, 1]. Thus K* has at most N components.

The reader may wonder why we considered the number of components of
K, UOQ, rather than K, itself, especially since this is what cost us the unnatural
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assumption that H'(9§2) < +oo. The point is that we may have a sequence of
connected sets Ky, with some parts that tend to the boundary, and for which the
intersection of the limit with Q is no longer connected. There are ways to change
the definition of Uy so that this issue does not arise, and yet we don’t need to
assume that H'(9Q) < +o00. But we do not wish to elaborate here.

Next we want to make a subsequence of {u} converge. For this we need some
little, but uniform amount of regularity for the functions uy. Here we shall try to
use fairly little information (namely, the L>°-bound (7) and later the fact that
u € WH2(Q\ Ky)), but we could go a little faster by using stronger properties of
the uy. Observe that

l[ulloo < 119]loo (7)
by uniqueness of the minimizing function in (5) and a comparison with a truncation
of ug. See the proof of (3.20) for details.

Let D CcC Q\ K be any relatively compact subset of Q\ K. By (7), the
functions uy define bounded linear forms on C.(D), the set of continuous func-
tions with compact support in D (with the sup norm), with uniform bounds.
Hence, modulo extraction of a new subsequence, we can assume that these lin-
ear forms converge weakly. That ib, there is a measure 4 = pup on D such that
limy— oo [}, f(x)ur(z)de = [, f(z)du(z) for every f in (a dense class of) Co(D).
The measure p deﬁnes a dlstrlbutlon on D, and its derivative is given by

(Oip, f /(‘3f Ydu(z) = — ll»l—il—loo/ O0i f(x)ug(z)dx (8)

for f € C(D) and i =1, 2.

Recall that D is relatively compact in Q \ K, and hence lies at positive
distance from K* = K U 0. Since K* is the limit of the K, U 8(2 D does not
meet Kj UOQ for k large enough. Then [}, 8; f(x)ux(z)dz = — [, f(2)0;ur(z)dz,
and

(Oip, f) = lim f(x)0;up(x)d. (9)
k—+oco Jp
In particular,

[@upt 1)1 < i |11 | 9se 2

(10)
< ||f||2 lkimian(uk, K,rc)l/2 < ||f||2m}\,/2 < +00.
—+o00

The Riesz representation theorem says that 0;u € L?(D), and so u € W2(D).
[Note that . € L{ (D); it is even bounded, because

/ F(@)du(z) < llgllso / |F(@)|dz for f € Co(D), by (7)]
D D

Next
oy =sup{| [ Vu-GliGecx) <1} ()



