3.6 Approximate continuity and differentiability

We have seen in Section 3.5 an example of a BV functionu of N > 1 variables (the char-
acteristic function of an open set) discontinuous in a set with strictly positive Lebesgue
measure, together with any function in its equivalence class. By a similar strategy exam-
ples can also be produced with functions in Sobolev spaces WP, with p < N.So, appar
ently, there is no hope to get “good representatives” as in dimension 1 (cf. Theorem 3.28).
These remarks show the necessity of weak continuity and differentiability notions suit:
able to be satisfied by functions in Sobolev spaces or in BV. These notions can be
introduced following the basic idea that not only sets with zero measure, as in dimension
1, but also sets with zero density can be disregarded. We start with approximate Limits.

Definition 3.63 (Approximate limit) Letu € [Ll‘oc(SZ)]"'; we say that u has an approxi-
mate limit at x € Q if there exists z € R™ such that

lim lu(y) — zldy = 0. G

@40 JB,(x)
The set S, of points where this property does not hold is called the approximate discon:
tinuity set. For any x € Q \ S, the vector z, uniquely determined by (3.65), is calle
approximate limit of u at x and denoted by ().

In the following we say that u is approximately continuous at x if x & S
ii(x) = u(x), i.e. x is a Lebesgue point of u. Notice that the set of points where
approximate limit exists does not depend on the representative in the equivalence ¢
ofu,ie.ifv = u LN-ae.inQthenx ¢ S, ifandonly if x ¢ S, and éi(x) = (x).On ‘
other hand, the property of being approximately continuous at x depends on the
of u at the point, and this value could be different for functions in the same equivalenc

class.
Proposition 3.64 (Properties of approximate limits) Letu be afunction in [Ll‘oc(ﬂ)f
(a) Syisa LN -negligible Borel setand ii : Q\S, — R™ is a Borel function, coinci
LN-ae. inQ\ S, withu;
(b) if x € Q\ Sy the functions u * pe(x) converge to u(x)ase lO;
(c) if f : R™ — RP is a Lipschitz map and v = f o u, then S, C Sy and (x)
f(ia(x)) forany x € Q\ Sy.
Proof Since the complement of the set of Lebesgue points of u is LN -negligible, ‘
infer that S, is LV -negligible and i coincides LN -a.e. with u. One can prove that §,
a Borel set noticing that

(o) . 1
Q\Su=ﬂ U [er: lim sup ﬁ(x)lu(}’)—(1|d)’<;;]-
Q

n=1qeQ" el0
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Indeed, the inclusion C is trivial, by the density of Q™. If x belongs to the set on the
right side, then for any integer n > 1 we can find g, € Q™ such that

) 1
lim sup f lu(y) — gnldy < —.
el0 JBy(x) n

Itis easily seen that (g,) is a Cauchy sequence and that its limit z satisfies (3.65), hence
X ¢ S,. As a consequence of (3.65), for any x € Q \ S, the mean values UB,(x) of u
on B,(x) converge to z = i(x) as ¢ | 0. Hence, the Borel property of & in Q \ S,
simply follows from its representation as the pointwise limit as ¢ J 0 of the continuous
ions x ugo(x).

Finally, (b) can be proved noticing that

lespu() =il < [l —e0) - i@ dz < 102 [ ) —acwiay
RN £ Be(x)

(with the change of variables x — £z = y) and (c) follows at once from the estimate

U(y) = f@(x)| < Lip(f)lu(y) — a(x)|. o
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values @ and b along a direction v. To this aim we introduce the convenient notation

[Bé’_'(x, V) = {y € By(x): (y — x,v) > 0} (3.67)
B (x,v) = {y € Bo(x): (y — x,v) <0}
_Ja if(y,v)>0
Ug py(y) = [b if (. v) <0 (3.68)

for the two half balls contained in B, (x) determined by v and for the function jumping
between a and b along the hyperplane orthogonal to v.

Definition 3.67 (Approximate jump points) Let u € [Llloc(Q)]’" and x € . We say

that x is an approximate jump point of u if there exist a, b € R™ and v € S¥~! such
that @ # b and

lim ][ lu(y) —aldy =0, lim lu(y) — bldy = 0. (3.69)
o0 JBZ (x,v) o0 JB; (x,v)

The triplet (a, b, v), uniquely determined by (3.69) up to a permutation of (a, b) and a
change of sign of v, is denoted by (4™ (x), u~ (x), v, (x)).

The set of approximate jump points is denoted by Jj,.

~ To simplify several statements it is also convenient to say that two triples (a, b, v),
d, b/, V') are equivalent if

either (a, b,v) = (@, b,V or (a,b,v)y= (@, d,=V). (3.70)

ixample 3.68 (Characteristic functions) If u is a characteristic function, say u = xg,
en §, is the essential boundary 8*E of E introduced in Definition 3.60. In fact, if u
approximate limit z at x, then either z = 0 or z = 1 because the range of u is {0, 1}.
or similar reasons J, is a subset of E1/2 and {u*(x), u~(x)} = {0, 1) for any x € J,.
inclusion is strict, as shown by the set {xy > 0} C R? at the origin.

- For sets of finite perimeter, De Giorgi theorem implies that the reduced boundary
E is contained in J,. Also this inclusion is strict: setting

E:= {(x,y) € R%: y < ¢(x)] with P(x) := xzsin%

¢ find that 0 € J xEe (because ¢'(0) = 0) but condition (3.57) fails to be satisfied at
= (. Hence, the origin does not belong to F E. However, by Theorem 3.61 the sets

FENQ, J,NQ, EV2nQ, ENQ

ve the same 7/ —! measure if E has finite perimeter in Q.

' Now we state the main properties of the approximate jump set J,, and of the triplets

Fx), u™ (x), vy (x)).
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Proposition 3.69 Let u € [L] (1™
(a) The set J, is a Borel subset of S, and there exist Borel functions

(* ), u™(x), vu(x)) : Jy > R™ x R™ x $¥~!

such that (3.69) is fulfilled at any x € J,;

(b) if x € J, the functions u * pg(x) converge to [u* (x) + u~(x)]1/2ase | 0;

(©) if f : R™ — RP is a Lipschitz map, v = f ou and x € Jy, then x € J, ifand
only if f(ut(x)) # f(u™(x)), and in this case

(v (), v™ (), vo(®) = (fUT (), F@™ (X)), vu(x)).

Otherwise, x ¢ S, and ¥(x) = f(u*(x)) = f(u™(x)).

Proof (a) Let D = {(ap, bn, V»)} be a countable dense set in R” x R™ x SN-1 andlet
Wn(Y) = Ugq, by,v,» according to (3.68). Then, the same argument used in the proof of
Proposition 3.64(a) shows that

o0 o0
@\S)UJ, = {x € Q: limsup ][ [u(x + y) — wa(y)| dy < 1
p=1n=0 @0 B, F

Since the right side is a Borel set and J, C S, we infer that J, is a Borel set. Let
us select for any x € J, a triplet (#*(x), @~ (x), U, (x)) satisfying the conditions
Definition 3.67 (notice that ¥, need not to be a Borel function, because the sign of ¥y
not uniquely determined) and let us prove that x > ¢ (x) = (12+(x) — ﬁ‘(x)) ® V()
is a Borel map in J,; to this aim we define

at(x) if (y, hu(x)) >0

M= {a—(x) if (y, Bu(x)) <0

and notice (cf. Remark 3.72) that the rescaled functions u**?(y) = u(x + @y) co
in [L] (RV)]™ to wy as ¢ | 0. In particular

. - - X
s [ w:0)® VY () dy =lime™" / u(y) ® VY (Y__) dy
B el0 Bo(x) o

is a Borel map in J,, for any ¢ € C2°(B)). Taking a sequence (¥,) C CS°(B) mono-
tonically converging to xp, we get '

oN-19() = Duy(B) = lim j; V() dDwx (y)
1

= — lim wx(y) ® VY (y) dy

h—>o0 J g,

and this proves that ¢ is a Borel map. For any & € {1, ..., m}, let E, be the set of al
x € J, such that « is the least index such that the a-th row of ¢ (x) is nonzero. Since ¢
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aBorel map it can be easily seen that { £, } is a Borel partition of J,. On any set E, we
can define v, as ¢%/|¢®|; this defines a Borel map on J,. Accordingly, since v, and ¥,
. are either equal or opposite, we can define (™ (x), u~(x)) to be equal to (#™* (x), &~ (x))
if v, (x) = ¥, (x) and to be equal to (i~ (x), @+ (x)) if vu(x) = —¥u(x). An argument
similar to the one used in the proof of Proposition 3.64(a) with Bg‘ (x, v, (x)) instead of
- By(x, vy (x)) shows that u* are Borel maps in J,,.

(b)-(c) The proof is analogous to the one of Proposition 3.64, splitting the region of
integration in B} (x,v) and By (x,v). 0




