Now we show that, for general domains Ω , the approximability by smooth functions with gradients bounded in L^1 actually characterises BV functions. This theorem could be considered as the BV version of the classical Meyers-Serrin theorem for Sobolev spaces, stating the coincidence of weak and strong derivatives (see [214]).

Theorem 3.9 (Approximation by smooth functions) Let $u \in [L^1(\Omega)]^m$. Then, $u \in [BV(\Omega)]^m$ if and only if there exists a sequence $(u_h) \subset [C^{\infty}(\Omega)]^m$ converging to u in $[L^1(\Omega)]^m$ and satisfying

$$L := \lim_{h \to \infty} \int_{\Omega} |\nabla u_h| \, dx < \infty. \tag{3.6}$$

Moreover, the least constant L in (3.6) is $|Du|(\Omega)$.

Proof Assume that u can be approximated in $[L^1(\Omega)]^m$ by smooth functions satisfying (3.6). Possibly extracting a subsequence, by Theorem 1.59 we can assume that the measures $\nabla u_h \mathcal{L}^N$ weakly* converge in Ω to some \mathbf{R}^{mN} -valued measure μ in Ω such that $|\mu|(\Omega) \leq L$. Passing to the limit as $h \to \infty$ in the classical integration by parts formula

$$\int_{\Omega} u_h^{\alpha} \frac{\partial \phi}{\partial x_i} dx = -\int_{\Omega} \phi \frac{\partial u_h^{\alpha}}{\partial x_i} dx \qquad \forall \phi \in C_c^1(\Omega), \quad i = 1, \dots, N, \quad \alpha = 1, \dots, m$$

we obtain that (3.3) is fulfilled with $Du = \mu$, i.e. $u \in [BV(\Omega)]^m$. In particular $|Du|(\Omega) = |\mu|(\Omega) \le L$.

Assuming now $u \in [BV(\Omega)]^m$ we construct for any $\delta > 0$ a function $v_{\delta} \in [C^{\infty}(\Omega)]^m$ such that

$$\int_{\Omega} |u - v_{\delta}| \, dx < \delta, \qquad \int_{\Omega} |\nabla v_{\delta}| \, dx \le |Du|(\Omega) + \delta. \tag{3.7}$$

To this aim, we notice that Ω can be written as the union of a countable family of sets $\{\Omega_h\}_{h\geq 1}$ with compact closure in Ω and such that any point of Ω belongs to at most four sets Ω_h . For instance, this family can be obtained setting

$$\Omega_{k,1} = \left\{ x \in \Omega \cap B_{k+1} \setminus \overline{B}_{k-1} : \operatorname{dist}(x, \partial \Omega) > 1/2 \right\}$$

and

$$\Omega_{k,p} := \left\{ x \in \Omega \cap B_{k+1} \setminus \overline{B}_{k-1} \colon \frac{1}{p-1} > \operatorname{dist}(x, \partial \Omega) > \frac{1}{p+1} \right\}$$

for integers $k \geq 1$, p > 1, where $B_0 = \emptyset$. Choosing a partition of unity relative to the covering Ω_h , i.e. positive functions $\varphi_h \in C_c^{\infty}(\Omega_h)$ such that $\sum_h \varphi_h \equiv 1$ in Ω , for any integer $h \geq 1$ we can find $\varepsilon_h > 0$ such that supp $((u\varphi_h) * \rho_{\varepsilon_h}) \subset \Omega_h$ and

$$\int_{\Omega} \left[|(u\varphi_h) * \rho_{\varepsilon_h} - u\varphi_h| + |(u \otimes \nabla \varphi_h) * \rho_{\varepsilon_h} - u \otimes \nabla \varphi_h| \right] dx < 2^{-h} \delta. \tag{3.8}$$

The function $v_{\delta} = \sum_{h} (u\varphi_h) * \rho_{\varepsilon_h}$ is smooth in Ω because the sum is locally finite; moreover, our choice of ε_h gives

$$\int_{\Omega} |v_{\delta} - u| \, dx \leq \sum_{h=1}^{\infty} \int_{\Omega} |(u\varphi_h) * \rho_{\varepsilon_h} - u\varphi_h| \, dx < \delta.$$

Now we evaluate $|Dv_{\delta}|(\Omega)$; by Proposition 3.2(b), we obtain

$$\nabla v_{\delta} = \sum_{h=1}^{\infty} \nabla \left((u\varphi_h) * \rho_{\varepsilon_h} \right) = \sum_{h=1}^{\infty} \left(D(u\varphi_h) \right) * \rho_{\varepsilon_h}$$

$$= \sum_{h=1}^{\infty} \left(\varphi_h D u \right) * \rho_{\varepsilon_h} + \sum_{h=1}^{\infty} \left(u \otimes \nabla \varphi_h \right) * \rho_{\varepsilon_h}$$

$$= \sum_{h=1}^{\infty} \left(\varphi_h D u \right) * \rho_{\varepsilon_h} + \sum_{h=1}^{\infty} \left[\left(u \otimes \nabla \varphi_h \right) * \rho_{\varepsilon_h} - u \otimes \nabla \varphi_h \right].$$

Using (3.8) and Theorem 2.2(b), by integration we obtain

$$|Dv_{\delta}|(\Omega) = \int_{\Omega} |\nabla v_{\delta}| \, dx < \delta + \sum_{h=1}^{\infty} \int_{\Omega} \varphi_{h} |Du| = \delta + |Du|(\Omega).$$

This proves the existence of v_{δ} . Choosing $\delta_h = 2^{-h}$ and setting $u_h = v_{\delta_h}$, from (3.7) we infer

$$\lim_{h\to\infty}\int_{\Omega}|u_h-u|\,dx=0,\qquad \limsup_{h\to\infty}\int_{\Omega}|\nabla u_h|\,dx\leq |Du|(\Omega).$$

The lower semicontinuity of variation implies that $|Du_h|(\Omega)$ (i.e. $\int_{\Omega} |\nabla u_h| dx$) converge $|Du|(\Omega)$, hence $|Du|(\Omega)$ is the least constant in (3.6).

Remark 3.22 Theorem 3.9 says that for every open set Ω the space $[C^{\infty}(\Omega)]^m \cap [BV(\Omega)]^m$ is dense in $[BV(\Omega)]^m$, endowed with the topology induced by strict convergence. If Ω is an extension domain we can say something more: let $u \in [BV(\Omega)]^m$, let Tu be an extension operator and let u_{ε} be the mollified functions $(Tu) * \rho_{\varepsilon}$. We know by Proposition 3.7 and the remarks preceding it that u_{ε} converge to Tu in $[L^1(\mathbb{R}^N)]^m$ and $|Du_{\varepsilon}|(\Omega)$ converge to $|DTu|(\Omega)$ as $\varepsilon \downarrow 0$, because $|DTu|(\partial\Omega) = 0$. Since Tu coincides with u in Ω , this proves the possibility of approximating u in the strict convergence by functions in $[C^{\infty}(\overline{\Omega})]^m$.

The following compactness theorem for BV functions is very useful in connexion with variational problems with linear growth in the gradient (e.g. least area problems for cartesian hypersurfaces, see [175]). Since the Sobolev space $W^{1,1}$ has no similar compactness property this provides also a justification for the introduction of BV spaces in calculus of variations.

Theorem 3.23 (Compactness in BV) Every sequence $(u_h) \subset [BV_{loc}(\Omega)]^m$ satisfying

$$\sup \left\{ \int_A |u_h| \, dx + |Du_h|(A) \colon h \in \mathbb{N} \right\} < \infty \qquad \forall A \subset\subset \Omega \ open$$

admits a subsequence $(u_{h(k)})$ converging in $[L^1_{loc}(\Omega)]^m$ to $u \in [BV_{loc}(\Omega)]^m$. If Ω is a bounded extension domain and the sequence is bounded in $[BV(\Omega)]^m$ we can say that $u \in [BV(\Omega)]^m$ and that the subsequence weakly* converges to u.

Proof Let $\Omega' \subset\subset \Omega$ be an open set. By the same diagonal argument described before Corollary 1.60 we need only to show the existence of a subsequence $(u_{h(k)})$ converging in $[L^1(\Omega')]^m$ to some function u (notice that $u \in [BV(\Omega')]^m$ by (3.11)).

Let $\delta = \operatorname{dist}(\Omega', \partial\Omega) > 0$, $U \subset \Omega$ the open $\delta/2$ neighbourhood of Ω' and let $u_{h,\varepsilon} = u_h * \rho_{\varepsilon}$. If $\varepsilon \in (0, \delta/2)$ the functions $u_{h,\varepsilon}$ are smooth in $\overline{\Omega'}$ and satisfy

$$\|u_{h,\varepsilon}\|_{C(\overline{\Omega'})} \leq \|u_h\|_{L^1(U)} \|\rho_{\varepsilon}\|_{\infty}, \qquad \|\nabla u_{h,\varepsilon}\|_{C(\overline{\Omega'})} \leq \|u_h\|_{L^1(U)} \|\nabla \rho_{\varepsilon}\|_{\infty}.$$

By our assumption on (u_h) , the sequence $(u_{h,\varepsilon})$ is equibounded and equicontinuous for ε fixed. This means that, with ε fixed, we can find converging subsequences of $(u_{h,\varepsilon})$ in $C(\overline{\Omega'})$. By a diagonal argument we can find a subsequence (h(k)) such that $(u_{h(k),\varepsilon})$ converges in $C(\overline{\Omega'})$ for any $\varepsilon = 1/p$, with $p > 2/\delta$ integer. Applying Lemma 3.24 below we find

$$\begin{split} & \limsup_{k, \, k' \to \infty} \int_{\Omega'} |u_{h(k)} - u_{h(k')}| \, dx \leq \limsup_{k, \, k' \to \infty} \int_{\Omega'} |u_{h(k), 1/p} - u_{h(k'), 1/p}| \, dx \\ & + \limsup_{k, \, k' \to \infty} \int_{\Omega'} \left[|u_{h(k)} - u_{h(k), 1/p}| + |u_{h(k'), 1/p} - u_{h(k')}| \right] \, dx \\ & \leq \frac{2}{p} \sup_{h \in \mathbb{N}} |Du_h|(U). \end{split}$$

Since arbitrarily large p can be chosen and $L^1(\Omega')$ is a Banach space, this proves that $(u_{h(k)})$ converges in $L^1(\Omega')$.

Finally, we prove the last part of the statement. If we assume that Ω is a bounded extension domain, we can apply the first part of the statement to the extensions $Tu_h \in [BV(\mathbf{R}^N)]^m$ to obtain $[L^1_{loc}(\mathbf{R}^N)]^m$ convergence of a subsequence $(Tu_{h(k)})$ to some function $u \in [BV(\mathbf{R}^N)]^m$. In particular $(u_{h(k)})$ converges in $[L^1(\Omega)]^m$ to u and $u \in [BV(\Omega)]^m$ by (3.11). The weak* convergence follows at once from (3.11).

Lemma 3.24 Let $u \in [BV(\Omega)]^m$ and $K \subset \Omega$ a compact set. Then

$$\int_{K} |u * \rho_{\varepsilon} - u| \, dx \le \varepsilon |Du|(\Omega) \qquad \forall \varepsilon \in (0, \operatorname{dist}(K, \partial \Omega)) \, .$$

Proof By Theorem 3.9 we can assume without loss of generality that $u \in [C^1(\Omega)]^m$. Starting from the identity

$$u(x-\varepsilon y)-u(x)=-\varepsilon\int_0^1\langle\nabla u(x-\varepsilon ty),\,y\rangle\,dt\qquad x\in K,\ y\in B_1$$

we can take norms in both sides, integrate with respect to x and use Fubini's theorem to obtain

$$\int_{K} |u(x - \varepsilon y) - u(x)| \, dx \le \varepsilon \int_{0}^{1} \int_{K} |\nabla u(x - \varepsilon t y)| \, dx dt \le \varepsilon |Du|(\Omega).$$

Multiplying both sides by $\rho(y)$ and integrating we obtain

$$\int_{K} \left(\int_{\mathbb{R}^{N}} |u(x - \varepsilon y) - u(x)| \rho(y) \, dy \right) dx \le \varepsilon |Du|(\Omega). \tag{3.21}$$

Since $u*\rho_{\varepsilon}(x) - u(x)$ is equal to $\int_{\mathbb{R}^N} [u(x-\varepsilon y) - u(x)] \rho(y) \, dy$, which can be estimated with the integral among parentheses in (3.21), the statement follows.