122 FUNCTIONS OF BOUNDED VARIATION

Now we show that, for general domains €2, the approximability by smooth functions
with gradients bounded in L! actually characterises BV functions. This theorem could
be considered as the BV version of the classical Meyers—Serrin theorem for Sobolev
spaces, stating the coincidence of weak and strong derivatives (see [214]).

Theorem 3.9 (Approximation by smooth functions) Let u € [LY()T". Then, u €
[BV(Q)]™ if and only if there exists a sequence (u) C [C* ()1 converging to u in
[LY(Q))™ and satisfying

L := lim |Vupldx < oo. (3.6)
h—o0 Jo

Moreover, the least constant L in (3.6) is | Du|(S2).

Proof Assume that « can be approximated in [LY(2))™ by smooth functions satisfying
(3.6). Possibly extracting a subsequence, by Theorem 1.59 we can assume that the mea-
sures Vup LN weakly* converge in € to some R -valued measure x in 2 such that
|1|(2) < L. Passing to the limit as & — oo in the classical integration by parts formula

9 e
fug—¢dx=—/¢ﬂdx VéeCl@), i=1,...,N, a=1,...,m
Q ox; Q Oxi

we obtain that (3.3) is fulfilled with Du = u, i.e. u € [BV()]". In particular
[Du|(Q) = |ul(R2) < L.

Assumingnow u € [BV ()]™ we construct forany § > Oafunctionvs € [CR@I"
such that

f lu —vsldx <4, / |Vvs| dx < |Du|(R2) + 8. (3.7).
Q Q

To this aim, we notice that  can be written as the union of a countable family of sets
{Q4}n>1 with compact closure in 2 and such that any point of € belongs to at most four
sets 2. For instance, this family can be obtained setting

Q1= {x € QN By41 \Ek_xt dist(x, 9Q2) > 1/2}

and

— 1 1
Qi p:i=4{x € QNB By_1: —— > dist(x, 9Q2) > ——
k.p { k+1 \ Bi—1 o1 ( ) p+l]

for integers k > 1, p > 1, where By = @. Choosing a partition of unity relative to the

covering S, i.e. positive functions ¢ € CZ°(£2;) such that 3, ¢n = 1in Q, for any
integer h > 1 we can find &, > 0 such that supp ((mp;,) * pe,,) C Qp and

fn [1ugh) * oy — upnl + (4 ® V) # py — 4 ® Veyl] dx <2745, ()
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The function vs = Eh(mph) * pg, is smooth in £ because the sum is locally finite;
moreover, our choice of &5 gives

00
flvs—uldeZf |un) * pey, — ugn| dx < 8.
Q2 h=1 Q

Now we evaluate | Dvs|(£2); by Proposition 3.2(b), we obtain
00

Vo = YV ((gn) * pey) = ) (Dwgn) * Pey
h=1 h=1

= Z (¢n Du) * pey, + Z(u ® Von) * sy
h=1

=" (onDu) % pe, + Z [(4 ® V) * pe, — 4 @ Von].-
h=1 h=1

3

Using (3.8) and Theorem 2.2(b), by integration we obtain
o0
|Dvs|(R2) = f |Vvsldx <8+ Zf on|Du| = 8 + | Du|(2).
Q h=1 Q

This proves the existence of vs. Choosing 8, = 2-h and setting up, = vs,, from (3.7) we
infer
lim lup — uldx =0, limsupf |Vup|dx < |Dul(2).
Q

h—>o00 JQ h—o00

The lower semicontinuity of variation implies that | Dupl() Gi.e. fn |Vup| dx) converge
10|Du|(S2), hence | Du|(£2) is the least constant in (3.6). O
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Remark 3.22 Theorem 3.9 says that for every open set Q the space [ce@rn
[BV(Q)]™ is dense in [BV (2)]", endowed with the topology induced by strict con-
vergence. If Q is an extension domain we can say something more: let u € [BV(Q)I",
let T u be an extension operator and let u, be the mollified functions (T u) * p,. We know
by Proposition 3.7 and the remarks preceding it that u, converge to Tu in (LY (RN)]™ and
| Dug|(S2) converge to | DTu|(S2) as € | 0, because |DTu)(3R) = 0. Since Tu coincides
with u in €, this proves the possibility of approximating u in the strict convergence by
functions in [C*°(2)]™.

The following compactness theorem for BV functions is very useful in connexion
with variational problems with linear growth in the gradient (e.g. least area problems
for cartesian hypersurfaces, see [175]). Since the Sobolev space w!! has no similar
compactness property this provides also a justification for the introduction of BV spaces
in calculus of variations.

Theorem 3.23 (Compactness in BV) Every sequence (up) C [BViec(2)1™ satisfying
sup[f |u;,|dx+|Du;,|(A):heN} <0 VA CC Q open
A

admits a subsequence (Up(k)) converging in [Llloc(Q)]"‘ tou € [BVioc(D1". If Qisa
bounded extension domain and the sequence is bounded in [BV ()" we can say that
u € [BV(RQ)1™ and that the subsequence weakly* converges to u.

Proof Let Q' CC  be an open set. By the same diagonal argument described before
Corollary 1.60 we need only to show the existence of a subsequence (4 (k)) converging
in [L1 ()] to some function u (notice that u € [BV()]™ by (3.11)).

Let 8 = dist(®,9R) > 0, U C Q the open /2 neighbourhood of Q' andlet
Une = un * pe. If £ € (0, 8/2) the functions up ¢ are smooth in ' and satisfy

lun el < lualiiloeloos  1Vuneleg < lunli 1 Vosloo:
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By our assumption on (u), the sequence (uj,,) is equibounded and equicontinuous for
¢ fixed. This means that, with ¢ fixed, we can find converging subsequences of (i)
in C(Q). By a dlagonal argument we can find a subsequence (h(k)) such that (us),)
converges in C(2') for any ¢ = 1/p, with p > 2/§ integer. Applying Lemma 3.24
below we find

lim sup / |#h(y — ungen|dx < limsup / un@),1/p = Unei).1/p) dx
k, k'—>o00 JV k,k'—o00 JQ

+ lim sup‘/l [lwny = unay.1/p] + lungey,1/p — unaeyl] dx

k, k=00

2
< —sup |Duy|(U).
P heN

Since arbitrarily large p can be chosen and L'(€') is a Banach space, this proves that
(px)) converges in L1(').

Finally, we prove the last part of the statement. If we assume that € is a bounded
extension domain, we can apply the first part of the statement to the extensions Tu;, €
[BV(RV)]™ to obtain [L] (RV)]™ convergence of a subsequence (Tupgky) to some
function u € [BV(RM)]". In particular (up(x)) converges in [LYS)]" tou and u €
[BV ()] by (3.11). The weak* convergence follows at once from (3.11). ]

Lemma 3.24 Let u € [BV(Q)]™ and K C Q a compact set. Then
/ |lux p. —uldx < &|Du|(2) Ve € (0, dist(K, 0R2)) .
K

Proof By Theorem 3.9 we can assume without loss of generality that u € [C!(Q)]™.
Starting from the identity

1
u(x-—sy)—u(x):-—s/ (Vu(x — ety), y) dt xekK, yeB
0

We can take norms in both sides, integrate with respect to x and use Fubini’s theorem to
- Obtain

l
\
}

1
/ lu(x —ey) —u(x)|dx < e/ / |Vu(x — ety)| dxdt < ¢|Dul|(R2).
K 0 JK

 Multiplying both sides by p(y) and integrating we obtain

f (f lu(x —ey) — u(x)lp(y)dy) dx < ¢|Du|(R). (3.21)
K RN

Sinice u * pe (x) — u(x) is equal to fRN [u(x—ey)—u(x)]p(y) dy, which can be estimated
vith the integral among parentheses in (3.21), the statement follows. a



