THE SPACE BV 117

that for these functions the distributional derivative is representable by integration with
respect to V=, and that for " ~!-almost every point the N-dimensional density of
the set belongs to {0, 1/2, 1}. In order to find the proper extension to higher dimensions
of the continuity and differentiability properties presented in Section 3.2, we introduce
in Section 3.6 suitable notions of approximate limit, approximate jump, approximate
differentiability. In Section 3.7 we study several fine properties of BV functions, proving
in particular the existence of one-sided approximate limits on countably H"N~1-rectifiable
sets inside the domain, that H™ ~!-almost every approximate discontinuity point is an
approximate jump point, the approximate differentiability and the characterisation of the
approximate differential as the density of the absolutely continuous part of distributional
derivative with respect to £V, In Section 3.8 we show some decomposability properties
of BV spaces and prove the existence of traces on the boundary of the domain.

The next three sections contain more precise results on the structure of the distribu-
tional derivative. In Section 3.9 we split the distributional derivative into three parts, an
absolutely continuous part, a jump part and a Cantor part. We prove several properties of
these parts of the derivative, showing in particular that the absolutely continuous part and
the jump part can be recovered, unlike the Cantor part, from a suitable blow-up analysis
of the behaviour of the function. Section 3.10 is devoted to the chain rule in BV, i.e. the
behaviour of the distributional derivative under Lipschitz transformations in the depen-
dent variable. In Section 3.11 we systematically study restrictions of BV functions of N
variables to one-dimensional sections, showing that the global distributional derivative
can be recovered, by a disintegration method, from the distributional derivatives of the
one-dimensional restrictions. The same holds for the three components of distributional
derivative, the approximate jump set and the approximate one-sided limits.

Finally, in the last section we sketch the history of BV functions, from their definition
up to discovery of the main fine properties and trace theorems.

31 The space BV

Throughout this chapter we denote by 2 a generic open set in R, We begin this sec-
tion with the most common definition of B V(Q2), based on the existence of a measure
distributional derivative. '

Definition 3.1 Let u € L!(); we say that u is a Junction of bounded variation in Q if
the distributional derivative of u is representable by a finite Radon measure in Q, i.e. if

fua—¢dx=—/¢dD,-u V¢€Cf°($2). i=1,...,N 3.1
o O0x; o

for some R¥-valued measure Du = (Dyu, ..., Dyu) in Q. The vector space of all
functions of bounded variation in  is denoted by BV (R2).

Some remarks on this definition are in order. First, a smoothing argument shows
that the integration by parts formulae (3.1) are still true for any ¢ € Ccl (2), or even for
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Lipschitz functions ¢ with compact support in Q. These formulae can be summarised in
a single one by writing

N T
dgvpdx=-Y" [ ¢idbiu  voe[cl@] . 32
Lu vodx i=1A¢ u (pG[ ()] (32

We use the same notation also for functions u € [BV(2)]™; in this case Du is an
m x N matrix of measures D;u® in 2 satisfying

/u“%dx=—f¢dD,~u°’ V¢ECCI(Q), i=1,...,N, a=1,...,m
Q Ox Q
(33)

or, equivalently,

m m N
Y / utdive®dx =—-) Y f prdDu®  Yepel[Cl@I™N. (34
a=17% a=1i=1Y%

The Sobolev space W'+1() is contained in BV (£2); indeed, forany u € W'!(Q) the
distributional derivative is given by VuL" . This inclusion is strict: there exist functions
u € BV(Q) such that Du is singular with respect to LV (for instance the Heaviside
function x(0,00), Whose distributional derivative is the Dirac measure &p). Our notation
Du for the distributional derivative is motivated by the necessity to keep it distinct from
the (approximate) pointwise differential Vu, introduced in Section 3.6 and representing,
by Theorem 3.83, only the density of Du with respect to LN,

Simple but useful properties of the distributional derivative are stated in the following

proposition.
Proposition 3.2 (Properties of Du) Let u € [BVioc(Q)]™.

(@) If Du = 0, u is (equivalent to a) constant in any connected component of .
(b) For any locally Lipschitz function ¥ : Q — R the function uyr belongs to
[B Vioc(S)]™ and

D(uy) = Yy Du+ u® Vy) LY.
(c) If p is any convolution kernel and Q¢ = {x € Q: dist(x, I2) > ¢}, then
V(u * pg) = Du * pg in Q..

Proof (a) follows from (c) and a smoothing argument, while the verification of (b) s
straightforward. To prove (c) it suffices to notice that (2.2) and the convolution identity
(2.3) (applied first with x = Vy LV, then with . = Du) give

f(u * pe) VY dx = / u(pe * V) dx = f uV(y x pe)dx
Q Q Q

= —/ (¢ * ps)dDu = —f (Du * p.)y dx Yy € C°(Qp).
Q Q |
0




THE SPACE BV 119

One of the main advantages of the BV space is that it includes, unlike Sobolev spaces,
characteristic functions of sufficiently regular sets and, more generally, piecewise smooth
functions. The following important example motivates the definition in Section 4.1 of
the space SBV of special functions of bounded variation.

Example 3.3 Let @ c R2? be a bounded open set and let us assume the existence of
pairwise disjoint open sets with piecewise C'! boundary {©;}<;<, such that

p p
UQ,' cQC Uﬁ,
i=1 i=1

Ifu; € CY(Q;), we can define u : Q —» R to be equal to #; on any subdomain Qi,
and define it arbitrarily on the remaining negligible set X. By applying the Gauss-Green
theorem to any domain Q;, fori =1, ... , D, we find

/ udiv¢dx=—/ (Vu,(p)dx—/ uilp,viydH! Vo e [C1(Q)]?
Q; Q; 9

where v; is the inner unit normal to Q;. Adding with respect to i these identities we find
that u € BV (), with Du given by

)4
Vul? + ) wH L@ N agy).
i=1

Now we introduce the so-called variation V(u, Q) of a function u € [L}OC(Q)]"'.
The variation can be infinite, and we will see that a function u € [L1(Q)]" belongs to
[BV(£2)]™ if and only if V (4, Q) < oo. Since u > V(u, Q) is lower semicontinuous in
the [Llloc (2)]™ topology (cf. Remark 3.5 below), this provides a useful method of show-
ing that some function u € [L! (2)]™ belongs to [BV (2)]™: one needs only to approx-

imate u in [Llloc ($2)]™ by functions (u;,) whose variations V(up, Q) are equibounded.

Definition 3.4 (Variation) Let u € [Llloc(Q)]”'. The variation V(u, Q) of u in Q is
defined by

m
V(u, Q) := sup [Z/ u®divg® dx: ¢ € [CHEI™, ¢lloo < 1) .
a=1Y9

A simple integration by parts proves that V (u, Q) = fn [Vu|dx if u is continuously
differentiable in Q. Other useful properties of the variation are listed in the following
remark.

Remark 3.5 (Properties of the variation)
(Lower semicontinuity) The mapping u > V(u, Q) € [0, oo] is lower semicontinuous
in the [Llloc (£2)]™ topology. To check this, we need only to notice that

m
7= Zf u®divep® dx
a=1782

s continuous in the [LIIOC(Q)]’" topology for any choice of ¢ € [C}(2)]™V.
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(Additivity) Notice also that V' (u, A) is defined for any open set A C € (in this case the
test vector fields ¢ must be supported in A); it can be proved (see Exercise 3.1) that
V(u, B) = inf {V(u,A): AD B, Aopen} B € B(Q)

extends V (u, -) to a Borel measure in Q2.
(Locality) The mappingu — V (u, A)isalsolocal,i.e. V(u, A) = V (v, A) if u coincides
with v LN-ae.in A C Q.

Proposition 3.6 (Variation of BV functions) Let u € [L'()]™. Then, u belongs to
BV if and only if V(u, Q) < oo. In addition, V (u, Q) coincides with \Du|(Q)
foranyu € [B V(Q)]"‘ and u — |Du|(R) is lower semicontinuous in [BV ()]" with
respect to the [L (1™ topology.

Proof If u € [BV(2)]™ we can estimate the supremum defining V (4, Q) observing

that
f ¢x le

forany ¢ € [C}. ()" . Since in the computation of V (4, Q) we require that [|¢]oo <1,
from Proposition 1.47 we infer that V (4, Q) < |Du|(R2) < oo.
Conversely, if V (4, 2) < 0o a homogeneity argument shows that

/ u“divp® dx = —

a-l x—l a=1

<V, Qlelle Yo e [CLEIY.

/ u®divep® dx

a=1

Since [C} ()1 is dense in [Co(S2)]™", we can find a continuous linear functional L
on [Co(2)]™Y coinciding with

m
o Z/ u®diveg® dx
a=1Y%

on [Ccl ()™ and satisfying |L|| < V(u, Q). By the Riesz theorem, there exists
R™N _valued finite Radon measure y = (uf) such that |L|| = |u|(2) and

=33 f ordus Vg e [Co@™.

i=1 a=1

From (3.4) and the identity
m
Zf u® div p® dx = ZZ/ ordu? Ve elCl@r¥
a=1 i=1 a=1

we obtain that u € [BV(R2)]", Du = —u and
[Du|(R) = |ul(Q) = IL|| = V(4, Q) .

Finally, the lower semicontinuity of u > |Du|(S2) follows directly from Remark 3.3,
0
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Motivated by Proposition 3.6, also | Du|(2) will be sometimes called the variation of
u in €; however, unlike V (4, ), the expression | Du|(2) will be used for BV functions
only. We notice that [BV (2)]", endowed with the norm

lullay = /ﬂ lul dx + | Dul(€)

is a Banach space, but the norm-topology is too strong for many applications. Indeed,
one can notice that, even for m = 1, continuously differentiable functions are not dense
in BV(£2); one can consider any u € BV () such that Du is not zero and singular with
respect to £V and notice that

|D(u — v))(Q) = |Du)(Q) + | Dv|(Q) = |Dul|(Q) > 0

foranyv € C 1(Q)N BV (). This is true because, as it can be easily checked, |A — u| =
|A| + || for mutually singular measures A, ji.

However, [BV (2)]™ functions can be approximated, in the [L1(2)]™ topology, by
smooth functions whose gradients are bounded in [LY(£)]". To see this, assume first that
Q =RY. Let p be a convolution kernel and let u, = u * p; be the mollified functions.
Recalling Proposition 3.2(c), Theorem 2.2(b) gives

|Due|(RY) =fRN |Vue|dx = fRN | Du % pe| dx < |Du|(R™).

In particular, by the lower semicontinuity of the variation, | Dug|(RVN) converges to
[Du|(RY) as £ | 0. A local version of this result is the following.

Proposition 3.7 Letu € [BV(2)]™ and let U CC 2 such that | Du|(dU) = 0. Then,
lim | Dug|(U) = | Du|(U).
el0

Proof By the lower semicontinuity of the variation, we have liminf, |Du|(U) >

|Du|(U). On the other hand, denoting by U, the open &-neighbourhood of U, from
Theorem 2.2(b) we infer

lim sup | Du,|(U) < limsup |[Du|(U;) = |Du|(U) = | Du|(U).
&l0 £l0

Remark 3.8 In particular

leiﬂ)l |Dug|(Bo(x)) = | Du|(Bo(x)) (3.5

for any ball B,(x) CC K such that [Du|(@By(x)) = O. This continuity property
is quite useful because, given x, the set of all ¢ > 0 such that By(x) CC Q and
|Du|(3B,(x)) > 0 is at most countable (cf. Example 1.63).



