Pairings Between Measures and Bounded Functions
and Compensated Compactness (*).

GABRIELE ANZELLOTTI (Povo, Trento)

Summary. — For all vectorfields v € L™(2, R*) whose divergence is in L"(Q) and for all vector
measures u ih 2 whose curl is a measure we define a real valued measure (v, p) in 2,
that can be considered a suitable generalization of the scalar product of v and p. Several
properties of the pairving (v, u) are then obtained.

Introduction.

The integral of a function f with respect to a Radon measure § is defined for
instance when f is continuous, or, more generally, when f is f-measurable and sum-
mable; it is also quite clear that the integral {f, #> cannot be defined for a general
Lebesgue-meagurable (even if bounded) function f. However, we shall see that if
ue M8, R is a Rr-valued Radon measure on an open set £ c R» and if y e L*(£,
R»), then one can define a real valued measure {y, u) on £, that works nicely as
the scalar product of ¢ and y, provided one assumes also that

a/,Li _ %
ow; o,

(0.1) rot u :{ } is a measure in Q2
1i=1...,0

(0.2) divy e L™Q) .

We notice that the hypothesis (0.1) is certainly satisfied in the special case that
u = Du and we BV(£). This special case is the first to be investigated, in sec-
tions 1 and 2. We remark that pairings of this type, between admissible stresses
and strains o, (%) in elasto-plasticity, have been already considered in [1], [8], [2].

In section 3, we define and study the pairing (y, g) in the general case. Certainly,
hypotheses (0.1), (0.2) remind one of compensated compactness, and, in fact, we
have also a result (theorem 4.1) that extends to our pairing (y, u) the result of Mu-
RAT ([10], theorem 2). Actually, both the proof of theorem 4.1 and the definition
of (v, u) depend on a suitable explicit solution of the equation

rotz = A

(where A is a given measure) which is obtained as in [10].

(*) Entrata in Redazione il 17 aprile 1983,
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In the appendix we have collected a few approximation and extension results
that are needed in the paper.
At the beginning of each section we give an outline of its content.

I would like to thank E. DE GioreaI for his encouragement and for some useful
comments on the results of this work.

1. - The pairings (y, Woay (9, Du).

It is well known that summability conditions on the divergence of a vector
field ¢ in £ yield trace properties for the normal component of y on 9£2, for instance
compare with [13], [1], [8]. In this section (theorem 1.2) we define a function [y-v]e
€ L=(082) which is associated to any vector field yp € L*(£2, R) such that div p is a
bounded measure in . After that, we define the pairing (y, Du), when v and u
belong to suitable spaces, and we give its first properties. Finally, the expected
Green’s formula relating [y-v] and (y, Du) is obtained in theorem 1.9, through lem-
ma 1.8,

Let £ be an open set in R», »n =2, and let p, ¢ be extended real numbers
such that 1 S p=n,n/(n—1) < q¢= --oco. We shall consider the following spaces:

BV(Q),= BV(Q)n LY(Q)
BV(2),= BV(2) N L>(2) N (°(Q)
X(Q), = {pel>(Q, RYdivye L*(Q)}

X(R), = {pel=Q, R"|div y is a bounded measure in Q}.

v

In the next theorem we define a pairing
(U a0t X(Q), XBV(£2),— R
and in the following theorem 1.2 we show that this pairing can be represented as

Py o = [y f@)u(@) B
00

where y, € L=(0f2) is a suitable function depending on .

THEOREM 1.1. — Assume that Q is bouwnded and that the boundary of £ is locally
the graph of ¢ Lipschitz function. Denote by v(x) the outward unit normal to ¢2. Then
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there exists a bilinear map <y, w)sq: X(2),XBV(LQ),— R such that

(1.1) (o, )50 = f (@) (@) (@) dH— i ye O3, RY)
00
(1.2) K, 0 ag] < [9]mof[u@)] A1 for all p,u.
802

Proor. — In order for (1.1) to be satisfied, we are bound to set
(1.3) Py oo = [u div p do +[p-Dude
Q o

tor all functions w € BV(Q2),N H-Y(Q2) and for all veetors yp e X(2),. Notice that
the last term on the right of (1.3) would not have a defined meaning for general v,
if Du were just a measure. The map {y, u),, is clearly bilinear, when it is defined.

Now we remark that if », ve BV(Q2),N H-Y(2) and v = v on 02 then one has

(1.4) Py Uso = Py Vs Tor all pe Xﬂ(Q) .

In fact, by lemma 5.4, one can find a sequence of funetions g, C7 (£2) such that,
for all p € X(2),, one has

{Yy U — Va0 :f(u — ) div y do +fi/)'D(%—U) doy =
2 2

= 1im{fgj divy de 4|y Dy, dm}: 0.
Q

j—>o
Now we define (y, u),, for all u € BV(2), by setting

LYy W) a0 = <P, Wysg

where w is any function in BV(Q),N H¥(Q) such that w = » on 9f2. This is a
valid definition, in view of the preceding remark and because of the extension
lemma 5.5.

To prove estimate (1.2), we take a sequence of functions ;€ BV(Q),N 0°(£2)
that converge to « as in lemma 5.2 (actually, we do not need property 5.10) and
we get

[y Waal = Ky 330) < | [, div  da| + [yl 1D

for all y and for all 4, hence, taking the limit for § —oco we have

(1.5) Ky 000 < |[u divyp da| + [l 1Du]
Q Q



296 GABRIELE ANZELLOTTI: Pairings between measures and bounded, ete.

Now, we take a fixed number ¢ > 0 and we consider a function w as in lemma 3.5.
For such & function we have

< W00l = K, 0o | < 10l oI5V ] + [yl [10] d2 + )

N2, fifel

where Q,= {z € 2|dist (w, 002) > ¢} and

lim f \div | =0
g~>0

a2,

because div y is a measure of bounded total variation in Q. As ¢ >0 is arbitrary,
estimate (1.3) is proved. q.e.d.

THEOREM 1.2. — Let 2 be as in theorem 1.1. Then there exists a linear operator
y: X(Q),— L*(08) such that

(1.7) Py U gy = f v @ u(@) dH for all ue BV(RQ),
o0
(1.8) V(@) = (@) v(@) for all xe Q2 if ye CY(Q, R").

The function y,(x) is a weakly defined trace on 92 of the normal component
of v, hence we shall denote y, () by [yp-v](z).

Proo¥. - Take a fixed yp € X(£2), and consider the linear functional G: L*(22) -~ R
defined by

G(u) = {p, w)sn

where % € L*(0£2) and w e BV(£2), is such that w|,, = ». By estimate (1.3) of the-
orem 1.1 we have

1G()] = 9] w,0l %l 200

hence there exists a function y, e L*(9£) such that
G (u) = f v (@) u(w) ZH
o

and the theorem follows. q.e.d.

Clearly, one has X(Q),c X(2), for all p =1 and the trace [y-»] is defined for
all ye X(2),. Our next result is quite natural.
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PROPOSITION 1.3. — Let 2 be as in theorem 1.1 and let p, q be ewlended real
numbers such that

1 .
+o=1 ifp>1,
= +00 ifp=1.
Then, for all pe X(£2), and for all we H-Y(Q) N LYLQ), one has

(1.9) wdivyds + |y -Vu de =|{y-v)(@)u(x) dH*.
I A

2]

ProoF. — Take a sequence of funetions f;& C=(2) such that

Ly)y if g< + oo

(1.10) fi—~u in H»(Q) and in
Lo(2) weak* if ¢ = -+ oo.

Now, formula (1.9) holds for all § with f; at the place of % and, taking the limit for
j —o0, we get our result, recalling that (1.10) implies f;, > w in LY(08). q.e.d.

In what follows we shall consider pairs (¢, #) such that one of the following
conditions holds

a) we BV(Q),, pe X(2), and 1<p§n,%+$=1;
(1.11) b) uwe BV(2)w, p € X(Q),;
¢) weBV(Q),, pyeX(Q),.

DEFIMTION 14. ~ Let p, w be such that one of the conditions (1.11) holds for all
open sets Acc 8. Then we define a linear functional (v, Du): C3(Q2) - R as

Ly, Du), g = —|up div p do —f’mp-D(p dr .
2 Q

Compare definition 1.4 and the rest of this section with [8].

THEOREM 1.5. — For oll open sets A c 2 and for all functions @ € O(4), one has

(112) K(p, Du), 93] = 50 [ |90 [ 1]

A
hence the functional (v, Du) is a Radon measure in £.

Proor. — Let % be fixed and take a sequence w;€ C*(£2) that converges to wu
a8 in lemma 5.1. Take ¢ € (°(4) and consider an open set V sueh that 420 V o spt ¢.
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For all § we have then

m,A'J‘|Duﬂ'|

14

[y, Duy), o> | < sup lg|- |9

and taking the limit for j oo, we get (1.12). q.e.d.

We shall denote by |(y, Du)| the measure total variation of (w, Du) and, for
every Borel set B c £2, we shall denote by f (w, D), J' (y, Du) the values of these
measures on B. £ 2

By theorem 1.5 we get immediately the following corollary.

COROLLARY 1.6. — The measures (p, Du), (v, Du)| are absolutely continuous with
respect to the measure |Du| in 2 and one has

[, )| <[lty, Du)| = . 1Dul

B B

for all Borel sets B and for all open sets A such that Bc A c L.
Moreover, by the Radon-Nicodym theorem, for fized v, u, there exists a |Du|-meas-
urable function

O(w, Du, x): 2 - R

such that

f(y), Du) :f@(ip, Du, ) Du|  for all Borel sets Bc L2
B

B

16(y, Du, w“Lm(Q, lDuI)é [1/’"00,9 .

REMARK 1.7. — If F is an open set with lipschitz boundary in R, then the char-
acteristic function % of I

1 ifxekl

w(w) =
0 ifexeékl

(R®) and the measure (y, Du) in R* coincides with the

loe .

belongs to the space BV
measure [y v]H" ;.
We shall need the following continuity lemma in the proof of theorem 1.9.

LEMMA 1.8, — Assume that w, y satisfy to one of the conditions (1.11) and let
u; € C(2) N BV (2) converge to u as in lemma 5.2 (actually, here we do not need
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(5.10)). Then we have

f(«,;, Du,) ->f('¢p, Du).

Q Q

ProOF. — Take a number ¢ > 0, then take an open get 4 cc 2 such that

f}Du|< 3

and let ge O (£2) be such that 0 < g(»)<1 in 2 and g(x) =1 in 4. We have
then

| [, D) [y, Dw)| <
2 7]
< Kiy, Dus), g — (v, Du), 9> + [1(p, D)1 — ) + [|(p, Du)| (1 — )
Q Q2

where

lim <(7/)7 D“i); g = <("/’7 D“): g9

j=—>

max lim | [(p, Du)|(1 — g) < |9],o max limfiDu,-] < &]p] w0
j—>w© 4 j—>o0 oV

[l Dwia ) 5 eip.

and the lemma is proved, as ¢ is arbitrary. q.e.d.

We conclude this section by the expected Green’s formula, compare with the-
orem 3.2 in [8], relating the function [y¢-»] and the measure (p, Du).

THEOREM 1.9, — Let Q be a bounded open set with Lipschitz boundary and let p, u
be such that one of the conditions (1.11) holds, then one has

fu div y do +f(¢, Du) = [yvlu i1,
Q 2 802

Proor. — Take a sequence of functions u,€ C°(2) N BV(Q) that converge to u
as in lemma 5.2. Then, by lemma 1.8 and proposition 1.3, one has

fu div o dx +f(w, Dy) = lim {fu, div y do +f(qp, Dui)} =
Q Q 2

>

= lim |[y-v]u; dH*1 = f [p-v]u dH"1
an an

20 = Annali di Matematica
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because

f("/’; Duy) :fqp-])u,- dav
e 2 for all j. q.e.d.

ua‘!a_o = U5

2. — Representation of §(y, Du, x).

In this section we shall be concerned with the problem of whether or not one
can write

(2.1) O(y, Du, ) = p(x)- I_g%l (@)

where (Du/|Dul)(x) is the density function of the measure Dw with respect to the
measure |[Du|. First, we shall see that the answer is affirmative if Due L () or
if pe 0°82); then we shall see that, in any case, (2.1) holds |Du|*almost everywhere,
where |Du|* denotes the absolutely continuous part of the measure |Du| with respect
to the Lebesgue measure £ in 2. An example shows that, in general, (2.1) does
not hold |Du|-almost everywhere (where [Dul° is the singular part of [Dul), as one
is not able to define y(z) [Du|-a.e. in L. However, even if one does not have a
representation formmula for 0(y, Du, ) in the singular zone of |Du|, the function
6(y, Du, x) still enjoys a few properties (proposition 2.6, 2.7, 2.8) that can be useful.
In particular, the results in this section will be used in [3] (compare also with [2])
to get some regularity properties of the vector field (Du/|Du|)(x) when w is a solu-
tion to a problem f f(e, Du) —min and f(z, p) is asimptotically of linear growth
in p for large |p|. ©

For the sake of simplicity, we shall assume throughout this seetion that y € X(2),
and that » & BV (), but it is clear that analogous results can be obtained for pairs
(w, u) satisfying any one of the eonditions (1.11), No assumption is needed in this
section on the open set Qc R~

Here is a continuity result.

ProrosrtioNn 2.1, — Assume that

(2.2) v, Y in Le(4A)-weak™
(2.3) divy;—div v in L(4)-weak

for all open sets A cc 2; then, for all we BV,

1wl 82), one has

(2.4) (s, Du) — (p, Du)
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as measures in 2, and
(2.5) 0(ys, Du, x) — 6(y, Du, z)
in L®(A)-weak* for all A cc L.

ProOF. — For all Acc 2 and for all j we have f|(1p,~, Du)| < |y
where 4

w,A'!lDul

sup [9i]w,a= ¢(4) < 400

because of (2.2), hence it is sufficient to check the weak convergence (2.4) on Ci(£2)
functions. On the other hand, if ¢ € C}(2) one has

i, Du)y @> = —up div y, dx —fmpg-Dgo de — {(y, Du), ¢>
Q2 12]

and (2.4) is proved.
To show (2.5) we notice that for all j, by corollary 1.6, one has

He(%, Du, m)”L"’(A, JDuJ)—S— “"/’il

0,4 ¢(4)

hence the convergence (2.5) has to be checked only on Cy(£2) functions, where it
reduces to (2.4), q.e.d.

We shall need the following simple fact.

LEMMA 2.2. — For every function pe X(Q),, there exists a sequence of functions
;€ C°(L) N L2(Q) such thot
[¥slw.0= [ploe  for all §
P— in L®(Q)-weak* and in L7(Q) for 1< p< + oo

pi(x) = p(x) at every Lebesgue point « of v, and uniformly in any set of
uniform continuity for v .

div y, — divy in L}.(8).

PrOOF. — Just take a sequence {,} of mollifiers and set ;= 1;% P, Where 7
is defined by

pl) if ze
) = _
0 iftw¢ Q. q.ed.

Now we give the representation results for 6(y, Du, x).
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PROPOSITION 2.3, — If pe X(Q2), N C%Q) and € BY(Q) then one has

{2.6) B(y, Du, 2) = p(x)- ~[1€—Z| (@), |Duj—a.e. in Q.

Proor. — Formula (2.6) is equivalent to

(2.7 (v, Du), > =f¢w Du, VypeCyR)
Q

and (2.7) is true by definition if y € 0Y(&Q). If y is general, we take a sequence y,
ag in lemma 2.2 and, by lemma 2.1, for all ¢ € C3(£2), we have

{(y, Du), ) = lim {(y;, Du), pp = lim py; Du = | gy Du

Q

where, in the last step, we have nsed the fact that y; converges uniformly to v on
spte.  g.e.d.

If we H-(Q), then, for all p e X(Q), and for all p € C3(£2) one has
[y Dudo = —[u div (gp) dz = <ty, Dw), 9>
2 2

and this implies that

8(y, Du, ) = p(x)- T%%(w) y  |[Duj—a.e. in Q.

For a general u e BV(2) one has the following result.
THEOREM 2.4. ¢ If ye X(2), and € BV(R), one has

(2.8) 8(yw, Du, 2) = p(x)- {»%—Z—I(w) y |Dujf—a.e. in Q.

ProoOF. — Formula (2.8) is equivalent to

(2.9) f@(y), Du, z)| Dul*(z) dx _-_fzp(x)-(Du)“(w) dx

B

for all Borel Bc {2. Let E* and E* be two Borel sets such that B+U Ee= Q, B*N
N B:= 0, ﬂDu[“—-——f{Dulsz 0 and let ¢ >0 be fixed. Then let K be a compact
E® x°

set, with X c Es, such that

(2.10) f |Duji< e
ESN\E
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and take any compact set B,c /. We can find an open set L with regular bound-
ary, such that

By,cLc O\K, f|1)u|< e
L\B,

and, by (2.10) it follows that one has also

f]Du["< &.

L

Now, take a sequence w;e 0®(L) N BV(L) approximating % as in lemma 5.2. By
lemma 1.8 and corollary 5.3 we have

‘ f9(¢7 Du, «) Du —fw(m) (Du)*(x da; = lim lf Y Du;(w) de —f ®) do| <

j=>co

< [9]a.slim [ D, — (Duy| < 1] f DUl < [p] s
J%m . 4
On the other hand, we have

qu Duye dx—fw (Du)e a2 = [yl o
INGB,

and, by corollary 1.6, we have also

o002, 1081 —foty, D 119w < .o 10w v
INB,

©,2

In conclusion we get

J6w, Du, ) Du| ~[p-(Duye da) < Selp].osg

Hence (2.9) is proved for all compact sets B¢ E*. By the regularity properties of
Radon measures we have then that (2.9) holds for all Borel sets in 2. q.e.d.

REMARK 2.5. ~ If g (#) ={y(y) dy is the mean value of y in the ball of radius ¢
By(z)

and center x, then we have shown that

Dy .

)* [y @ =0y Dusw) i T2y, Du

(2.11) (@

)-weak*
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where

Po(®) — p(@)
Du |Duj*— a.e. in Q.

8(yp, Du, ) = p(x)- m (@)

On the other hand, in general, one need not have y,(x) — p(2) in any sense in
the zone where |Du|® is concentrated, and the convergence (2.11) only makes sense.
Az an example of this situation one can take

1 ifxekl

Q=R, D={peRn<0}, “(‘”)Z{O if #e RAE

1
v = (¥, P2) » Pu(@y, ) = sen; s Y= 0
2

and it is easily seen that pe L®(£2, R?), divy =0, 0(y, Du,z) = [y v](x) on oF
(where v is the normal to 0E), while the mean values y, (@) do not converge on cE.

Even though the function 6(y, Du, #) cannot be represented in terms of a well
defined value of p(x) [Dul*-a.e., it enjoys a few nice properties that are studied in
the rest of this section.

PropositiON 2.6, — If pe X (&), and we BV (8Q), then one has
(i) 6(y, D(w -} ¢), 2) = O(p, Du, x) |Dul-a.e. in Q for all ge HHY(Q);
(i) 6(y, D(gu), ) = segn g(x), 6(yp, Du, z), |g|[Dul*-a.e. in Q for all ge CYQ).

Proo¥. — (i) Recall that if Dge LY(Q) then one has (D(u + g))*= (Du)?, then
notice that

(1/)’ D(uw 4 g)) == 6(1/); D(w 4 q), w)]D(u - g)}s+ 0(1/)7 Diu + g)rm)iD(u + g)ia
while, on the other hand

("/)7 Diu + g)) = {yp, Du) + (yp, Dg) =
= 0(y, Du, )| Du|* + 0(y, Du, x)|Du|*+ yp(z) - Dg(z) .

Equating the two expressions for the singular part of (v, D(u + g)) we get
0(y, D(w + g), x)|Dul* = 0(y, Du, )| Du|*
and (i) follows.

(ii) For all test functions ¢ € C}(£2) we have

Ay, Dign)), p> = <y, Du), 99> +[(p-Dy)ug da
2
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hence we have, for all Borel sets Bc 2,
212)  [6(y, Digw, @) D(gu)| = [6(y, Du, 2)g|Duf+
B B
+f6(w, Du, w)g|Dul* +fw-179u dw .
B ' B

Recalling that |D(gu)|*= |g||Du|* and equating the singular parts on the two sides
of (2.12) we get (ii). q.e.d.

For all functions #: Q — R let us consider the sets
B,,= {zeQuw) >1}.
If weBV(8), it is well known [9], [5] that the characteristic functions

1 ifwekl,,

%u,t(w) == X
0 itw¢h,,

of the sets I, ; are in BV () for £!-almost all ¢ € R; moreover, the function ¢ Hf [ Dy,
is Ll-measurable and the coarea formula @

(2.13) | f f(z)|Du| =T;ltff(m 1D gy
Q —©

holds for every |Du|-summable function f: 2 — R. It follows that a set B c 2 has
|Du|-measure zero if and only if for £l-almost all e R one has f [Dy.,:l = 0. For
later use we recall also that one has 8

Dy - Dy,
D] ) = Dy

I (J)) 3 leu!tl —a.e. in Q2

for Ll-almost all te R,
Now we shall give a «slicing » result that links the measure (i, Du) with the
measures (v, Dy,..).

ProrosrrioN 2.7. — If ye X(Q), and ue BV(Q), then we have:

n

(i) for oll functions ¢ € Cy(£2), the function t — {(p, Dy, ), @) is Li-measurable
and

4o
{(p, D), > = [<(py Do), >
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(ii) for all Borel sets B c 2, the function t%f (9, Dya,o) is Lr-measurable and
B

[, Du) =Jﬁlt [ D05

B —c0 B
(iii) 6y, Du, ) = 6(y, Dy, ) [Dyyl-a.e. in Q for Li-almost all e R.

PROOF. — (i) Take a sequence of functions y,e 0°(Q) N L=(2) that converge
to y ag in lemma 2.2. Then, for all j, we have, by the coarea formula,

D
(2.14)  {(y;, Du), @) :f @) E%(%)?(W)[Dui ==
a oo » o
- e A Y A
_.:[dt! () ;Dm,il(w)w(x)w,gu,t! —_—:[<(w:7-D%u,t)7¢> dt

where

<5y D) © 1 S (9 0]l o[ D]
(23

Recalling proposition 2.1, taking the limit in (2.14) for j —oco, by the dominated
convergence theorem we get the proof of (i).

We shall prove (ii) after (iif). Let’s prove (iii). Take a, b € R and consider the
function v € BV(2) defined by

b if b < u(w)
v(x) =4{ wlr) HaeZux)<h
a if wr)=a

then we have E, = B, for all ¢ such that & << b, hence

-DXu,t == -DZv,t
-DXu,,t ) = -D%’U,ﬁ (m) ifat<b
ngu:tl I'D%”’tl
Dypi= 10 iftzb orit<a
and it follows that
Du Dy, Dy, Dv

Dl = D] ™ T D] T B0
|Dyo,s| — ave. in @ for Ll-almost all te R
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that is

Dy Do

W(w) = fﬁﬂ(m)’ [Dv| —a.e. in Q.

Now it follows that, for every ye X(£2) we have
(2.15) 0(y, Du, x) = O(y, Dv,z), |Dv|-a.e. in Q.

In faet, if y, -y as in lemma 2.2, we have, for all j

B(ps, Dit, 2) = y,(c): I%%l('”) = O(ps, Dv,a),  |Dv|—ave. in ©

and taking the limit for j —>co, by the uniqueness of the limit in the L=(£, [Do|)-
weak* topology, we get (2.15). Finally, using statement (i) for v(x), we have, for
all ¢ <<b and for a fixed ¢ € 07 (),

+c0
Ly, Dv), @ =f<(1‘0’ DXa,t)y o) dt

— 0

i.e., by the coares formula and (2.15):

[@t[ocw, Du, a)g(@)Dy, | =[at[oty, Dy, 2)p() D,
a £ a 8

and this implies that

(2.16) [0, D, 2) 9@ (D0l = [600, Dty 2)0() D5
2 0

for £-almost all te R. If 8 is a countable dense set in CF(2) with respect to the
uniform convergence, it is possible to find a set N ¢ R such that CYN) =0 and
that (2.16) holds for all € R\ N and for all g € S. It follows that for all t e R\ N
one has .

0(y, Du, x) = 0(yp, Dy ¢, @)

as wanted.
To prove (ii) we notice that, by (iii), we have

f(% Du

B

~

- f 6(y, Du, @) [Du| :Tdt f 0y, Du, 2)| Dy, | =

- B

=T:itf9(% -D,’{u,t, Jf)u)xu,tf :T:itf('(p, Dxu’t) . | q.e.d.

—w B —w B
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Our next result is a consequence of proposition 2.7,

ProrosiTioN 2.8, — If a: R — R is an increasing function of class O, then one has
(2.17) 9(y, D{xou), ) = O(y, Du, ), |Du-a.e. in Q

where (cou)(x) = a(u(x)).

Proo¥, — First, notice that

B, = {xeQux) >t} = {reQ|(aou)(x) >u«(t)} = F

% O u, alt)

so that, for almost all ¢t € R, one has

D%u,ﬁ = ‘onc o u, x{t)

hence, for almost all e R one has also
0y, Duy ) = 0(p, Dy, ) =09, Dy, 5 o, yin ) = (v, D(xow), )

1Dy l-ane. in 2, and (2.17) follows.  q.e.d.

3. — The pairing (y, u).

In this section we define a pairing (p, u) when ye X(Q), and u is a measure
whose curl is also a measure. The key lemma is lemma 3.4; the idea for solving the
equation rot z = 1 is the same as in {10], but we cannot use Rellich theorem to show
the compactness of the operator Z: 1 — 2z, as we do not have sufficient informa-
tion on the derivatives of Z(1), and we use instead the information on the transla-
tions of Z(4).

The pairing (y, #) is then defined, when gz has a compact support, noticing that
one can write g = f + Du, where f € L}, (R*), rot f = rot u, v € BV, (R"), and using
the results of section 1. When yx does not have a compact support we localize and
then we glue together the pieces. The results of section 1 and 2 are then used to
derive a few properties of the pairing (v, 4), that are collected in theorem 3.8.

We shall denote by M(£2, R¥) the space of the RY valued Radon measures in £2.
We shall set M,(Q, R¥) = {ue M(£Q, R¥) such that spt u is compact} and we shall
write simply M(Q) instead of M(2, R).

We shall use the following well known facts, that we recall for convenience.
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Facr 3.1, - If fe L (R") and pue M(R"), then the convolution f# u is in
L (R*) and

it m= [1r1- 1wl

A-sot

where |u] =[|u| and 4 —spt p = {# —ylz e 4, y € spt u}-
R’Il
Facr 3.2. (Compaciness criterion.) — Let 4 be a bounded set in R» and let E ¢
¢ LY(R") be such that

supfﬁﬂ < +o0

FEE
Rﬂ
sptfcd for all fe B
[ITd—fldz < w(a)  for anl fem
R»
lim w(8) = 0

&0

where (T,f)(x) = f(x — a), then F is a relatively compact set in LI(R").
By using Facts 3.1 and 3.2, it is easy to prove the following lemma,

LeMMA 3.3. — Suppose that fe L. (R*), let A be a bounded set in R* and let
L c M(R") be such that
sup |A] < + o0
€L
sptAc A for all ‘ZeL
then the set B = {(f = A)|,; Ae L} is relatively compact in LY(V) for all bounded rec-

tangles V c R™.

Here is the key lemma for what follows.

LeMMA 3.4, — Let A be an open bounded subset of R* and let us consider the space
M, (4) = {Ae M(R*, R*) such that i = rot T for some distribution T € D' (R with
supt T cc A}, Then there exists a linear operator

Z: M, (A) -~ 1}

Ioc(R”7 Rn)
such that
(i) rot Z(A) = 4 in R for all Ae M (A);

(i) the map A — Z(A)[,is a completely continuous operator M (A) — LYV, R?),
- for any bounded rectangle V- R,
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Proor. — Let us consider the kernels

1 0
(2) = — - = =— =i
Bi(x) % Imln aij(w) y 1=j=mn,

where =z, is the (n — 1)-dimensional measure of the unit sphere in R” and

i 1 1 .
G(x) 1 1
-———ln(——) ifn=2
% \|7|

For every )& M,(A) we consider the function z = Z(A) € Lj, (R*, R*) defined by

If Te&(A)" is such that rot 7 = . we have, in the sense of distributions,

Cwod e, or. .\ o [[oT, o B
(rot 2);; = ,:gi ox; {[axh o aw,} * Ek}_ Bwi{[é.a; o 80:,-] * E’”} -

and (i) is proved.
Using Lemma 3.3 one gets immediately (ii). q.e.d.

LEMMA 3.5. — For every measure e My(R* R*) such that rot ye M(R", R™)
there exist a function fe L. (R", R*) and a function uwe BV, (R") such that

loc
p=Du-+f in R*.

Proor. — If ue My(R", R*), then, by lemma 3.4, we can consider the function
f= Z(rot u) e L}, (R*, R*) and we have

loc

rot (u—f) =0 in R»

hence there exists [11] a distribution % € D'(R*) such that x—f= Duw. On the
other hand g —f is a measure and it follows [11] that u e BV (R"). q.e.d.
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DEFINITION 3.6. — For every measure u € My(R", R") such that rot u € M(R", R*")
and for every vector field ye X(R"),, we define the measure (v, u) € M(R") as

Uy 1y 0> = <y D)y +[fpdn,  ge 7R
2
where

loc

(3.1) u=f+Du, feL, (R, R'), wueBV, (R").

We remark that definition 3.6 is valid, because for every measure u whose curl
is a measure there exists (lemma 3.3) at least a pair f, v that satisfies (3.1); more-
over, the definition is easily seen to be independent of the choice of £, u.

Now we ghall define the pairing (v, u) without the assumption on the support
of u.

DEFINITION 3.7. — Let £ be an open set in R" and suppose that ye X(2),, p€

€ M(Q, R, rot ue M(2, R*). For all open sets A cc Q choose a function g € 0= ()
such that g =1 on A and consider the distribution

TA = (1/’7 g‘“) ]A

where (p, gu) is defined in definition 3.6. It is easy to see¢ that if A,, A, are such that
AN A, @ one has

T41|Alu4, = TA,_UA, = TAzlAluAg

and by a well known glueing principle [11], there exists one and only one measure in £,
that we shall denote (y, u), such that (v, p)l,= T, for all A cc Q.

Now we collect a few properties of (v, u).
THEOREM 3.8. — (i) The map that takes w, u to (y, p) is bilinear. (i) The measure

(9, u) is absolutely continuous with respect to the measure |u| and one has precisely,
for all Borel sets B c £,

(3.2) [16, 1 = 1) 0 It

B

(iii), For all functions ge CY(2) with sgp(]g[ + |Dygl) < -+ oo, one has

(y, gu) = (gy, p) = (v, p)g .
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Moreover, if we consider the function 0(y, u, x): Q — R such that

f(i,u, 1) =f0(1,u, W, x)|ul  for all Borel sets Bc £
B

2
we have also
(i) O, 1y 2) = pl@)- f,’;—l(x), i —ac. in Q;
(v) 0y, py @) = 0(y, g, @) [ul-ae., if u'= ui;
(vi) 9, gu, @) = O(y, u, x) segng(x)  |g||ul-a.e. in Q2
b9y, uy ) = g(@)0(y, p, @) lu-ae. in Q
if ge Q) and  sup (jg| + |Dy]) < +oo.

ProoF. — (i} is obvious. To prove (ii) it is sufficient to show that (3.2) holds for
all Borel sets B c 4 cc Q2. To do that, we can write g = f - Du in 4, for suitable f
and %, and we have u®*= f 4 (Du)?, p*= (Du)* and

(3.3) (9, w) = 8(y, Du, z)|Dul*+ (Du)*(z) + f(x)) p@)de in A4

hence we get

~

[16ws 1 < Jwlo f [1Dut 4 [ (D) i) + flo) dif =

B

m,AfLul

and (ii) is proved. To show (iii), we take a function ¢ € Uy(£2), then we write y =
= Du + f on the support of ¢ and we have

Ly, gu), 90 = Mfug div yg do —fungsv do +ffgw dz ——fu Dgyy do =
= gy, u); 9> = 1), 997

which proves (iii). To show (iv), again we take 4 cc £ and write g = f 4 Du in
A so that (3.3) holds. On the other hand, we have by definition

(3.4) {(y, ) = 9(#’7 My '”)Lu’| = 8(1}’7 My $)|Du|8+ 6("/)7 Hs %)](D“)a(m) -+ f(w){ dw

and, equating the regular parts of the measures on the right sides of (3.3), (3.4),
we obtain that (iv) holds |u|*a.e. in A. Varying the set 4, (iv) follows. Finally, (v)
and (vi) are proved by similar methods; we omit the details. q.e.d.
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4. — Compensated compactness for the pairing (y, u).

Ag a general reference for compensated compactness, we give [12].
We have the following compensated compactness result.

THEOREM 4.1. — Let v, v, u;, p be such that vy, y,€ X(Q2).; u, u;€ M2, R");
rot u, rot u;e M(2, R*) and assume that

wvi— vy in LO(Q)-weak*®
19l w0+ AV Pl sy = O for all j for some fized 6 >0
Wi~ p  weakly in M(Q, R»
lus] + Jrotps| = ep  for all j

then one has /also
(s, sy — (p, p) weakly in M(Q).
Proor. — It is sufficient to show that for all g € C7 (L) one has
(4.1) i pa)y 9> =L, p)y @7
in fact, as, for all §, we have

[160s 81 19 [ 1] = 1
£ )

the convergence (4.1) holds then also for all ¢ € C3(£2).
Let ¢ € C5(R) be fixed and let ge C3(2) be such that g =1 on the support
of ¢, then consider the measures i, i€ M,(R* R") defined by
a=guw, f;=gp;.
We still have rot i, rot ;€ M(R", R*) and (4.1) is equivalent to

(4.2) sy fis)y @ — Ly, 1)y @

To prove (4.2) we shall show that for any increasing sequence i, there exists a sub-
sequence j, such that

Lyer g, )y 90 = L(py )y @
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For all j we set f;= Z(rot i,) € L, (R*), where Z is the operator defined in lem-

ma 3.4, and, as in lemma 3.5, we have
f;=f;+ Du,

where w;€ BV, (R"), and we may assume that fui dxr = 0 for all j, where ¢ is some
Q

fixed cube containing the support of g. As the norms |rot ;| are bounded, the

sequence f; is bounded and relatively compaet in LY@, R*) (by lemma 3.4). As

the norms | ;| and ||f;];:,, are bounded and f u; de = 0, we have that the sequence u,
Q

is bounded in BV(Q). We conclude that for any increasing sequence j, €IV there
exists a subsequence j, and two functions fe L'(Q), v € BV(Q)) such that

fjkr__}.f in LI(Q)
1 1
R 1 .
Uy, —> U in L*(Q), where + p 1
rotf=rot @i, pg=Du-f.

To conclude, we have that

<(wu,9 By ) B0 = —fu,k,%,,, Do dv — f u;, divy, @de +ff ¢ dv —

f u Dy dx —fu div yo dx ~{—f‘f¢p de = {(y, d), 9> . q.e.d.

Q

Under the hypotheses of theorem 4.1, the integrals f {v;, u;) need not converge
2
0 f (y, ). To ensure that, one needs the supplementary assumption f{,ujg - f el
2 Q2 2

a8 it is shown in the next theorem.

THEOREM 4.2. — Let u, ps, v, p; be as in theorem 4.1, and assume moreover that

(4.3) flm —éflul
o 0
then one has also

f(%-, ) —>f(w, 2
2

2

for all @ € C0(2) N L=(L).

ProOF, — Take a fixed function ¢ € 00(2) N L>(2) and let ¢ > 0 be given. There
exists a number & = d(e) > 0 such that

[lul<e

O\2,s



GABRIELE ANZELLOTTI: Pairings between wmedsurés and bounded, ete. 315

where Q,= {r ¢ 2|dist (v, 02) > 6}. As u, — pu weakly, we have

minlimflﬂléflul
j=>c0 3 3

and, recalling (4.3), we get
max lim f = f ul<e.
e \Ry 2\,
Now, we take a function e Cj(£2) such that =1 on £, and we write

(4.4) f(%-, i) —f(wy py =
Q

Q

o= ”(’/’n i) n ~f(wa M)W?] + U(wn pi)p(l —n) —f(w, we(l — 17)]
0 £

Q2 2 Q

where the first term in brackets goes to zero, because of theorem 4.1, and the second
terms in brackets, for j sufficiently big, is bounded by

Wloa 6] + 1900 16] < 20211 0

N2 N2y

l9lo,al

Taking the limit in (4.4) for j —co we get our result, as ¢ > 0 is arbitrary. q.e.d.

5. — Appendix.

LEMMA 5.1, — Let 2 be any open set in R», let u € BV(Q) be fized and set u;= i % n;,
where

() =

w(z) ifrxef
{ 0 if w¢ Q
and n;€ O (R*) 18 a sequence of mollifiers. Then one has
(5.1) w;—w  in LY Q).

If A is an open set, A cc Q, one has also

(5.2) f]Duj]—if]Du[ iff[Du]:O

(5.3) f[])u — h(z) dz| < min lim | |Du;— b| do < max limf]l)uj— h|de <
4 A =e 4

j—>c

< f]Du —hdz| for all he LYQ).

4

21 = Annali di Malematica
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Moreover:

(5.4)  if we BV(2)n L#(82), ¢ < -+ oo, one has also u; —u in L)
(5.5)  if we BV(2)N I=(2), one has |u], o< |ul o %;—u in Lo(Q)-weak*

(6.6) if weBV(Q)N L2(L2)N CQ), one has also u;—u in C° (),

loc

Proor. - (5.1), (5.4), {5.5), (5.6) are standard and (5.2) follows from (5.3). To
prove (5.3), we notice that

Du;= (Du) # n; = (Du)esx n; + (Du)’ = 7,
where
(Duyrx n, —> (Du)*  in LY(Q)

hence

j—>o

max lim | [Du;— b} de < lim | |(Du)** n,— b dow +
i T

+ max lim H(Du)® = 1, gf](l)u)a—— b dx +f{Du]s :f[Du —h|.

On the other hand, we have (Du;— h) — (Duw — k), and, because of the semicon-
tinuity of the total variation, (5.3) is proved. q.e.d.

LEMMA 5.2. — Let 2 be any open set in R* and let w € BV(L2) be fized. Then there
exists a sequence of functions u;€ C°(2) N BV (2) such that

{(5.7) w;—u  in LY Q)
{

(5.8) [1Du,| [ 1Dy
52 Q2

(5.9) max lim | | Du;)| gf[l)ul for all open sets A ccQ

] s L

(5.10) [1Du,— 1) ax —>f}Du——h dz|  for all heINQ).
Q

Moreover:

(611) if we BV(Q)N L4Q), ¢ < + oo, one can find the functions u; such that
w e I8(2), u; —> u in L)
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(5.12) if weBV(Q)N LK), one can find the u; such that fu|, o< Jul, , and
w; — w in LO(2)-weak*

(5.13) if w e BV(2) N L*(2) N C°(Q) one can find the w; such that w; —~ u in CF,
also holds.

(2)
Finally:
(5.14) if 0L2 is Lipschite continuous one can find the wu; such that
Uslog = Uloo  for all j.
PrOOF. — (5.7) and (5.8) are proved in [4]; (5.11), (5.12), (5.13) follow easily by
the same proof; (5.14) is proved in [7] and (5.9), (5.10) follow easily by adapting

to the proof in [4] the argument given in the proof of lemma 5.1.

COROLLARY 5.3. — If we take h = (Du)® in (5.10) we get
fll)%j—— (Da)?| —>f(1)u[“’ .
2 0

LEMMA 5.4, — Assume that 08 is Lipschitz continwous. If w e HMY(Q) N L*(Q) N
N 0%8) and uly, = 0, then there exisis a sequence of functions g,€ OF(Q) such that

g;— U in H1L1(0)
g;—> U in O} (2)
“g;; m,!)é “’Ml w0, 2 fO’)' a’u :‘ i

The proof of lemma 5.4 can be obtained by standard techniques in Sobolev space
theory.

LemMA 5.5, ~ Let Q be a bounded open set in R* with a Lipschitz boundary. Then,
for any given function ue LY0L2) and for any given & >0 there exists o function

we HL{Q) N C°2) such that
Wog =
Do) <[] + ¢
2 el

wz) =0 if dist (2, 0Q2) > ¢,

Moreover, for amy fized number ¢ =1, q < - oo, one can find the function w such
that

[l o=e.
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Finally, if one has also u € L*(Q2), one can find w suck that

[wlo,0= 4] o0 -

The proof of Lemma 5.5 is easily obtained by the same technique that Ga-

GLIARDO [6] uses in proving his extension theorem LY202) — HLY(£).
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