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Summary. - For all vectorfields ~ e L ~ ( 9 ,  R '~) whose divergence is in L'(.Q) and ]or all vector 
measures tt in  ~2 whose curl is a measure we define a real valued measure (% tt) in  (2, 
that can be considered a suitable generalization o] the scalar product of yJ and I z. Several 
properties o] the pairing (% I~) are then obtained. 

Introduction. 

The integral of a function ] with respect to  a Radon measure t3 is defined for 
instance when ] is continuous, or, more generally, when ] is fi-measurable and sum- 
rouble; it  is also quite clear tha t  the integral {], fi> cannot  be defined for a general 
Lebesgue-measurable (even if bounded) function ]. However,  we shall see tha t  if 
# ~ M(/2, R ~) is a R~-valued Radon measure on ~n open set D c R ~ and if yJ ~ L~(~,  
R"), then  one can define a real valued measure (F, #) on .O, t ha t  works nicely as 

the scalar product  of F and #, provided one assumes also tha t  

(0.1) rot  # = [~xj ~xiJ~,~=l ...... 

(0.2) div ~o E L'(Y2). 

is a measure  in .(2 

We notice tha t  the hypothesis  (0.1) is certainly satisfied in the special ease tha t  
# = D u  and u e BV(s  This special case is the first to be investigated, in sec- 
tions 1 and 2. We remark  tha t  pairings of this type,  between admissible stresses 
and strains o, e(u) in elasto-plasticity, have been already considered in [1], [8], [2]. 

In  section 3, we define and s tudy the pairing (% #) in the general case. Certainly, 
hypotheses (0.1), ( 0 . 2 ) r e m i n d  one of compensated compactness, and, in fact,  we 
have also a result  ( theorem 4.1) tha t  extends to our pairing (F, #) the  result of MU- 
RA~ ([10], theorem 2). Actually,  bo th  the proof of theorem 4.1 and the definition 
of (W, #) depend on a suitable explicit  solution of the equation 

rot  z - -  2 

(where 2 is a given measure) which is obtained as in [10]. 

(*) Entrat~ in Red~zione il 17 aprile 1983. 
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In the  appendix  we have collected a few approximat ion and extension results 
tha~ are needed in the  paper.  

At  the beginning of each section we give an outline of its content.  

I would like to t hank  E. DE GlOl~GI for his encom'agement and for some useful 
comments  on the results of this work. 

1. - The pairings <~, #>on, (~o, Du). 

It is well known tha t  summabil i ty  conditions on the divergence of a vector  
field ~o in D yield trace propert ies  for the normal  component  of ~o on ~2,  for instance 
compare with [13], [1], [8]. In  this section ( theorem 1.2) we define a funct ion [~o.v] 

L~176 which is associated to any  vector  field ~o e LC~ R -) such tha t  div ~o is a 
bounded measure in 2 .  After tha t ,  we define the pairing (~o, Du),  when ~ and  u 
belong to  suitable spaces, and we give its first properties.  Finally,  the expected 
Green's formula  relating [~o.~] and  (~o, Du) is obtained in theorem 1.9, th rough lem- 
ma 1.8. 

Let  s be an open set in R '~, n > 2 ,  a n d l e t p ,  q be ex t ended  real numbers  
such tha t  1 _<_ p_< n, n / ( n - - 1 )  =< q ~ @co.  We shall consider the following spaces: 

~v(n)o-- ~v(n) n L~ 

B V(~O)o 

x(2)~ 

X(2)e 

= BV(~2) n L~(2)  c~ Co(.Q) 

= {W e L~(2 ,  R ~) ]div W e L~(g2)} 

--  {~p e L~ R")Idiv ~ is a bounded measure in D}.  

In  the next  theorem we define a pairing 

<~, u}an: X(.Q)t, XBV(2)~--~ R 

and in the following theorem 1.2 we show tha t  this pairing can be represented us 

<~, u>~ n : f y~(x)u(x) dH '~-I 
a~ 

o o  ~ where 7,p~L (o2) is a suituble funct ion depending on ~o. 

THEORt~I 1. l .  -- Assume that .('2 is bounded and that the boundary of 2 is ~oeally 
the graph of a Lipschitz /unction. Denote by v(x) the outward unit normal to D2. The~ 
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there exists a bilinear map <% u}~.~: X(Y))t,• R such that 

(1.1) <% u}a ~ =fu(x )p (x ) . f ( x )  dlI  ~-~ i] ~o e 0~(~, 11 ~) 
8 ~  

(1.2) I<% u>0.[_-< II~,llo,@u(x)I dHo ~ ]or a~l ~ ,  ~ . 

rP.O 

P~ooF. - I n  order for (1.1) to be satisfied, we are bound to set 

Q t9 

for all functions u ~ BV(.Q)~ c~ HI,~(.C2) and for all vectors  p ~ X(/2)/~. Notice t ha t  

the  last  t e r m  on the  r ight  of (1.3) would not  have  a defined meaning for general p, 

if Du were just  a measure.  The map  (p ,  u}o ~ is d e a r l y  bilinear, when it  is defined. 
Now we r e m a r k  t h a t  if u, v ~ BV(Y2)~ n HI.~(D) and  u = v on ~/2 then  one has 

(1.4) <p, u}o.e = ( %  v}e~ for all p ~ Xz(tg) . 

I n  fact ,  b y  l e m m a  5.4, one can find a sequence of functions g je  C~(.Q) such tha t ,  

for all p e X([2)~, one has 

(% u - - v } ~ - = f ( u -  v ) d i v p  dx D(u-v)dx = 

~ ~ { I  = l im gj 

t? 

d i v p  dx § ax}= 0. 

Now we define (p ,  u}ea for all u e BV([2)~ b y  sett ing 

( %  u)~ ,  = ( %  w}~, 

where w is any  funct ion in BV(f2)~n H1.1(s such t h a t  w = u on ~sc2. This is a 

val id  definition, in view of the  preceding r e m a r k  and  because of the  extension 
l emma  5.5. 

To prove  es t imate  (1.2), we t ake  a sequence of functions u~eBV([2)o(3 C~(t'-2) 
t h a t  converge to u as in l emma  5.2 (actually,  we do not  need p rope r ty  5.10) and  

we get 

I(P, u>ez[ = I<v/, us>0,] =< (u ;  div p dx q- ll~oll~,,llDur 
~2 I2 

for all p and  for all j, hence, t ak ing  the l imit  for j -+oo  we have  

(1.5) I<w, u>0ol _-< fu div w ax + Ilwl]~,oflDut. 
Y2 .O 
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Now~ we t ake  a fixed n u m b e r  e > 0 and  we consider a funct ion w as in l emma  5.5. 
Fo r  such a funct ion we have  

D\9~ 09 

where ~ ---- (x e ~Qldist (% 3.0.) > e} and  

r Idiv ~[ = lira 0 
d 

because div • is a measure  of bounded  to ta l  var ia t ion  in D. As s > 0 is a rb i t ra ry ,  
es t imate  (1.3) is proved,  q.e.d. 

Tm~oRE~I 1.2. - Let [2 be as in theorem 1.1. ~hen there exists a linear operator 
y: X(.Q), -+ L~(~f)) such that 

(1.6) < I[ II o , .  

(].7) (F, u}a, =fy~(x)u(x)  dtI  "-1 ?or all u 6 BV(9)~ 
09  

(1.8) y~(x) = ~f(x)'~(x) ]or all x e ~ i] ~f e C1(~ R ' )  . 

The funct ion yv,(x) is a weakly  defined t race  on ~Q of the  no rma l  component  
of ~f, hence we shM1 denote y~(x) by  [~.u](x). 

PROOF. -- Take  a fixed ~o ~ X(/2)~ and  consider the  linear funct ional  G: L~ --~ R 

defined b y  

G(u) = @,  w ) ~  

where u e L~(OD) and  w ~ BV(D)~ is such t h a t  wl0 ~ = u. B y  es t imate  (1.3) of the- 

o rem 1.1 we have  

iG(u)l < II 

hence there  exists a funct ion y~,eL~(Ot?) such t h a t  

G(u) = f ~ ( x ) u ( x )  dH.- i  
ot~ 

and  the  theorem follows, q.e.d. 

Clearly, one has X(Y2)~c X(tg) ,  for all p =~ 1 and  the t race  [~p.u] is defined for 
all ~ e X(~)~.  Our nex t  result  is quite na tura l .  
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PROPOSITION 1.3. -- Let [2 be as in theorem 1.1 and let p, q be extended real 
numbers such ~hat 

1 + 1  1 i J p > l ,  
P q 

q-~ +c~  l i p - = 1 .  

Then, for all ~f e X(Q)~ and for all uGHI,I(~Q)(~ Lq(~), one has 

(1.9) fu vwdx +fw Vudx =f[W 
~2 ~2 6~2 

PROOF. -- Take a sequence of functions f j~ C~(~) such tha t  

(1.10) fj --> u in HLI(Q) 
and in [ Lq(~2) if q < + c~ 

/ L~(/2) weak* if q = + c~.  

Now, formula (1.9) holds for all ~ with f~ at the place of u and, taking the limit for 
j -->c~, we get our result ,  recalling tha t  (1.10) implies fj -+ u in Ll(3f2). q.e.d. 

In  what  follows we shall consider pairs (~v, u) such tha t  one of the following 
conditions holds 

1 1 
a) u e B V ( ~ ) ~ ,  y~eX(~)~ and  l < p < = n , p - + q - - - - 1 ;  

(1.11) b) ueBV(~2)~, ~ e X ( ~ 2 h ;  

e) u e BV(f2)o, ~ e X ( 9 ) , .  

DEFI~ITIOST 1.4. -- Let ~v, u be such that one of the conditions (1.11) holds for all 
open sets A cc~2. Then we define a linear junctional (% Du): C~(~) --> R as 

<(w, nu),  = --f  div dx--f w.D dx. 

Compare definition 1.4 and the rest  of this section with [8]. 

Tn-EORE~ 1.5. -- Fo r  all open sets A c f2 and for all functions ~ ~ Co(A), one has 

(1.12) 9u),  < sup I f" 
A 

hence the functional (~v, Du) is a Radon measure in Q. 

P~ooF.  - Le t  u be fixed and take a sequence u j e  C~(~2) tha t  converges to u 
as in lemma 5.1. Take ~ e C~(A) and consider an open set V such tha t  A ~ V ~ spt ~. 
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For  all j we have then  

i<(y), Duj), 99}1 ~ sup [q01 �9 :lw,t , .flhu, I 
v 

and taking the l imit  for j ->0% we get (1.12). q.e.d. 

We shall denote by  1(~0, Du)] the measure to ta l  var ia t ion of (W, Du) and, for 

every  Borel  set B c /2 ,  we shall denote by  fl(vo, Du)I, f(w, Du) the  values of these 
measures on B. B 

By  theorem 1.5 we get immediate ly  the following corollary. 

COROLLARY 1.6. - The measures (W, Du), I(W, Du)l are absolutely continuous with 
respect to the measure IDu] in /2 and one has 

J'<w, D ,>i =< I/ llo, fl-ul 
B 1~ J3" 

for all Borel sets B and for all open sets A such that B c A c /2 .  
Moreover~ by the Radon-Nicodym theorem, for fixed % u, there exists a I Du[-meas- 

urable function 

0(% Du, x): 0 ~ R 

such that 

f (v2, Du) =jO(V,, Du, x)[Du I for c Borel 8 e t 8  B 12 
B B 

~,E~ARK 1.7. -- I f  E is an open set with lipschitz boundary  in R ~, then the char- 

acteristic funct ion u of E 

= ~  1 if x ~ E  
U(X)  

l 0 if x ~ E  

belongs to  the apace BV~oo(R ~) and the measure (y~, Du) in R ~ coincides with the 

measure [V~'v] H"-llaE. 
We shall need the  following cont inui ty  lemma in the proof of theorem 1.9. 

LE~eI~LA J.8. - Assume that u, • satisfy to one of the conditions (1.11) and let 
uj~ C~~ BV(/2) converge to u as in lemma 5.2 (actually, here we do not need 
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(5.10)). Then we have 

f (~,  Du~) -+f (% Du) . 
f2 

PROOF. -- Take a number  e > 0, then take an open set A c c  D such tha t  

f tDuI < 
.(2 

and let g~C~([2) be such tha t  0 ~ g ( x ) ~ l  in .Q and g ( x ) ~ 1  in A. We have 
then 

for, Du~) --f(Yb Du) 
.O 12 

I((v/, Duj), g) --  ((% Du), g) t + f [(YJ, Vuj)I(1 - -g)  +fl(w, Dull (1- -g)  
Q .o 

where 

lira ((% Duj), g} = ((~, Du), g} 
j--~r 

 a  imh(,p, - g) _- II lIo,o max f i b <  <  ll 'll 
i-->r d i---> r , d  

t2 9\.~ 

fl(v, Du)](1 - a) _-< ~lI~]l o,~ 
f2 

and the lemma is proved, as e is arbitrary,  q.e.d. 

We conclude this section by the expected Green's formula, compare with the- 
orem 3.2 in [8], relating the function [~p.v] and the measure (% Du). 

THEORE~ i.9.  -- Let .(2 be a bounded open set with Lipsehitz boundary and let yJ, u 
be such that one o] the conditions (1.11) holds, ~hen one has 

fu air v dx +f(~, Du) : f [v .~ ju  dH.-~. 
.Q 12 flD 

P~ooF. - Take a sequence of functions uje C~([2)n BV(D) t ha t  converge to u 
as in lemma 5.2. Then, by  lemma 1.8 and proposition 1.3, one has 

f u div v, J dx § f (v,, Du) = lim { f uj div w dx § f (v,, Du~)} = 
F2 Y,, 

2 0  - A n n a l t  d~ Matematiea 
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because 

for all j .  q.e.d. 

2.  - R e p r e s e n t a t i o n  o f  O(~f, Du, x). 

i n  this section we shall be concerned with the problem of whether  or not  one 
can write 

Du 
(2.1) 0(~f, Ou, x) = ~(x)" ~ (x) 

Wuj  

where (Du/IDul)(x) is the densi ty f~mction of the measure Du with respect  to the  
measure iDul. First ,  we shall see tha t  the answer is affirmative if D u e  L~o~(Q ) or 
if ~0 e C~ then  we shall see tha t ,  in any  case, (2.1) holds ]Dup-almost everywhere,  
where IDu] ~ denotes the absolutely continuous par t  of the measure IDu] with respect 
to  the Lebesg'ae me~sure ~ in ~.  An example shows tha t ,  in general, (2.1) does 
not  hold tDu]~-almost everywhere  (where [Dul ~ is the  singular pa r t  of ]Dul) , as one 
is not  able to define F(x) IDul'-a.e. in ~ .  However~ even if one does not  have a 
representat ion formula for 0(~, Du~ x) in ~he singular zone of IDul, the  funct ion 
0(~, Du~ x) still enjoys a few propert ies (proposition 2.6~ 2.7~ 2.8) t ha t  can be useful. 
In  part icular ,  the  results in this section will be used in [3] (compare also with [2]) 
to get some regular i ty  propert ies of the vector  field (Du/[Du])(x) when u is a solu- 
t ion to a problem f](x, Du) - ~ m i n  and f(x~ p) is asimptot ical ly of linear growth 
in p for large IP [. ~ 

For  the sake of simplicity, we shall assnme throughout  this section t h a t  F e X(s 
and that  u ~ BV(.(2), but  it is d e a r  t h a t  analogous results can be obtained for pairs 
( ~  u) satisfying any  one of the  conditions (1.11). ~No assumption is needed in this 
section on the  open set ~2 c R% 

l:iere is a cont inui ty  result.  

PROPOSITION 2.1. - Assume that 

(2.2) Fj ~ y~ in L~(A)-weak * 

(2.3) div ~j -~  die y~, in L~(A)-weak 

]or all open sets A cc .Q;  then, ]or all u~BVloc(.O)~ one has 

(2.~) (Wj, Du) ~ (V', .Ou) 



GABRIELE AI~ZELLOTTI: Pairings between measuces and bounded, etc. 301 

as measures in ~,  and 

(2.5) O(~r x) -~O(w, 9u ,  x) 

in Lc~ * Jot all A c c  .O. 

P i m o r . -  For  all A c c  ~2 and for all j we have f](w;, Du)l ~ [IWr 
where ~ -~ 

s u p  []%I[~,.~ = c(A) < + oo 

because of (2.2), hence it is sufficient to check the weak convergence (2.4) on C~(D) 
ftmctions. On the other hand, if ~ e Co~(s one has 

<(y,, Du), el) = - - f u v  div v2j dx - - f u  w D v dx ~ <(~o, Du), V) 
~2 D 

and (2.4) is proved. 
To show (2.5) we notice tha t  for all j, by  corollary 1.6, one has 

hence the convergence (2.5) has to be checked only on C~ functions, where it 
reduces to (2.4). q.e.d. 

We shall need the following simple facL 

LE~X~A 2.2. - For every Junction ~f ~ X(.Q)~, there exists a sequence oJ Junctions 
yj e C~176 f~ L~176 such that 

II~;tI~,.----llv, H | 

%(x) -~- ~o(x) 

div yj -~ div 

Jor all j 

in L~176 and  in L~oc(/2) for 1 g p < + oo 

at  every Lebesgue point x of % and uniformly i n any  set of 
uniform cont inui ty  for y .  

in Li'oo(9). 

PROOF. -- Jus t  take a sequence {~]j} of mollifiers and set y j -~ ~ j ,  ~, where v~ 
is defined by 

~(x) = I ~f(x) if x e 

! o if x 6 D .  q.e.d. 

Now we give the representation results for 0(% Du, x). 
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PlcoPosi~rioi~ 2.3. - I] y) ~ X(f2)~N C~ and u ~ BV(~Q) then one has 

Du 
(2.6) 0(% Du, x) -~ ~p(x). ~ (x), IDu]-  a.e. in ~ .  

PlCOOF. - F o rm u l a  (2.6) is equiYalent to  

(2.7) <(~, Du), ~o} -~fq~p Du ,  Yqo ~ C~([2) 

and  (2.7) is t rue  b y  definition if ~ e C1(f2). I f  F is general ,  we take  a sequence ~oj 
as in l e m m a  2.2 and,  b y  l e m m a  2.1, for all  ~ c Co~(Y2), we have  

<(% Du), of> ---- l ira <(VJ, Du), ~} = l ira fVW Die -~(q)y~ Du 
j--.> o~ j - -pep d 

$2 ~9 

where, in the  last  step, we have  used the  fact  t h a t  ~j converges un i fo rmly  to ~ oa  

spt  ~. q.e.d. 

I f  u e HI,'-(Y2), then,  for all  yJ e X(~)~ and  for all ~ e C~(~9) one has 

9 

and  this implies t h a t  

Du [Du I a.e. in 9 0(% Du,  x) = ~(x) .  ~ (x) , - -  . 

For  ~ general  u ~ BV(tg) one has the  following result.  

T ~ o ~ E ~  2.4. c I f  ~ E X(f2)~ and  u ~ BV(R),  one has 

Du 
(2.8) 0(% Du, x) -~ V(x). ~ (x) ,  IDu[~-- a.e. in ~ .  

PROOF. -- F o rm u l a  (2.8) is equivalent  to  

(2.9) fo(v  , Du, x)]Du]~(x)dx = f  v(x). (Du)~(x) dx 
B ,B 

for all Borel  B c f2. Le t  E ~ and  E '  be two ~Borel sets such t h a t  E" (3 E ~ ----- ~ ,  E ~ C~ 

E'=- O, f[Du[~ o and  let e > 0 be fixed. Then let  K be a compac t  
~ ~a 

set~ with  K c E ~, such t h a t  

(2.10) flZ)ul.< 
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and take  any  compact  set Bo c E% We can find an open set L with regular bound- 
ary,  such t ha t  

Noel c D\/C, [IDul< 
L ~ B  o 

and~ by  (2.10) it follows tha t  one has also 

I,  

~r take a sequence uje C~(L)n BV(L) approximat ing u as in lemma 5.2. By  
lemma 1.8 and corollary 5.3 we have 

f o(y~, Du, x) 
05 

D u - - f  ~p(x)'(Du)~(x)dx ~ =limlf~~176 
f, fl < ]i~ol]~,~lim Du,--(Du)~l < ]Ivll~,~ Dul ~< i]~tI~,.~. 

j-->m 
Z Z 

On the other hand, we have 

fw.(Du)~ dx <= I[v, IJ ,,f tDul <= 
L B o L~ o 

and~ by  corollary 1.6, we have also 

fo(yJ, Du, x)lDu I --fO(w, Du, x)[Du I ~ ll~[l~,@Dul ~ eil~ll~,o �9 
Z B o L ~ B  o 

In  conclusion we get 

fo(y,, Du, x)]Du]--fV,.(Du)~ dx ~ 3el[W][~,~. 
.Bo Bo 

t{ence (2.9) is proved for all compact  sets B c E% By the regulari ty properties of 
Radon measures we have then  tha t  (2.9) holds for all ]3orel sets in /2. q.e.d. 

I~IgiVlAl~K 2.5. - -  I f  ~oo(x ) =~W(Y) dy is the mean  value of W in the ball of radius @ 
Bo(~) 

and center x, then we have shown tha t  

DUk 
(2.11) V~(x). ~ (x) --~ 0(~o, Du, x) in L~:o(~o, lDu[)-weak* 

ix ,~ l  
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where  

w o(x) ~ re(x) ] 
Du / IDuI~ 

0(% Du,  x) = ~o(x). ~D~u~ (x) 
a.e .  in ~ .  

On  the  o the r  hand ,  in genera l ,  one need  no t  h a v e  ~v~(x) -> ~(x) in a n y  sense in 
t he  zone where  IDul ~ is concen t r a t ed ,  a n d  t h e  c o n v e r g e n c e  (2.11) on ly  m a k e s  sense. 

As an e x a m p l e  of th is  s i t ua t i on  one can  t a k e  

.~ = R" , E = {x e R~ lx=<  o } ,  
1 if x ~ J ~  

u(x) = 0 i f  x e R a \ E  
1 

�9 r = (9*, ~o~), W,(x,, x=) - s e n - - ,  ~ = =  0 
X2 

a n d  it  is eas i ly  seen that ,f EL~(.Q,  R2), d iv  yJ = 0, 0(9 , Du, x) = [~0"v](x) on ~E 
(where  v is t h e  n o r m a l  to  aE) ,  whi le  the  m e a n  va lues  We(x) do no t  conve rge  on ~E. 

E v e n  t h o u g h  the  func t i on  0(9 , Du, x) c a n n o t  be  r e p r e s e n t e d  in t e r m s  of a well  

def ined va lue  of ~p(x) [Du[*-a.e. ~, i* en joys  a few nice p rope r t i e s  t h a t  a re  s tud ied  in 

t he  res t  of th is  sect ion.  

PROPOSlTI0~ ~ 2.6. -- I] ~0 e X(t'))n and u ~ B V ( t 9 ) ,  then one has 

(i) 0(~0, D(u q- g), x) -- 0(% Du, x) 1Du[*-a.e. in t'2 ]or all g e lf~,*(Q); 

(ii) 0(W , D(gu), x) = segng(x ) ,  0(9, Du, x), ]g[[Du[~-a.e. i~ .('2 ]or all g e C~(~). 

P~ooF .  - (i) Reca l l  t h a t  if Dg e L~(~(2) t h e n  one has  (D(u 4- g))~= (Du) ~, t h e n  
not ice  t h a t  

(~o, D(u  @ g)) = O(ya, D(u + g), x)]D(u q- g)]*@ 0(~o, D(u q- g), x)iD(u q- g)[ ~ 

while,  on the  o the r  h a n d  

(9, D(u + g)) = (9, Du) + (9, Dg) = 

= o(v,, Du, x)tDul~+ O(V,, Du, x)lDulo+ W(x)'gg(x). 

E q u a t i n g  t h e  two  express ions  for  t h e  s ingular  p a r t  of (% D(u @ g)) we get  

O(Va , D(u + g), x)iDu',*= O(y~, Du, x)iDul" 

a n d  (i) follows. 

(ii) F o r  al l  t e s t  func t ions  cf e Cg(~9) we h a v e  

((y~! D(gu)), ~} = ((,f, Du), g~} + f !w'Dg)u  dx 
9 
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hence  we have ,  for  all  Borel  sets B c ~2, 

(2.12) fo(~, D(gu), 
B 

x) [D(gu) l = f  o(y,, Du, x)glDul~ + 

B ~B 

Recal l ing  t h a t  [D(gu)]~= [g][Dul ~ a n d  equa t ing  the  s ingular  pa r t s  on the  two  sides 
of (2.12) we get  (ii). q.e.d, 

F o r  all func t ions  u :  .Q -> R let us consider  the  sets 

E~,, = {x e ~ l u ( x )  > t } .  

I f  ~eBV(.(2), it is well k n o w n  [9], [5] that t he  charac ter i s t ic  func t ions  

1 i f  x ~ E ~  
Z~,,(x) = 

0 if x r E~, 

of the  sets E~,t a re  in BV(~) for  s all t ~ R ;  moreover ,  t he  func t ion  t ~ f  [Dx~,,[ 
is ~ - m e a s u r a b l e  a n d  the  coarea  fo rmula  a 

(2.13) 
-~-r 

- -co  Q 

holds for  eve ry  IDul-summable func t ion  ]:  .Q - .  R.  I t  follows t h a t  a set B c f2 has 

[Dul-measure zero if a nd  o n l y  if f o r  ~ - a l m o s t  all t e R  one has  fIDZ~,tI = O. F o r  
la ter  use we recall  also t h a t  one has B 

Du [~1  (x) 
i D u f  ( x )  - , ]Dx~ ,~I  - ~ . e .  in .(2 

for  ~l-almost  a l l  t e R.  

N o w  we shall  give a (r slicing" ,~ resul t  t h a t  l inks the  measure  (y~, Du) with  the  
measures  (~, DZ**.t ). 

PROPOSITION 9 ~' ~.~. -- I] y)~X(~Q), and ueBV(.Q), then we have: 

(i) ]or all ]unctions q~ ~ C~(~2), the ]unction t ~ <(yJ, Dzu,~), ~> is s 
and 
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(if) ]or all Borel sets B c ~ ,  the function t-->f(Yb DZ~,~) is ~-measurable and 

f(v,, ul=fdtf(%Dzo.,,; 
B - -co  B 

(iii) 0(% Du, x ) =  O(~f, DZ,,t , x) IDz~,t[-a.e. in Y2 ]or ~-almost all t e R .  

PROOF. -- (i) Take a sequence of functions yJje C~(O)5~ L~(/2) tha t  converge 
to W as in lemm~ 2.2. Then, for all j, we have, by the coarea, formula, 

(2.14) 

where 

f Du ((y;j, Du), ~} = y&(x). [-~u l (x)qD(x)]Du I = 

D q-co q - ~  

(x)q~(x)lDz"'] = DZ~,,), q)) dt 

= !! : I D z ~ , ~ [ .  
D 

Recalling proposition 2.1, taking the limit in (2.14) for j -->co, by the dominated 
convergence theorem we get the proof of (i). 

We shall prove (if) after  (iii). Let 's  prove (iii). Takc a, b e R and consider the 
function v ~ BV(.Q) defined by 

b if b ~ u(x) 

v(x) = u(x) if a < u(x) <= b 

a if u(x) < a 

then we have E~ , t=  E,,~ for all t such tha t  a =~ t < b, hence 

]DZ~,~ l ( x )  - -  [Dz~,,I (x) 

DZ,,, = 0 

if a G t <  b 

if t ~ b, or t < a  

and it follows tha t  

Du DZ~ , 
inn[ (x) = ~ (x) 

DZ~,~ Dv = (x) = (x) , 

IDz~,~I- ~.e. in ,(2 for ~-~lmost  all t e R 
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tha t  is 

Du Dv 
[pul (x) = ~-~(x )  , lDv]--a.e, in /2 .  

Now it follows tha t ,  for every  ~ e X(D) we have 

(2.15) O(~v, D~, x) -= O(y~, Dr, x) , ]Dvl-a.e. in ~2. 

In  fact, if 9 ; ->  ~ as in lemma 2.2, we have, for all j 

Du 
O(~j, Du, x) -= yJj(x)" ~ (x) ~ O(~j, Dv, x) , I D v [ -  a.e. in D 

and taking the limit for j -+c~, by  the uniqueness of the limit in the  Z~(D, [Dvl)- 
weak* topology, we get (2.15). :Finally, using s ta tement  (i) for v(x), we have, for 

co all a <  b and  for a fixed q e C o (D), 

+ c o  

<(v/, Dr), ~v> -=-f<(~v, DZ,,~), ~0> dt 

i.e., by  the eoarea formula and  (2.15): 

b b 

a D a D 

and this implies tha t  

(2.~6) f o( vp, Du, x)~(x) IDz~,~ ] = f o( y~, DZ~,~ , x)~f(x) ID z~,~[ 
~Q D 

for gl-almost all t e R. I f  S is s countable  dense set in Co(.(? ) with respect to the 
uniform convergence, it  is possible to find a s e t  N c R such tha t  g l ( N ) =  0 and 
tha t  (2.16) holds for all t e R ~ N  and for all ~v e S. I t  follows tha t  for all t ~ R \ N  
one has 

0(~v, Du, x) = 0(% DX.,~ , x) 

as wanted.  

To prove (if) we notice that ,  by  (iii), we have 

+ c o  

f(w, Du! =fo(w, x)lD l @ @ %  x, IDz.,I = 
N . B . . . . .  - - - m  11 

- , } -e~  . . . . .  �9 - l-co �9 
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Our nex t  result  is a consequence of proposi t ion 2.7. 

PROI, OSITm_~ 2.8. - !] ~: R -~ R is an increasing ]unction o] class C ~, then one has 

(2.17) 0(10, D(~ou), x) -~ O(~v, Du, x ) ,  lDuI-a.e, in 

where (~.ou)(x) - -  x(u(x)). 

PROOf'. - Firs t ,  notice t h a t  

~ . ~  = {x e 9 1 u ( z )  > t} = (~, e . e i ( ~ o u ) ( x )  > ~(t)} = E . . . . .  (,~ 

so tha t ,  for a lmost  all t e R, one has 

hence, for a lmost  all t e R one h~s also 

0(10, Dtt, x) = 0(~o, DZ~,~ , x) = 0(10, D Z . . . . .  <~) x) = 0(1o, D(~ou), x) 

iDz;.t[-a.e, in L), aud  (2.t7) follows, q.e.d. 

3. - The pairing (10~ #). 

I n  this section we define a pair ing (10, #) when 10 e X(f2)~ and  # is a measure  
whose curl is also a measure .  The key  l emma  is l e m m a  3.4; the  idea for solving the  

equat ion ro t  z = ~t is the  same as in [10], bu t  we cannot  use Rellich theorem to show 
the  compactness  of the  opera tor  Z :  2~ --> z, as we do not  have  sufficient informa- 
t ion on the  der ivat ives  of Z(,~), and  we use instead the  informat ion  on the  t ransla-  

t ions of Z(),). 
The pair ing (10, #) is then  defined, when # has a compact  support ,  noticing t ha t  

one can wri te/~ = ] + Du, where ] e L 1~o~ ~-(l~,, ro t  ] ---- ro t  #, u e BV, oJR~), ~nd using 

the  results of section ] .  When  # does not  have  a compac t  suppor t  we localize and  
then  we glue together  the  pieces. The results  of section 1 and  2 are then  used to 

derive a few proper t ies  of the  pair ing (10, #), t h a t  arc collected in theorem 3.8. 
We shall  denote  by  M(f2, R ~') the  space of the  R N v~lued R~don measures  in ~9. 

We shall set M o ( ~  RN) ---- {tt e M(f2, R "~) such t h a t  Spt / t  is compact} and  we shall 

~ r i t e  s imply  M(tO) instead of M(.Q, R). 
We shall use the  following well known fac ts ,  t h a t  we recall for convenience. 
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./]1 n FACT 3.1. - I f  ] e  ~oo(R) ~nd # e  M0(R'~), then  the  convolut ion ] ,  # is in 
1 n L,o~(R ) and  

A A - s ~  I* 

where 1[~11 = f i l l  ~nd A --  spt ~ = {x --  ylx e A, y e spt ~}. 
Rn 

FACT 3.2. (Compactness criterion.) - Let  A be a bounded set in R '~ and  let E c 
c L~(R ~) be such t h a t  

supfill, , < + 
.Rn 

s p t J c A  for all  ] ~ E  

flrol-il dx =< ~([aI) fo~ ~ll i e  
R n  

lira co(d) = 0 
&-~-o 

where (Ta])(x) = ] (x - -a ) ,  then  E is u re la t ively compac~ set in LI(R"). 
By  using F~c*s 3.1 and  3.2, it is e~sy to p rove  *he following lemmn. 

LE)~)IA 3.3. - Suppose  that ] E L~o~(R ), let A be a bounded set in  R ~ and let 
L c M ( R  ~) be such that 

sup [12[1 < + 
2e~ 

s p t 2 c A  ]or all 2 e L 

then the set E = { ( ] *  "~)Iv; ~ e L} is relatively compact in  LI(V) ]or all bounded rec- 
tangles V c R'L 

I t e re  is the  key  l emma  for wha t  follows. 

L E ~ [ A  3.4. -- Let  A be an open bounded subset o] R "  and let us consider the space 

/]I~(A) = {2 ~ M ( R  ~, R ~)  such that 2 = rot  T ]or some dis tr ibut ion T ~ ~ ' (R , , )  ~ with 
supt  T cc  A}. Then  there exists a l inear operator 

.~1 [ ] ? .  R n )  Z:  M~(A) --> ~oo,-- , 

such that 

(i) rot Z(2) : ,~ i n  R '~, ]or all ~ e M~(A); 

(ii) the map  2 -+ Z(A)]v is a completely cont inuous operator M~(A)  ~ LI(V~ R~O~ 

]or any bounded rectangle V c R ' .  -: . . . .  . . . . . . .  
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PROOF. - Le~ us consider  t h e  ke rne l s  

1 xj 
Ej(x)  - -  - -  G(x) 1 < ~ < n 

~ l x p  ~x~ ' = = ' 

where  ~ is t h e  (n- 1) -d imens ionM m e a s u r e  of t he  unit sphere  in R"  a n d  

~(x) = 

! 1 1 
ifn>g 

n- 2 ~ Ixl~-~ 

is t he  f u n d a m e n t M  so lu t ion  of t h e  L a p l a c e  equa t ion ,  i.e. 

~ E j  

j_~ -~xj = A ~ =  a"  

L, oo(R , R ~) defined b y  F o r  e v e r y  A e MR(A) we cons ider  t he  func t ion  z : Z(2) ~ 

zi = i )'~J* E j .  
j = l  

I f  T e 8 '(A) '~ is such t h a t  ro t  T = )~ we have~ in t he  sense of d i s t r ibu t ions ,  

= 

[~x~ ~x~ /*  ~ ~x~ 

and (i) is p roved .  
Us ing  L e m m a  3.3 one gets  i m m e d i a t e l y  (ii). q .e .d.  

LE)m{~ 3.5. - For every measure #e Mo(RL R ~) such that r o t # e  M(R", R ~') 
there exist a funetio~ ] ~ L~oo(R~ ~, R ~) e~nd a ]unctio~ u e BV~or '~) s~ch that 

#=Du~] i n R  ~.  

P R O O F .  - -  I f  # e Mo(R n, R~), t hen ,  b y  l e m m a  3.4, we can  consider  t h e  func t i on  

] = Z(ro t /~)  ~-L::oA ~t'D~, R ~ ) a n d  we h a v e  

ro t  ( # -  1) = o in R n 

hence  t h e r e  exis ts  [ 1 1 ] a  d i s t r i bu t ion  u e ~ ' ( R  ~) such t h a t  # - - ~ - - - - D u .  On t he  
o t h e r  h a n d  # - - /  is a m e a s u r e  a n d  it  fol lows [11] t h a t  ueBV1oo(Rn), q.e.d.  
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DE~'IZ~X~:Io~ 3.6. - Eor every measure /Z e Mo(R", R-) such that rot/Z ~ M(R",  R"') 
and ]or every vector ]ield ~p ~ X ( R " ) . ,  we de]ine the measure (~o, /Z) ~ M ( R  ~) as 

v> = <(v, Du), V> dx, 
Q 

where 

(3.1) L ~ ~n.  R") u e BV~oo(R") / Z : ] - I - D u ,  ]~  ~ o o , - .  , , 

We remark  tha t  definition 3.6 is valid, because for every  measure /z whose curl 
is a measure there  exists (lemma 3.5) a t  least a p~ir ], u t ha t  satisfies (3.1); more- 
over, the definition is easily seen to be independent  of the choice of ], u. 

Now we shall define the pairing (W,/Z) without  the assumption on the support  

of /Z. 

DEFINITION 3 . 7 .  - Let [2 be an open set in  R"  and suppose that y~ E X(~2)~,/Z 

e M(Q, R~), rot/Z e M(~2, R~'). ~'or all open sets A c c  D choose a ]unction g e C~(f2) 
such that g ~_ 1 on A and consider the distributioq~ 

where (~, g/z) is de]ined in de]inition 3.6. I t  is easy to see that i] A t ,  A2 are such that 
A ~  A2v ~ 0 one has 

and by a well known glueing principle [11], there exists one and only one measure in ~2, 

that we shall denote (y~,/Z), such that (y~,/Z)[~-- T~ ]or all A c c  ~ .  

How we collect a few properties of (~, #), 

Tn-EOR]~ 3.8. -- (i) The map that takes 9, /Z to (9,/Z) is bilinear. (ii) The measure 
(~p,/Z) is absolutely continuous with respect to the measure I/Z] and one has precisely, 
]or all Borel sets B c •, 

(3.2) fi(v, Irvll.,ofl/z[ �9 
B B 

(iii), For all ]unctions g e C1(f2) with sup(tg [ - ] - I D g [ ) < - F  o o, one has 

(9 ,  g/z) = (gw, /z) = (w, /z)g . 
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Moreover, i] we consider the ]unction 0(9 , #, x): Y2-+ R such that 

n,, all BoreI sets B c [ 2  
B 

we have also 

d# 
(iv) 0(9, ~, ~) = 9(x) o d ~  (x) ,  l ~ j  , ~ -  a.e. i,~,,, s~; 

(v) 0(9, ~, x) = 0(9, ,u~, x) !#l'-~.e., i]  ,w = ,ul; 

(vi) O(9, g # , x ) = O ( 9 , # , x ) s e g n g ( x )  igll#l-a.e, in 

O(gg, #, x) = g(x)O(9 , #, x) [#j-a.e. in [2 

~f geCGQ) and s u p ( ] g j § 2 4 7  
,.0 

PROOF. - (i) is obvious. To prove (ii) it is sufficient to show th a t  (3.2) holds for 
all Borel  sets B c A c c  ~ .  To do tha t ,  we can write # = ] @ Du in A, for suitable f 
and  u, and we have # ~ =  ] § (Du)% #~= (Du) ~ and 

(3.3) (9, #) = 0(9, Du, x)jDul ~-f- ((Du)~(x) -}- f(x)) .9(x) dx in A 

hence we  ge~ 

I P 

= [I9,[=, d I~I 
,B 

and (ii) is proved.  To show (iii), we take  a funct ion F e Co(f2), then  we write # = 
~ - D u  ~ ] on the  support  of ~ and we have 

<(w, gu), ~ ) = - - f u g d i v g q ~ d x - - f u g w V ~ d x §  

= {(gg, ~), ~} = ((9,  ~), g~} 

which proves (iii). To show (iv), again we take  A c c  ~ and write # = ] + Du in 
A so t ha t  (3.3) holds. On the other  hand,  we have by  definition 

(3.4) (9 ,# )==O(9 , / . dx ) l# ] -=O(9 ,# , x ) ]Du]~q-O(9 ,# , x ) I (Du)~(x )q - ] ( x ) jdx  

and, equat ing the  regular  par ts  of the measures on the  right sides of (3.3), (3.4), 
we obtain t ha t  (iv) holds ]#l~-a.e. in A. Varying the set A, (iv) follows. Finally,  (v) 
and (vi) are p roved  by  similar methods;  we omit  the  details, q.e.d. 
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4. - Compensated  c o m p a c t n e s s  for the  pairing (V, #). 

As ~ general reference for compensated compactness,  we give [12]. 
We have the following compensated compactness result. 

Tn-Eom~ 4.1. - Zet VJ, ~f, t tJ ,# be such that % ~f~X(tg)~; t t ,#~eM(Y2, R~); 
rot/~, r o t # j ~  M(12, R ~) and assume tha t  

~ - ~  y~ in L"(Y2)-weak* 

I[~][~,. + ]l di-r ~fjH~*+~ ~= C~ for all j for some fixed ~ > 0 

/t~ ~ # weakly in M([2, R ~) 

/l~ll + [Irot ~il =< o~ /or all i 

then one has also 

(~oj, #~) -~ (~,, #) weakly in M(t2) . 

PROOF. -- I t  is sufficient to show tha t  for all ~ e C~(~2) one has 

(4.1) ((~,j,/tj), ? )  --~ ((~o,/t), ? )  

in fact, as, for all j, we have 

~2 ~2 

the convergence (4.1) holds then also for all ~ e C~(~2). 
Le~ ~ e  C~(R) be fixed and let g e C~(~2) be such tha t  g ~ 1 on the support  

of % then consider the measures fi, fi~e Mo(R', R ' )  defined by 

fi = g/~, fiJ = g#j.  

We still have rot fi, rotfi~e M(R' ,  R" )  and (4.1) is equivalent to 

(4.2) ( ( ~ ,  p~), ~) -~ ((~, ~), ~ ) .  

To prove (4.2) we shall show tha t  for ~ny increasing .sequence j~ there exists a sub- 
sequence JT~, such tha t  

( ( ~ , ,  t~j~,), ~) -> ((~, #), ~) �9 
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1 rt For  all j we set ]j - -  Z(rotfit~) e L~oo(R )~ where Z is the operator  defined in lem- 
ma 3.4, and,  as in lemma 3.5, we have 

fits = f~ + Du~ 

where u ~  BV~oo(R~), and we may  assume th a t  fu~ d:c = 0 for all j, where Q is some 
q 

fixed cube containing the suppor t  of g. As the  norms i]rot fitr are bounded,  the 
sequence f~ is bounded  and  relat ively compact  in L~(Q, R ~) (by 1emma 3.4). As 
the norms i!#~]] and I]1r are bounded and fu~ dx -= 0, we have tha t  r sequence ur 

Q 

is bounded  in BV(Q) .  We conclude tha t  for any  increasing sequence ~ e N  there  
exists a subsequence ~, and two functions ] ~ 1L~(Q), u ~ BV(Q)  such tha t  

f ~  -+ ] in  LI(Q) 
1 1 

uj~ -~ u in L~(Q), where  Jr 
p n + ~  

rot  ] = ro t  fi , fit - :  Du  + ] .  

m - -  1 

To conclude, we have t ha t  

~J .(-2 E2 

q.e.d. 

Under  the hypotheses  of theorem 4.1, the integrals f(~v~, #j) need not  converge 

to f(~,  #). To ensure tha t ,  one needs the  supplementary  assumption f l#~i-+ fl#I, 

as it  is shown in the  next  theorem.  

(4.3) 

then one has also 

Tn:EORE:~ 4.2. -- 1Let /~,#~, ~, ~oj be as i~ theorem 4.1, and assume moreover that 

D D 

]or all q~ ~ C~ ~ L~(.Q). 

f ( • ,  #J)q ~ / (~ ' , /~ )q  
D 

PROOF. -- Take a fixed funct ion T e C~ • L~176 and let ~ > 0 be given. There 

exists ~ number  ~ = ~(~) > 0 such tha t  
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where  ~9~ = (x e ~9[dist (x, ~f2) > ~}. As #~ --~ tt weak ly ,  we h a v e  

Dn D~ 

and ,  reca l l ing  (4.3), we geg 

m a x  limj~o f[r f, l<e. 
Now,  we t~ke  ~ func t ion  ~ ~ Co~ such t h a t  ~--= 1 on ~Q~ ~nd we wr i te  

where  t h e  first  t e r m  in b r a c k e t s  goes to  zero,  because  of ~heorem 4.1, a n d  the  second 
t e r m s  in b racke t s ,  for  j suff iciently big, is b o u n d e d  b y  

][ ~ I! ~,,;[ v, il~o,,J'l#l § ][~lfo,~fI#l =< 2ct~II~li~,~. �9 

Tuk ing  the  l imi t  in (4.4) for  j -+ oo we ge t  our  resul  L as e > 0 is a r b i t r a r y ,  q.e.d.  

5.  - A p p e n d i x .  

LElV~A 5.1. -- Let ~ be any open set in R '~, ~et u ~ B V ( ~ )  be ]ixed andset  % =  fi . ~j, 
where 

[ u(x) i / x  e 
p(x) ! o i / x r  

and ~ C~(R") is a sequence o] molli]iers. Then one has 

(5.1) uj --> u in L l ( ~ )  . 

I]  A is an open set, A cc  ~ ,  one has also 

(5.2) f,Dujl ~flDul i] f[Dul = 0  
A A OA 

(5.3) f[Du--h(x) dxl<minlim[tnuj--hldx<=m?~2im(JD~j_hlax< = 
j--> o~ d J d 

A A A 

=< f i d e -  h axl ]or a*l h e L'(~).  
5 

21 - A n n a l l  d i  M a l e m a t t c a  
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.!~/oreoq)er: 

(5.~) 

(5.5) 

(5.6) 

i] u ~ BV(t2)  ~ Lq(~), q < ~- c<), one has also u~ -~ u in Lq(~) 

i] u ~ BV($2) ~ L~176 one has ]l%[[~.~g i[ul[~,~ u~ ->u  in L~ * 

i] u ~ B V ( ~ )  ~ L~176 (~ C~ one has also u~ --> u i~ C~ . 

PROOF. -- (5.1), (5.4), (5.5), (5.6) are s tandard and (o.~) follows from (5.3). To 
prove (5.3), we notice tha t  

D.u~ = (Du) * ~j = (Du) ~* Fs + (Du) ~ * ~5 

where 

(Du)"* ~TJ-~" (Du) ~ irl L*(O) 

hence 

m a x l i m f I D u ~ - - h  i dx ~ l i m f l ( D u ) " ,  r l , - -h  ] dx q- 

A A 

a a g "2 

- - h i .  

On the  other hand,  we h~ve ( D u j - - h ) ~  ( D u - - h ) ,  and, because of the semicon- 
t inui ty  of the total  variation, (5.3) is proved, q.e.d. 

LE)~M.~ 5.2. -- Let ~2 be a~y ope~v set in  R ~ and let u ~ BV([2) be ]ixed. Then there 

exists a sequence o/ ]unctions u je  C~176 ~ BV(z9) such that 

(5.7) uj -+ u in Ll(tP) 

(5.s) ftDu,I 
D 

(5.9) maxlirnflDu~. I , _ , ~  . ,  ~=flDul for all open sets A c c  .Q 

(5.zo) fIDu~-- hl dx ~ f l D u - -  t~ gxl /or aZl h e L~(O). 

Moreover: 

(5.11) if  u ~ B V ( ~ ) ( ~  L~(~), q <  ~ c ~ ,  one can lind the ]unctions uj such that 



GA]3RIELE ANZELLOT~rI: Pairlngs between measures and bounded, etc. 317 

(5.12) 

(5.13) 

i f  u e B V ( ~ ) ( ~  L~(Q), one can l ind the uj such that I[%tl~,o~ ][ull~,9 and 

u~ --> u in  L~(~)-weak * 

i I u ~ BV(f2)  (~ L~(Q) (~ C~ one can lind the u~ such that uj -~ u in C~o~(Q) 

also holds. 

~inally:  

(5.14) if  aQ is Lipschitz continuous one can find the uj such that 

u j l o .=  u]e a for all j .  

PROOF. -- (5.7) and (5.8) are proved in [4]; (5.11), (5.12), (5.13) follow easily by 
the ssme proof; (5.14) is proved in [7] and (5.9), (5.10) follow easily by  adapting 
to She proof in [4] %he argument given in the proof of lemma 5.1. 

COrOLLarY 5.3. - I]  we take h = (Du) ~ in  (5.10)we get 

f I Du~- (D~v)~l ->f Inn [*. 

L E n A  5.4. - Assume that ~Q is Lipsehitz continuous. I / u  ~ HJ,~(Q) n L~(Q) (~ 

Co(Q) and u[~ 9 = O, then there exists a sequence of functions gr C~(Q) such that 

gj -+ u in HI, I(Y2) 

g~ -+ u in r 

llg~ll~,. < llull~,~ for au j .  

The proof of lemma 5.4 can be obtained by standard techniques in Sobolev space 
theory. 

L E ~  5.5. - Let Q be a bounded open set in  R ~ with a Lipsehitz boundary. Then, 

for any given function u e  LI(~Q) and /or any given e > 0  there exists a /unction 
w e H~,I(Q) N C~ such that 

WIO~ ~ U 

flD r ff l+  
s 6~ 

w(x) = 0 if  dist (% 3Q) > s .  

Moreover, for any fixed number q ~ 1, q < ~- c% one can find the function w such 
that 

11<1~,(o)< e 
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Einal ly ,  i /  one has also u ~ Z~(~),  one can f ind  w such that 

The proof of Lemma 5.5 is easily obtaine4 by  the same technique tha t  GA- 

GLIAEDO ~6] uses iR proving his extension theorem L~(~,(2) -~ H~,~(~). 
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