Integral Representation of Convex Functionals on a Space of Measures

GUY BOUCHITTÉ

Université d'Aix-Marseille III, Mathématiques, Saint-Jérôme, 13397 Marseille Cedex 13, France

AND

MICHEL VALADIER

Université des Sciences et Techniques du Languedoc, 34060 Montpellier Cedex, France

Communicated by H. Brezis

Received March 17, 1987; revised July 15, 1987

In duality pairs such as $(\mathcal{M}^b, \mathscr{C}_0)$ and $(\mathcal{W}^{-1, p'}, \mathcal{W}_0^{1, p})$, a convex integral functional on the space of functions has a polar which admits an integral representation. This representation is the sum of a first term involving the absolutely continuous component of the measure and of a second one which is a positively homogeneous function of the singular part. The duality is useful in plasticity theory. In the Sobolev case the study of non-parametric integrands is new. A description of the sub-differential is obtained. \mathbb{C} 1988 Academic Press, Inc.

INTRODUCTION

Our motivations arise from two kinds of problems.

FIRST PROBLEM. In the mathematical theory of plasticity the energy can be expressed by

$$\int_{\Omega} f(x, Du(x)) \, dx,$$

where $f(x, \cdot)$ is convex with linear growth. The function u can be discontinuous so its gradient (more precisely its deformation) Du has to be taken in the distribution sense. With some appropriate hypotheses (see [36]), Du

belongs to the space \mathcal{M}^{b} of bounded measures, hence the idea of extending the functional

$$I_f: v \mapsto \int_{\Omega} f(x, v(x)) \, dx$$

from L^1 to \mathcal{M}^b by taking the $\sigma(\mathcal{M}^b, \mathscr{C}_0)$ lower semi-continuous hull

$$\overline{F}: \lambda \mapsto \lim_{v \to \lambda} I_f(v).$$

Let us point out that the $\sigma(\mathcal{M}^b, \mathcal{C}_0)$ topology is the one which provides relative compactness of the sequence Du_{ε} when u_{ε} approaches the equilibrium.

When I_f is convex and proper one has

$$\overline{F}(\lambda) = \sup\{\langle \lambda, \varphi \rangle - I_{f^*}(\varphi) | \varphi \in \mathscr{C}_0\}.$$

The problem is to give an integral expression of $\overline{F}(\lambda)$.

SECOND PROBLEM. In the variational approach of semi-linear elliptic equations involving measures such as the Thomas-Fermi problem (see Brezis [13, 14] and Attouch, Bouchitté, and Mabrouk [2]), the Euler equation is obtained by computing the sub-differential on the Sobolev space $W_0^{1,p}$ of an integral functional $\int j(x, u(x)) dx$. Usually the domain of the polar functional is contained in $\mathcal{M}^b \cap W^{-1,p'}$.

Thus the two problems lead to the calculus on a space of measures of the polar of an integral functional. When f or j do not depend on x, the expression of the polar is due to Temam [37] and Demengel and Temam [19] for the first problem (but already in Valadier [40, 41]), and Brezis [11] completed by Grun-Rehomme [23] for the second one.

In the two previous problems it is important to allow f and j to depend on x (non-homogeneous media in the first situation and second member measure in the second one). In this direction the duality ($\mathcal{M}^{b}, \mathcal{C}_{0}$) has been considered by several authors (Rockafellar [32], Olech [28, 29], Valadier [41]). In the same way Giaquinta, Modica, and Soucek [21] and Dal Maso [16], using a result of Reschetniak [30], obtain the integral representation of \overline{F} under hypotheses implying the continuity of f in (x, z)and its linear growth in z. Since 1985 this problem has been intensively studied by Hadhri [24], Valadier [42] (using Tran cao Nguyen [38, 39]), and De Giorgi, Ambrosio, and Buttazzo [17].

Our approach is new. It reduces the calculus of

$$\sup\left\{\int \varphi \cdot d\lambda - \int f^*(\cdot, \varphi) \, d\mu \,|\, \varphi \in \mathscr{C}_0\right\}$$

to the calculus of

$$[J+\delta(\cdot|\mathscr{C}_0)]^*\left(\frac{d\lambda}{dm}\right),$$

where *m* is a positive measure such that $\mu \ll m$ and $\lambda \ll m$, and $J (=I_{f^*})$ is an integral functional with respect to *m*. The basic result (Theorem 1 of Section 2) may seem rather abstract but it contains almost all difficulties. On the whole the proof is shorter than those of all previous paper.

In Section 3 we recover the formula (already in Valadier [40])

$$\overline{F}(\lambda) = \int g\left(\cdot, \frac{d\lambda_a}{d\mu}\right) d\mu + \int h\left(\cdot, \frac{d\lambda_s}{d|\lambda_s|} d|\lambda_s|\right),$$

where $\lambda_a + \lambda_s$ is the Lebesgue decomposition (with respect to μ) of λ and the integrands h and g derive from f. The situation is quite different from the non-parametric case where g = f and $h = f_{\infty}$ the recession function of f. Indeed as shown in the examples of Section 5, g can be different from f. Nevertheless, under some regularity assumptions which are set in Section 4, the equality $h = f_{\infty}(x, \cdot)$ may occur μ -a.e. (which implies $g(x, \cdot) = f(x, \cdot)$ a.e.) or everywhere. A comparison is then possible with the results of [1, 16, 21].

The application to the duality $(W_0^{1, p}, W^{-1, p'})$ (second problem) is studied in [5, 7, 8]; the results of Brezis [11] and Grun-Rehomme [23] are extended.

The present paper follows and improves in some details on Bouchitté [4, 5, 6]. Sections 2 to 4 include the results of Valadier [42], with new proofs, and some other results (especially in Section 4).

1. NOTATIONS

Throughout this paper Ω denotes a locally compact metrizable space which is σ -compact, that is, a union of a countable sequence of compact subsets. This allows Ω to be compact metrizable (which from the mathematical standpoint would be simpler). This also allows Ω to be an open subset of \mathbb{R}^{N} .

A positive Radon measure μ on Ω is given. When Ω is an open subset of \mathbb{R}^{N} it may be the Lebesgue measure. We will denote by *m* an auxiliary positive measure.

The space of continous functions tending to 0 at infinity is denoted by $\mathscr{C}_0(\Omega)$, abbreviated as \mathscr{C}_0 . The space of \mathbb{R}^d -valued functions $\mathscr{C}_0(\Omega; \mathbb{R}^d)$ is also denoted by $[\mathscr{C}_0]^d$ and d will often be omitted. By \mathscr{C}_c we denote the space of continuous functions with compact supports. When Ω is an open

400

subset of \mathbb{R}^N , \mathscr{C}^∞ is the space of infinitely differentiable functions and \mathscr{C}^∞_c or \mathscr{D} is the subspace of functions with compact supports.

By \mathcal{M} and \mathcal{M}^{b} we denote respectively the spaces of Radon measures on Ω and of bounded measures. The spaces of \mathbb{R}^{d} -valued measures are denoted by $\mathcal{M}(\Omega; \mathbb{R}^{d})$, $\mathcal{M}^{b}(\Omega; \mathbb{R}^{d})$ or $[\mathcal{M}]^{d}$, $[\mathcal{M}^{b}]^{d}$ (d will often be omitted).

Most of the paper uses one of the duality pairs $(\mathcal{M}, \mathscr{C}_c)$ or $(\mathcal{M}^b, \mathscr{C}_0)$. The bilinear form is denoted with brackets (for example $\langle \lambda, \varphi \rangle$) but the scalar product of $z, z' \in \mathbb{R}^d$ is denoted by $z \cdot z'$. If F is a function on a vector space E, F^* denotes its polar

$$F^*(x') = \sup\{\langle x', x \rangle - F(x) | x \in E\}$$

and dom $F = \{x | F(x) < \infty\}$. If C is a subset of E, $\delta(\cdot | C)$ denotes its indicator function (taking value 0 on C, $+\infty$ outside) and $\delta^*(\cdot | C)$ its support function.

A normal integrand f is a measurable function $f: \Omega \times \mathbb{R}^d \to \overline{\mathbb{R}}$. We say that f is a convex normal integrand if moreover, $\forall x, f(x, \cdot)$ is convex l.s.c.

Other notation: \mathbb{N} is the set of integers $n \ge 0$, $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$, $\overline{B}(x, r)$ is the closed ball with center x and radius r, and δ_a is the Dirac measure at a.

2. PRELIMINARY RESULTS

2.1. We denote by $\mathscr{L}^0(\Omega, m)$ the vector space of real measurable functions.

DEFINITION. A subset \mathscr{H} of $[\mathscr{L}^0]^d$ is said to be *PCU-stable* if for any continuous partition of unity $(\alpha_0, ..., \alpha_n)$ such that $\alpha_1, ..., \alpha_n$ belong to \mathscr{C}_c (variant, when Ω is an open subset of \mathbb{R}^N , $\alpha_1, ..., \alpha_n \in \mathscr{D}(\Omega)$, $\alpha_0 \in \mathscr{C}^\infty(\Omega)$), for every $u_0, ..., u_n$ in $\mathscr{H}, \sum_{i=0}^n \alpha_i u_i$ belongs to \mathscr{H} .

Remark. In the main applications \mathscr{H} will be $[\mathscr{C}_0]^d$ or $[\mathscr{C}_c]^d$ and, in other papers [5, 7, 8], $\{\tilde{u} | u \in [W_0^{1, p} \cap L^{\infty}]^d\}$, where \tilde{u} denotes all quasicontinuous elements of the Lebesgue equivalence class of u ([3, 12]).

2.2. Recall the following result [43, Proposition 1.14] (for a more recent paper see Fougères [20]). For any subset \mathscr{H}_1 of $[\mathscr{L}^0]^d$ there exists a smallest closed-valued measurable multifunction Γ such that $\forall u \in \mathscr{H}_1, u(x) \in \Gamma(x)$ *m*-a.e. (smallest refers to inclusion a.e.). We write $\Gamma = \operatorname{ess} \sup_{u \in \mathscr{H}_1} \{u(\cdot)\}$ and say that Γ is the *essential supremum* of the multifunctions $x \mapsto \{u(x)\}$ ($u \in \mathscr{H}_1$). Moreover there exists a sequence (u_n) in \mathscr{H}_1 such that a.e. $\Gamma(x) = \operatorname{cl} \{u_n(x) | n \in \mathbb{N}\}$. If (v_n) is any other sequence in \mathscr{H}_1 we can add the v_n to the u_n . Thus if $\mathscr{H}_1 \subset [\mathscr{C}_0(\Omega)]^d$, since \mathscr{C}_0 is separable (for the uniform convergence norm), we can add a dense sequence and this

proves $\Gamma(x) = cl\{u(x) | u \in \mathscr{H}_1\}$. If \mathscr{H}_1 is convex it is easy to see that Γ is (a.e.) convex valued. This remains true if \mathscr{H}_1 is PCU stable. Indeed for any compact subset K of Ω and $r_0, ..., r_n \ge 0$ such that $\sum r_i = 1$, there exists a continuous partition of unity $(\alpha_0, ..., \alpha_n)$ with $\alpha_1, ..., \alpha_n \in \mathscr{C}_c$ and $\forall i, \alpha_i(x) = r_i$ on K. Then adding to the u_n , all the $\sum \alpha_i u_i$ for $(\alpha_0, ..., \alpha_n)$ corresponding to rational r_i and K running through a countable family of compacts (K_p) such that $\bigcup K_p = \Omega$, one can easily check that $\Gamma(x)$ is convex.

2.3. Let $j: \Omega \times \mathbb{R}^d \to]-\infty, \infty$] be a normal convex integrand. For any $u \in [\mathscr{L}^0]^d$, $j(\cdot, u)$ denotes the function $x \mapsto j(x, u(x))$. Denote J the functional

$$u \mapsto \int_{\Omega} j(\cdot, u) \, dm$$
$$[\mathscr{L}^0]^d \to \overline{\mathbb{R}},$$

where, as usual in convex analysis, $\int j(\cdot, u) dm = +\infty$ as soon as $\int j(\cdot, u)^+ dm = +\infty$.

THEOREM 1. Let \mathscr{H} be a PCU-stable subset of $[\mathscr{L}^0]^d$. Suppose $\exists u_0 \in \mathscr{H}$ with $J(u_0) \in \mathbb{R}$. Then $\Gamma = \operatorname{ess\,sup}_{u \in \mathscr{H} \cap \operatorname{dom} J} \{u(\cdot)\}$ is convex valued,

$$\inf_{u \in \mathscr{H}} J(u) = \int_{\Omega} \left[\inf_{z \in \Gamma(x)} j(x, z) \right] m(dx)$$

and

$$\inf_{z \in \Gamma(x)} j(x, z) = \operatorname{ess\,inf}_{u \in \mathscr{H} \cap \operatorname{dom} J} j(\cdot, u).$$

Commentary. Classical results about commutativity of \int and inf assume that \mathscr{H} is a decomposable vector space or the set of measurable selectors of a multifunction: see Rockafellar [31, 33], Hiai and Umegaki [25], and Bourass and Valadier [9].

Remark/Example. We cannot take $\Gamma = \operatorname{ess\,sup}_{u \in \mathscr{H}} \{u(\cdot)\}$. Indeed let $\Omega = \mathbb{R}$, *m* the Lebesgue measure, d = 1, *K* a compact subset of \mathbb{R} such that $\operatorname{int}(K) = \emptyset$ and m(K) > 0 (one can construct *K* analogously to the Cantor set). Let

$$j(x, z) = \begin{cases} z & \text{if } x \in K \\ \delta(z \mid \{0\}) & \text{otherwise} \end{cases}$$

Let $\mathscr{H} = \mathscr{C}_{c}$. Then $\inf_{u \in \mathscr{H}} J(u) = 0$ because, if $u \neq 0$, the set $\{x \mid u(x) \neq 0\}$

and $x \notin K$ is open and non-empty, so has >0 measure and $J(u) = +\infty$. But ess $\sup_{u \in \mathscr{C}_{r}} \{u(\cdot)\}$ is the constant multifunction $x \mapsto \mathbb{R}$ and

$$\inf_{z \in \mathbb{R}} j(x, z) = \begin{cases} -\infty & \text{if } x \in K \\ 0 & \text{otherwise.} \end{cases}$$

Proof. (1) First $\mathscr{H} \cap \text{dom } J$ is still PCU-stable (because $j(\cdot, \sum \alpha_i u_i) \leq \sum \alpha_i j(\cdot, u_i)^+$), hence Γ is convex valued.

(2) Prove the first equality.

Let $\gamma(x) = \inf_{z \in \Gamma(x)} j(x, z)$ (γ is μ -measurable; Castaing and Valadier [15, Lemma III.39]). First \geq holds because, $\forall u \in \mathcal{H} \cap \text{dom } J, u(x) \in \Gamma(x)$ a.e. so

$$j(x, u(x)) \ge \gamma(x)$$
 a.e.

Prove now \leq . Let $r \in \mathbb{R}$, $r > \int \gamma \, dm$. Thanks to Bourbaki [10] or Dellacherie and Meyer [18, Théorème 48, pp. 107–108] there exists α l.s.c. integrable such that $\forall x, \alpha(x) \ge \gamma(x)$ and $\int \alpha \, dm < r$ (as $\gamma^+ \le j(\cdot, u_0)^+, \gamma^+$ is integrable and can be approached upper by a l.s.c. function, and γ^- can be approached below by an u.s.c. function). We may modify slightly α to obtain $\forall x, \alpha(x) > \gamma(x)$.

Let $(u_n)_{n \ge 1}$ be a sequence in $\mathscr{H} \cap \operatorname{dom} J$ such that $\Gamma(x) = \operatorname{cl}\{u_n(x) \mid n \in \mathbb{N}^*\}$. Let N be a negligible set such that $\forall n, \forall x \in \Omega \setminus N$, $j(x, u_n(x)) \in \mathbb{R}$ (recall that $u_n \in \operatorname{dom} J$ implies $j(\cdot, u_n)^+$ is integrable and that $j(x, z) > -\infty$). Let $\varepsilon > 0$. There exists K compact, $K \subset \Omega \setminus N$ such that $\int_{\Omega \setminus K} [|j(\cdot, u_0)| + |\alpha|] dm < \varepsilon$. There exists $\eta > 0$ such that $m(A) < \eta$ implies $\int_A [|j(\cdot, u_0)| + |\alpha|] dm < \varepsilon$. Let K^{ε} be a compact such that $K^{\varepsilon} \subset K$, $m(K \setminus K^{\varepsilon}) < \eta$ and $\forall n, j(\cdot, u_n)$ is continuous on K^{ε} .

Let $A_n = \{x \in K^e | j(x, u_n(x)) < \alpha(x)\}$. It is an open subset of K^e . From Lemma A1 (see Appendix 1) applied with $D = \{u_n(x) | n \in \mathbb{N}^*\}$ (so $\overline{D} = \Gamma(x)$), for any $x \in K^e$, $\gamma(x) = \inf_{n \ge 1} j(x, u_n(x))$, hence $\bigcup_{n \ge 1} A_n = K^e$. By compactness there exists p such that $K^e = \bigcup_{n=1}^p A_n$. There exists an open subset V^e of Ω such that $V^e \supset K^e$ and

$$\forall n, \qquad 0 \leq n \leq p \Rightarrow \int_{\mathcal{V}^{\varepsilon} \setminus \mathcal{K}^{\varepsilon}} j(\cdot, u_n)^+ dm < \frac{\varepsilon}{p+1}.$$

Let V_n be a relatively compact open subset of Ω such that $V_n \cap K^e = A_n$. We may suppose $V_n \subset V^e$. There exists a continuous partition of unity $(\alpha_0, ..., \alpha_p)$ such that $\forall i = 1, ..., p$, supp $\alpha_i \subset V_i$ and supp $\alpha_0 \subset \Omega \setminus K^e$ (see, for example, Bourbaki [10, Chap. III.1, n° 2, Lemme 1, p. 43]; when Ω is an open subset of \mathbb{R}^N it is possible to get $\forall i, \alpha_i \in \mathscr{C}^\infty(\Omega)$, see L. Schwartz [35, Chap. I, Théorème II]). Let $u = \sum_{n=0}^{p} \alpha_n u_n$. As \mathcal{H} is PCU-stable, $u \in \mathcal{H}$. One has

$$j(x, u(x)) \leq \sum_{n=0}^{p} \alpha_n(x) \ j(x, u_n(x)) \leq \begin{cases} \alpha(x) & \text{if } x \in K^{\varepsilon} \\ \sum_{n=0}^{p} j(x, u_n(x))^+ & \text{if } x \in V^{\varepsilon} \setminus K^{\varepsilon} \end{cases}$$
$$j(x, u(x)) = j(x, u_0(x)) & \text{if } x \in \Omega \setminus V^{\varepsilon}. \end{cases}$$

Then

$$\int_{\Omega} j(\cdot, u) dm \leq \int_{K^{\varepsilon}} \alpha dm + \int_{V^{\varepsilon} \setminus K^{\varepsilon}} \sum_{0}^{p} j(\cdot, u_{n})^{+} dm + \int_{\Omega \setminus V^{\varepsilon}} |j(\cdot, u_{0})| dm.$$

We have

$$\int_{K^{\mathfrak{r}}} \alpha \, dm = \int_{\Omega} \alpha \, dm - \left(\int_{\Omega \setminus K} \alpha \, dm + \int_{K \setminus K^{\mathfrak{r}}} \alpha \, dm \right)$$
$$\leqslant \int_{\Omega} \alpha \, dm + 2\varepsilon \leqslant r + 2\varepsilon$$
$$\int_{V^{\mathfrak{r}} \setminus K^{\mathfrak{r}}} \sum_{0}^{p} j(\cdot, u_{n})^{+} \, dm \leqslant \varepsilon$$
$$\int_{\Omega \setminus V^{\mathfrak{r}}} |j(\cdot, u_{0})| \, dm \leqslant \int_{\Omega \setminus K^{\mathfrak{r}}} \cdots$$
$$= \int_{\Omega \setminus K} \cdots + \int_{K \setminus K^{\mathfrak{r}}} \cdots \leqslant 2\varepsilon.$$

Finally, $\int_{\Omega} j(\cdot, u) dm \leq r + 5\varepsilon$.

(3) As shown in (2), $\gamma(x) = \inf_{n \ge 1} j(x, u_n(x))$ a.e. Hence $\gamma \ge \operatorname{ess\,inf}_{u \in \mathscr{H} \cap \operatorname{dom} J} j(\cdot, u)$. Conversely there exists a sequence (v_k) in $\mathscr{H} \cap \operatorname{dom} J$ such that

$$\operatorname{ess\,inf}_{u \in \mathscr{H} \cap \operatorname{dom} J} j(\cdot, u) = \operatorname{inf}_{k} j(\cdot, v_{k}).$$

But $v_k(x) \in \Gamma(x)$ a.e. so

$$\gamma(x) \leqslant \inf_k j(x, v_k(x)).$$

THEOREM 2. We keep the hypotheses of Theorem 1. Let \mathscr{X} and \mathscr{Y} be vector spaces of \mathbb{R}^d -valued measurable functions such that $\forall u \in \mathscr{X}, \forall v \in \mathscr{Y}, u(\cdot) \cdot v(\cdot)$ is m-integrable and $\mathscr{H} \subset \mathscr{X}$. Then, in the duality $(\mathscr{X}, \mathscr{Y})$

$$\forall v \in \mathscr{Y}, \qquad [J + \delta(\cdot | \mathscr{H})]^*(v) = \int_{\Omega} k(\cdot, v) \, dm,$$

where $k(x, \cdot) = [j^*(x, \cdot) \nabla \delta^*(\cdot | \Gamma(x))]^{**}$ (here ∇ denotes the infimum convolution [27]).

Remark. It is possible with a minoration hypothesis to obtain that the $\sigma(\mathcal{X}, \mathcal{Y})$ l.s.c. hull of $J + \delta(\cdot | \mathcal{H})$ is $u \mapsto J(u) + \int_{\Omega} \delta(u(x) | \Gamma(x)) m(dx)$ (see Bouchitté [5, Théorème 2]).

Proof.

$$[J + \delta(\cdot | \mathscr{H})]^{*}(v) = \sup_{u \in \mathscr{X}} [\langle u, v \rangle - J(u) - \delta(u | \mathscr{H})]$$
$$= \sup_{u \in \mathscr{H}} \int [u(\cdot) \cdot v(\cdot) - j(\cdot, u)] dm$$
$$= -\inf_{u \in \mathscr{H}} \int j'(\cdot, u) dm$$

with $j'(x, z) = j(x, z) - z \cdot v(x)$. Since dom $J' \cap \mathscr{X} = \operatorname{dom} J \cap \mathscr{X}$, the multifunction ess $\sup_{u \in \mathscr{H} \cap \operatorname{dom} J'} \{u(\cdot)\}$ is still Γ . Moreover $J'(u_0) \in \mathbb{R}$.

By Theorem 1,

$$[J + \delta(\cdot | \mathscr{H})]^*(v) = -\int \inf_{z \in \Gamma(x)} [j(x, z) - z \cdot v(x)] m(dx)$$
$$= \int [j(x, \cdot) + \delta(\cdot | \Gamma(x))]^*(v(x)) m(dx).$$

Since $j(x, \cdot)$ and $\delta(\cdot | \Gamma(x))$ are l.s.c.

$$j(x, \cdot) + \delta(\cdot | \Gamma(x)) = [j^*(x, \cdot) \nabla \delta^*(\cdot | \Gamma(x))]^*$$

(see, for example, Castaing and Valadier [15, Proposition I.19]).

It is possible to choose classical spaces for \mathscr{X} and \mathscr{Y} .

PROPOSITION 3. Let *j* be a normal convex integrand. Suppose \mathcal{H} is a vector subspace of $[\mathcal{L}^{\infty}]^d$ such that $\forall u \in \mathcal{H}, \forall \alpha \in \mathscr{C}_c(\Omega)$ (variant, when Ω is an open subset of $\mathbb{R}^N, \forall \alpha \in \mathcal{D}(\Omega)$), αu belongs to \mathcal{H} . Suppose $\exists u_0 \in \mathcal{H}$ such that $J(u_0) \in \mathbb{R}$. Let $\Gamma = \operatorname{ess\,sup}_{u \in \mathcal{K} \cap \operatorname{dom} J} \{u(\cdot)\}$.

(1) Consider the functional on $[L^{\infty}]^d$, $J + \delta(\cdot | \mathcal{H})$. Then its polar on $[L^1]^d$ verifies

$$[J+\delta(\cdot | \mathscr{H})]^*(v) = \int_{\Omega} k(\cdot, v) \, dm,$$

where $k(x, \cdot) = [j^*(x, \cdot) \nabla \delta^*(\cdot | \Gamma(x))]^{**}$.

(2) If $\mathscr{H} \subset [\mathscr{C}_0]^d$ then $\Gamma(x) = \operatorname{cl}\{u(x) | u \in \mathscr{H} \cap \operatorname{dom} J\}$ a.e.

Proof. Remark that \mathscr{H} is PCU-stable because $\sum_{i=0}^{n} \alpha_i u_i = u_0 + \sum_{i=1}^{n} \alpha_i (u_i - u_0)$.

(1) This results from Theorem 2 applied with $\mathscr{X} = [\mathscr{L}^{\infty}]^d$ and $\mathscr{Y} = [\mathscr{L}^1]^d$.

(2) This has been said in 2.2.

Remark. It is possible to give a variant with $\mathscr{Y} = [\mathscr{L}_{loc}^1]^d$ and for \mathscr{X} the space of \mathscr{L}^{∞} -functions with compact supports.

3. Description of \overline{F}

Let $f: \Omega \times \mathbb{R}^d \to]-\infty, \infty$] be a convex normal integrand. We suppose

(H1) $\exists \varphi_0 \in \mathscr{C}_c$, $\exists a \in L^1$ such that μ -a.e. in $x, \forall z, f(x, z) \ge \varphi_0(x) \cdot z - a(x)$ (equivalently $\exists \varphi_0 \in \mathscr{C}_c$ such that $I_{f^*}(\varphi_0) < \infty$).

(H2) $\exists u_0 \in [L^1_{loc}(\Omega, \mu)]^d$ such that $I_f(u_0) < \infty$ (equivalently $\exists u_0 \in [L^1_{loc}]^d$, $\exists b \in L^1$ such that μ -a.e., $\forall z, f^*(x, z) \ge z \cdot u_0(x) - b(x)$).

Here, for any $u \in [\mathscr{L}^{0}(\mu)]^{d}$, $I_{f}(u) = \int_{\Omega} f(\cdot, u) d\mu$. Let $F: [\mathscr{M}]^{d} \to] - \infty, \infty$] be defined as

$$F(\lambda) = \begin{cases} I_f\left(\frac{d\lambda}{d\mu}\right) & \text{if } \lambda \leqslant \mu \\ +\infty & \text{otherwise} \end{cases}$$

(Note that $d\lambda/d\mu \in L_{loc}^{1}$ and, by (H1), $f(\cdot, d\lambda/d\mu) \ge \varphi_{0}(\cdot) \cdot (d\lambda/d\mu)(\cdot) - a$, hence $F(\lambda) > -\infty$.)

THEOREM 4. Let

$$h(x, z) = \sup \{ \varphi(x) \cdot z \mid \varphi \in \mathscr{C}_c \cap \operatorname{dom} I_{f^*} \}$$
$$g(x, \cdot) = [f(x, \cdot) \nabla h(x, \cdot)]^{**},$$

 $\lambda \in [\mathcal{M}]^d$, $\lambda_a + \lambda_s$ its Lebesgue decomposition with respect to μ , θ any positive measure such that $\lambda_s \leq \theta$. Then the $\sigma(\mathcal{M}, \mathcal{C}_c)$ l.s.c. hull of F is

$$\bar{F}(\lambda) = \int_{\Omega} g\left(\cdot, \frac{d\lambda_a}{d\mu}\right) d\mu + \int_{\Omega} h\left(\cdot, \frac{d\lambda_s}{d\theta}\right) d\theta,$$

and the $\sigma(L_{loc}^{-1}, \mathscr{C}_{c})$ l.s.c. hull of I_{f} is I_{g} .

With

(H2)' $\exists u_0 \in [L^1]^d$ such that $I_f(u_0) < \infty$, and $F_1: [\mathcal{M}^b]^d \to] - \infty, \infty$] defined by

$$F_1(\lambda) = \begin{cases} I_f\left(\frac{d\lambda}{d\mu}\right) & \text{if } \lambda \ll \mu \\ +\infty & \text{otherwise} \end{cases}$$

we obtain

THEOREM 4'. The $\sigma(\mathcal{M}^{\mathbf{b}}, \mathscr{C}_0)$ l.s.c. hull \overline{F}_1 of F_1 is

$$\overline{F}_1(\lambda) = \int_{\Omega} g\left(\cdot, \frac{d\lambda_a}{d\mu}\right) d\mu + \int_{\Omega} h\left(\cdot, \frac{d\lambda_s}{d\theta}\right) d\theta$$

with g and h defined as in Theorem 4. Moreover the $\sigma(L^1, \mathcal{C}_0)$ l.s.c. hull of I_f is I_g .

Remarks. (1) If (H1) were replaced by

(H1)' $\exists \varphi_0 \in \mathscr{C}_0$ such that $I_{\ell^*}(\varphi_0) < \infty$

one would have to redefine h and g.

(2) If μ is non-atomic one can start from a measurable integrand f not necessarily convex, and the l.s.c. hulls \overline{F} and \overline{F}_1 are the same as those obtained starting from f^{**} ; this results from the Liapunov theorem. See Valadier [41] and Bouchitté [5].

(3) As h is sublinear the choice of θ is immaterial as soon as $\lambda_s \ll \theta$. See Goffman and Serrin [22].

Proof of Theorem 4. First, since L^1_{loc} is decomposable and $I_f(u_0) < \infty$, thanks to a famous theorem by Rockafellar, the polar F^* of F in the duality $(\mathcal{M}, \mathscr{C}_c)$ is

$$F^*(\varphi) = \sup_{u \in L^1_{loc}} \left[\langle u, \varphi \rangle - I_f(u) \right] = I_{f^*}(\varphi).$$

Thanks to minoration (H1) and convexity, $\overline{F} = F^{**}$, hence

$$\overline{F}(\lambda) = \sup_{\varphi \in \mathscr{C}_{c}} \left[\langle \lambda, \varphi \rangle - I_{f^{*}}(\varphi) \right].$$

Consider now a fixed $\lambda \in [\mathcal{M}]^d$. There exists a Borel set A such that

$$\mu(\Omega \setminus A) = |\lambda_s| (A) = 0.$$

Let $m = \mu + |\lambda_s|$. Then $\lambda \ll m$ and

$$\frac{d\lambda}{dm}(x) = \begin{cases} \frac{d\lambda_a}{d\mu}(x) & \text{if } x \in A \\\\ \frac{d\lambda_s}{d|\lambda_s|}(x) & \text{if } x \in \Omega \setminus A. \end{cases}$$

Thus $d\lambda/dm \in L^1_{loc}(m)$. Setting

$$j(x, z) = \begin{cases} f^*(x, z) & \text{if } x \in A \\ 0 & \text{if } x \in Q \setminus A \end{cases}$$

one has

$$\langle \lambda, \varphi \rangle - \int_{\Omega} f^*(\cdot, \varphi) \, d\mu = \int_{\Omega} \frac{d\lambda}{dm} \cdot \varphi \, dm - \int_{\Omega} j(\cdot, \varphi) \, dm.$$

Now we can apply Theorem 2 with $\mathscr{X} = \mathscr{H} = \mathscr{C}_c$ and $\mathscr{Y} = [L^1_{loc}]^d$. Indeed, by (H1) and (H2), $J(\varphi_0) \in \mathbb{R}$ (remark $J = I_{f^*}$). Thus

$$\overline{F}(\lambda) = \sup_{\varphi \in \mathscr{C}_{c}} \int_{\Omega} \left[\frac{d\lambda}{dm} \cdot \varphi - j(\cdot, \varphi) \right] dm$$
$$= \left[J + \delta(\cdot | \mathscr{C}_{c}) \right]^{*} \left(\frac{d\lambda}{dm} \right)$$
$$= \int_{\Omega} k\left(\cdot, \frac{d\lambda}{dm} \right) dm$$

with $k(x, \cdot) = [j^*(x, \cdot) \nabla \delta^*(\cdot | \Gamma(x))]^{**}$.

Since $\Gamma(x) = cl\{\varphi(x) | \varphi \in \mathscr{C}_c \cap dom I_{f^*}\}$ (in fact Γ is defined up to equality *m*-a.e. but this expression is independent of *m*),

$$\delta^*(z \mid \Gamma(x)) = h(x, z)$$

Since

$$j^{*}(x, z) = \begin{cases} f(x, z) & \text{if } x \in A \\ \delta(z \mid \{0\}) & \text{if } x \in \Omega \setminus A, \end{cases}$$
$$k(x, \cdot) = \begin{cases} g(x, \cdot) & \text{if } x \in A \\ h(x, \cdot) & \text{if } x \in \Omega \setminus A. \end{cases}$$

Finally,

$$\overline{F}(\lambda) = \int_{\mathcal{A}} g\left(\cdot, \frac{d\lambda}{dm}\right) dm + \int_{\Omega \setminus \mathcal{A}} h\left(\cdot, \frac{d\lambda}{dm}\right) dm$$
$$= \int_{\Omega} g\left(\cdot, \frac{d\lambda_a}{d\mu}\right) d\mu + \int_{\Omega} h\left(\cdot, \frac{d\lambda_s}{d|\lambda_s|}\right) d|\lambda_s|.$$

Proof of Theorem 4'. We still have, for $\varphi \in \mathscr{C}_0$, $F_1^*(\varphi) = I_{f^*}(\varphi)$ and

$$\widetilde{F}_1(\lambda) = \sup_{\varphi \in \mathscr{C}_0} \left[\langle \lambda, \varphi \rangle - I_{f^*}(\varphi) \right].$$

For a given $\lambda \in [\mathcal{M}^b]^d$, let A, m, and j be as in the proof of Theorem 4. Here $d\lambda/dm \in L^1(m)$.

We apply Theorem 2 with $\mathscr{Y} = \mathscr{L}^1$, $\mathscr{H} = \mathscr{C}_0$, and $\mathscr{X} = \mathscr{C}_0$ (or \mathscr{L}^∞) (we may also apply Proposition 3). We get $\overline{F}_1(\lambda) = \int_{\Omega} k(\cdot, d\lambda/dm) dm$. Here the only difference is that

$$\Gamma(x) = \operatorname{cl}\{\varphi(x) | \varphi \in \mathscr{C}_0 \cap \operatorname{dom} I_{f^*}\}.$$

408

A priori, using \mathscr{C}_0 in place of \mathscr{C}_c should give a greater function *h*. But let $\varphi \in \mathscr{C}_0 \cap \text{dom } I_{f^*}$. There exists $\beta_n \in \mathscr{C}_c$, $\beta_n \ge 0$, $\beta_n \nearrow \chi_{\Omega}$, then $\psi_n = \beta_n \varphi + (1 - \beta_n)\varphi_0$ (where φ_0 satisfies (H1)) belongs to $\mathscr{C}_c \cap \text{dom } I_{f^*}$. Hence, for any $x, \psi_n(x) \to \varphi(x)$ and the function $\delta^*(z | \Gamma(x))$ is the same *h* as in Theorem 4.

THEOREM 5. Under (H1), with h and g defined in Theorem 4 one has, for any bounded positive Borel function $\psi, \forall \lambda \in [\mathcal{M}]^d$ (or $[\mathcal{M}^b]^d$),

$$\int_{\Omega} \psi g\left(\cdot, \frac{d\lambda_{a}}{d\mu}\right) d\mu + \int_{\Omega} \psi h\left(\cdot, \frac{d\lambda_{s}}{d\theta}\right) d\theta$$

= sup $\left\{\int_{\Omega} \psi \varphi \cdot d\lambda - \int_{\Omega} \psi f^{*}(\cdot, \varphi) d\mu | \varphi \in \operatorname{dom} I_{f^{*}} \cap \mathscr{C}_{c} (\operatorname{resp.} \mathscr{C}_{0})\right\}.$

Moreover, if ψ is continuous, the supremum can be taken on the whole space \mathscr{C}_c or \mathscr{C}_0 .

Comment. Consider the measure $G(\lambda)$ with values in $]-\infty, \infty]$ defined by, $\forall B$ Borel set,

$$[G(\lambda)](B) = \int_{B} g\left(\cdot, \frac{d\lambda_{a}}{d\mu}\right) d\mu + \int_{B} h\left(\cdot, \frac{d\lambda_{s}}{d\theta}\right) d\theta.$$

The first member in the statement is $\int \psi \, dG(\lambda)$. When $G(\lambda)$ is a Radon measure (equivalently takes finite values on compact sets) it is characterized by the knowledge of the values $\int \psi \, dG(\lambda)$, ψ continuous. The formula has been given by Temam [36, 37], Demengel and Temam [19], Hadhri [24], and Valadier [42, 45]. The continuity of ψ is necessary to take the supremum on \mathscr{C}_0 .

Proof. (a) Consider for a fixed λ , $\lambda' = \psi \lambda$ and $m = \psi \mu + \psi |\lambda_s|$. Then $\lambda' \ll m$ and, if A is a Borel set such that $\mu(\Omega \setminus A) = |\lambda_s|$ (A) = 0, one has

$$\frac{d\lambda'}{dm}(x) = \begin{cases} \frac{d\lambda_a}{d\mu}(x) & \text{if } x \in A \\ \\ \frac{d\lambda_s}{d|\lambda_s|}(x) & \text{if } x \in \Omega \setminus A, \end{cases}$$

and, since ψ is bounded, $d\lambda'/dm \in L^1_{loc}(m)$ (resp. $L^1(m)$). Set also

$$j(x, z) = \begin{cases} f^*(x, z) & \text{if } x \in A \\ 0 & \text{otherwise.} \end{cases}$$

Then $\int_{\Omega} \psi f^*(\cdot, \varphi) d\mu = \int_{\Omega} j(\cdot, \varphi) dm$, which will be denoted by $J(\varphi)$. Thus the right-hand side of the formula of Theorem 5 equals

$$\sup_{\varphi \in \mathscr{K}} \left[\int_{\Omega} \frac{d\lambda'}{dm} \cdot \varphi \, dm - J(\varphi) \right],$$

where $\mathscr{H} = \mathscr{C}_{c} \cap \operatorname{dom} I_{f^{*}}$ (or $\mathscr{C}_{0} \cap \operatorname{dom} I_{f^{*}}$). Since ψ is bounded one has $\mathscr{H} \subset \operatorname{dom} J$, hence $\mathscr{H} \cap \operatorname{dom} J = \mathscr{H}$ and $\varphi_{0} \in \mathscr{H} \cap \operatorname{dom} J$. Moreover \mathscr{H} is PCU-stable. We can apply Theorem 2 with $\mathscr{Y} = [L_{\operatorname{loc}}^{1}]^{d}$ (or $[L^{1}]^{d}$), $\mathscr{X} = \mathscr{C}_{c}$ or \mathscr{C}_{0} . Thus

$$\sup_{\varphi \in \mathscr{H}} \left[\int_{\Omega} \frac{d\lambda'}{dm} \cdot \varphi \, dm - J(\varphi) \right] = \int_{\Omega} k\left(\cdot, \frac{d\lambda'}{dm} \right) dm$$

with $k(x, \cdot) = [j^*(x, \cdot) \nabla \delta^*(\cdot | \Gamma(x))]^{**}$ and $\Gamma = \operatorname{ess\,sup}_{u \in \mathscr{H}} \{u(\cdot)\}$. Again $\Gamma(x) = \operatorname{cl}\{\varphi(x) | \varphi \in \mathscr{H}\}$ and one can end the proof as in Theorem 4.

(b) Suppose that the supremum is on the whole space \mathscr{C}_c (or \mathscr{C}_0) and that ψ is continuous. Proceeding as in (a), but with $\mathscr{H} = \mathscr{C}_c$ or \mathscr{C}_0 , the difficulty is to check that, denoting $\Gamma = \operatorname{ess\,sup}_{u \in \mathscr{H} \cap \operatorname{dom}^J} \{u(\cdot)\} = \operatorname{cl}\{\varphi(x) | \varphi \in \mathscr{C}_c$ or \mathscr{C}_0 and $\int \psi f^*(\cdot, \varphi) \, d\mu < \infty\}$, one has $\psi(x) \, \delta^*(z | \Gamma(x)) = \psi(x) \, h(x, z)$. We may suppose $\psi(x) > 0$. There exists a compact neighborhood K of x such that $\inf_K \psi = \delta > 0$. The remainder is routine.

4. Some Properties of h and g

Throughout this section the duality pair is either $(\mathcal{M}, \mathscr{C}_c)$ or $(\mathcal{M}^b, \mathscr{C}_0)$. Hypotheses (H1) and (H2) are assumed, so

$$h(x, z) = \sup\{z \cdot \varphi(x) | \varphi \in \mathscr{C}_{c} \cap \operatorname{dom} I_{f^{*}}\}$$
$$= \sup\{z \cdot \varphi(x) | \varphi \in \mathscr{C}_{0} \cap \operatorname{dom} I_{f^{*}}\}$$

(see the proof of Theorem 4').

We will sometimes use in place of (H1) the stronger

(H1)" $\exists \lambda_0 \in]0, \infty[, \exists a \in L^1 \text{ such that a.e., } \forall z, f(x, z) \ge \lambda_0 |z| - a(x).$

(Remark that $(H1)'' \Rightarrow (H1)$ with $\varphi_0 = 0$.)

Recall that the recession or asymptotic function $f_{\infty}(x, \cdot)$ of the convex l.s.c. proper function $f(x, \cdot)$ satisfies

$$\forall z_0 \in \operatorname{dom} f(x, \cdot), \qquad f_\infty(x, z) = \lim_{r \to \infty} \frac{f(x, z_0 + rz)}{r}$$

and $f_{\infty}(x, z) = \delta^*(z | \text{dom } f^*(x, \cdot))$ (Rockafellar [34, Theorem 8.5, p. 66, and Theorem 13.3, p. 116]).

PROPOSITION 6. Let

$$E(x) = \left\{ z \in \mathbb{R}^{d} | \exists V \text{ open, } V \ni x, \exists \varphi \text{ continuous on } V \text{ such that} \\ \varphi(x) = z \text{ and } \int_{V} f^{*}(\cdot, \varphi) \, d\mu < \infty \right\}$$
$$E_{1}(x) = \left\{ z \in \mathbb{R}^{d} | \exists V \text{ open, } V \ni x \text{ such that } \int_{V} f^{*}(\cdot, z) \, d\mu < \infty \right\}$$

Then

- (1) $\forall (x, z), h(x, z) = \delta^*(z \mid E(x)),$ (2) *if* $x \in \Omega \setminus \text{supp } \mu, E(x) = E_1(x) = \mathbb{R}^d$ and $h(x, \cdot) = \delta(\cdot \mid \{0\}),$
- (3) under (H1)", $\forall x, E_1(x) \subset E(x) \subset \overline{E_1(x)}$.

EXAMPLE. Without (H1)", (3) may be false. Let $\Omega =]-\pi, \pi[, \mu]$ the Lebesgue measure, d = 2,

$$D_x = \{\lambda(\cos x, \sin x) | \lambda \in \mathbb{R}\}, \qquad f(x, \cdot) = \delta(\cdot | D_x).$$

Then $f^*(x, \cdot) = \delta(\cdot | D_x^{\perp})$ and $E_1(0) = \{(0, 0)\}, E(0) = \{0\} \times \mathbb{R}.$

Proof. (1) This is proved in Valadier [42, Proposition 7, p. 22] and is known since Olech [28].

(2) If $x \notin \operatorname{supp} \mu$, $V = \Omega \setminus \operatorname{supp} \mu$ is an open neighborhood of x and $\int_{V} f^{*}(x, z) \mu(dx) = 0$ for any z. So $E(x) = E_{1}(x) = \mathbb{R}^{d}$ and $h(x, \cdot) = \delta(\cdot | \{0\})$.

(3) The inclusion $E_1(x) \subset E(x)$ is obvious. Let $z \in E(x)$. Let V and φ corresponding to z. We may, changing V in a smaller neighborhood, suppose φ bounded. For any $\varepsilon > 0$, let $V_{\varepsilon} = \{ y \in V | |\varphi(y) - z| < \varepsilon \}$ and W_{ε} a compact neighborhood of x contained in V_{ε} . There exists $\theta_{\varepsilon} : V \to [0, 1]$ continuous such that $\theta_{\varepsilon}(x) = 1$ on W_{ε} and supp $\theta_{\varepsilon} \subset V_{\varepsilon}$. Define

$$\varphi_{\varepsilon} = \theta_{\varepsilon} z + (1 - \theta_{\varepsilon}) \varphi.$$

Then $\varphi_{\varepsilon}(x) = z$ and $\sup_{y \in V} |\varphi_{\varepsilon}(y) - \varphi(y)| \leq \varepsilon$.

By (H1)" the functional I on $L^{\infty}(V, \mu)$, defined by $I(v) = \int_{V} f^{*}(\cdot, v) d\mu$, is bounded on a (norm) neighborhood of 0, so it is continuous on int(dom I), which contains $[0, \varphi[$. Hence if $r \in [0, 1[$

$$\lim_{\varepsilon \to 0} \int_{V} f^{*}(\cdot, r\varphi_{\varepsilon}) d\mu = \int_{V} f^{*}(\cdot, r\varphi) d\mu.$$

So for ε sufficiently small, $f^*(\cdot, r\varphi_{\varepsilon}) \in L^1$, hence $\int_{int(W_{\varepsilon})} f^*(\cdot, rz) d\mu < \infty$ and $rz \in E_1(x)$. Finally, $z \in E_1(x)$. **PROPOSITION** 7. (1) One has μ -a.e.

$$g(x, \cdot) \leq f(x, \cdot)$$
$$h(x, \cdot) = g_{\infty}(x, \cdot) \leq f_{\infty}(x, \cdot),$$

(2) I_f is $\sigma(L^1, \mathscr{C}_0)$ (resp. $\sigma(L^1_{loc}, \mathscr{C}_c)$) l.s.c. iff μ -a.e. $h(x, \cdot) = f_{\infty}(x, \cdot)$ (equivalently $h(x, \cdot) \ge f_{\infty}(x, \cdot)$).

(3) If Ω' is an open subset of Ω and if $x \mapsto \operatorname{epi} f^*(x, \cdot)$ is l.s.c. on Ω' , then $\forall x \in \Omega'$, $f_{\infty}(x, \cdot) \leq h(x, \cdot)$. As a consequence if $\mu(\Omega \setminus \Omega') = 0$, I_f is l.s.c.

EXAMPLE. Let $\Omega = \mathbb{R}$, μ the Lebesgue measure, d = 1, K a compact subset of \mathbb{R} with $int(K) = \emptyset$ and $\mu(K) > 0$, and

$$f(x, z) = \begin{cases} |z| & \text{if } x \in K \\ 0 & \text{otherwise,} \end{cases}$$

Then $I_{f^*}(\varphi) = \delta(\varphi \mid \{0\})$, so $\overline{I}_f = 0 \neq I_f$.

Proof. Parts (1) and (2) have been proved in Valadier [41, 42]. For a somewhat more direct proof see Bouchitté [5, 7].

(3) Let $x_0 \in \Omega'$. If $z_0 \in \text{dom } f^*(x_0, \cdot)$, by the Michael theorem [26] there exists a continuous selector (φ, ψ) of $x \mapsto \text{epi } f^*(x, \cdot)$ such that $(\varphi(x_0), \psi(x_0)) = (z_0, f^*(x_0, z_0))$. Let K be a compact neighborhood of x contained in Ω' . Then

$$\int_{\inf K} f^*(\cdot, \varphi) \, d\mu \leq \int_K \psi \, d\mu < \infty.$$

Hence $z_0 \in E(x_0)$. Therefore $f_{\infty}(x_0, \cdot) \leq h(x_0, \cdot)$. The last assertion follows from (2).

THEOREM 8. (1) Under one of the hypotheses

(H3) $\forall z, f^*(\cdot, z) \text{ is u.c.s. on } \Omega$,

(H4) f is l.s.c. on $\Omega \times \mathbb{R}^d$ and $f(\cdot, 0)$ is locally bounded,

one has $\forall x \in \Omega$, $f_{\infty}(x, \cdot) \leq h(x, \cdot)$ (hence I_f is l.s.c.).

(2) Under (H3) or (H4) and moreover

(H5) $\forall z, f_{\infty}(\cdot, z)$ is u.c.s.,

one has

$$h(x, z) = \begin{cases} f_{\infty}(x, z) & \text{if } x \in \text{supp } \mu \\ \delta(z \mid \{0\}) & \text{if } x \in \Omega \setminus \text{supp } \mu. \end{cases}$$

Remarks and Comments. (1) For I_f being $\sigma(L^1, \mathscr{C}_0)$ l.s.c. it is sufficient to have (H3) or (H4) on an open set Ω' such that $\mu(\Omega \setminus \Omega') = 0$, for example (as said in [24]) if

$$f(x, z) = \begin{cases} f_1(z) & \text{if } x \in \Omega_1 \\ f_2(z) & \text{if } x \in \Omega_2, \end{cases}$$

where Ω_1 and Ω_2 are disjoint open subsets such that

$$\mu(\Omega \setminus (\Omega_1 \cup \Omega_2)) = 0.$$

(2) If $f(x, \cdot)$ does not depend on x, (H3) and (H5) are obviously satisfied. If moreover supp $\mu = \Omega$, the formula of Theorem 5 becomes, $\forall \psi$ Borel bounded positive function,

$$\sup\left\{\int \psi\varphi \cdot d\lambda - \int \psi f^{*}(\cdot, \varphi) \, d\mu \, | \, \varphi \in \mathscr{C}_{0} \cap \operatorname{dom} I_{f^{*}}\right\}$$
$$= \int \psi f\left(\frac{d\lambda_{a}}{d\mu}\right) d\mu + \int \psi f_{\infty}\left(\frac{d\lambda_{s}}{d|\lambda_{s}|}\right) d|\lambda_{s}|.$$

This is the starting formula (for ψ continuous) of Temam [37] and Demengel and Temam [19].

(3) In case f is l.s.c. on whole the space $\Omega \times \mathbb{R}^d$, hypothesis (H4), Giaquinta, Modica, and Soucek [21], and Dal Maso [16] obtain, thanks to a result of Reschetniak [30] about sublinear functions of measures, that the functional

$$G \begin{vmatrix} \lambda \mapsto \int f\left(\cdot, \frac{d\lambda_a}{d\mu}\right) d\mu + \int f_{\infty}\left(\cdot, \frac{d\lambda_s}{d |\lambda_s|}\right) d |\lambda_s| \\ \left[\mathcal{M}^{\mathsf{b}}\right]^d \to \left] - \infty, \infty \right] \end{aligned}$$

is $\sigma(\mathcal{M}^b, \mathcal{C}_0)$ l.s.c. As a consequence I_f is $\sigma(L^1, \mathcal{C}_0)$ l.s.c., hence $g(x, \cdot) = f(x, \cdot) \mu$ -a.e. But it can happen that $G \neq \overline{F}_1$. Indeed consider the following example suggested in [16, 4.4, p. 414].

EXAMPLE. Let $\Omega = \mathbb{R}$, $\mu = dx$, d = 1.

$$f(x, z) = \begin{cases} |z| & \text{if } |z| |x|^{1/2} \leq 1\\ 2|z| - |x|^{-1/2} & \text{if } |z| |x|^{1/2} \geq 1. \end{cases}$$

Then f is continuous on $\Omega \times \mathbb{R}$, (H4) is satisfied, but (H5) does not hold.

One can check that $\forall x, h(x, z) = 2 |z|$ and $f_{\infty}(0, z) = |z|$. Thus $G(\delta_0) = 1$ and $\overline{F}_1(\delta_0) = 2$.

(4) In [1, 16] (where the more difficult problem of a functional depending on the gradient is studied), a sufficient condition ensuring $\overline{F} = G$ is set. This condition implies that f is continuous in x and has linear growth in z; more precisely,

$$\forall \varepsilon > 0, \exists \delta > 0, |x_1 - x_2| < \delta \Rightarrow \forall z, |f(x_1, z) - f(x_2, x)| \leq \varepsilon(1 + |z|).$$

This hypothesis is far more stringent that the one of (2) of Theorem 8. Indeed (H3) or (H4) supplemented with (H5) does not imply the continuity of $f(\cdot, z)$ but only the continuity of $f_{\infty}(\cdot, z)$ (remark that f being l.s.c., $f_{\infty}(\cdot, z)$ is l.s.c. too).

Proof of Theorem 8. (1) By Proposition 7 it is sufficient to prove that the multifunction $Q: x \mapsto \text{epi } f^*(x, \cdot)$ is l.s.c.

(a) Under (H3). Let U be an open subset of $\mathbb{R}^d \times \mathbb{R}$. Then

$$\{x \in \Omega \mid Q(x) \cap U \neq \emptyset\} = \{x \mid \exists (z, r) \in U \text{ such that } f^*(x, z) \leq r\}$$
$$= \bigcup_{(z, r) \in U} \{x \mid f^*(x, z) < r\}$$

(the change from \leq to < is easy) which is open.

(b) Under (H4). Recall that, for $(z, t) \in \mathbb{R}^d \times \mathbb{R}$,

$$\tilde{f}(x, z, t) = \delta^{*}((z, t) | Q(x)) = \begin{cases} -tf(x, z/-t) & \text{if } t < 0\\ f_{\infty}(x, z) & \text{if } t = 0\\ +\infty & \text{if } t > 0. \end{cases}$$

From Lemma A2 it is sufficient to prove that \tilde{f} is l.s.c. This is a consequence of Dal Maso [16].

(2) Under (H5)

$$V = \{ x \in \Omega \mid \exists z \in \mathbb{R}^d \text{ such that } f_{\infty}(x, z) < h(x, z) \}$$
$$= \bigcup_{z} \{ x \mid f_{\infty}(x, z) < h(x, z) \}$$

is open (h defined in Theorem 4 is l.s.c.). From Proposition 7(1) a.e. $f_{\infty}(x, \cdot) \ge h(x, \cdot)$, so V is negligible, hence $V \cap \text{supp } \mu = \emptyset$.

If $x \in \text{supp } \mu$, $x \notin V$ and then using (1), $f_{\infty}(x, \cdot) = h(x, \cdot)$. If $x \notin \text{supp } \mu$, the result follows from Proposition 6(2).

5. EXAMPLES

The proofs of the results stated in Examples 1 to 4 are left to the reader. For details see Bouchitté [5, 7]. EXAMPLE 1. Let Ω be an open subset of \mathbb{R}^N and Σ be an N-1-dimensional hypersurface contained in Ω . Let μ denote the measure $dx + H^{N-1}(\Sigma \cap \cdot)$, where H^{N-1} is the N-1-dimensional Hausdorff measure (thus $H^{N-1}(\Sigma \cap \cdot)$ is the area measure of Σ). We suppose that Σ is regular, that is, μ is finite on compact sets and $\Omega \setminus \Sigma$ is dense in Ω . Let

$$f(x, z) = \begin{cases} |z| & \text{if } x \in \Omega \setminus \Sigma \\ \frac{1}{2}|z|^2 & \text{if } x \in \Sigma, \end{cases}$$

Let

$$\beta(z) = \begin{cases} \frac{1}{2}|z|^2 & \text{if } |z| \le 1\\ |z| - \frac{1}{2} & \text{if } |z| \ge 1. \end{cases}$$

Remark that $\beta = \frac{1}{2} |\cdot|^2 \nabla |\cdot|$. Then, if $\lambda_a + \lambda_s$ is the μ -decomposition of λ ,

$$\overline{F}(\lambda) = \int_{\Omega \setminus \Sigma} d |\lambda_a| + \int_{\Sigma} \beta \left(\frac{d\lambda_a}{d\mu} (x) \right) dH^{N-1}(x) + |\lambda_s| (\Omega).$$

EXAMPLE 2. Let Ω be an open subset of \mathbb{R}^N , μ the Lebesgue measure, $a: \Omega \to [0, \infty[$ a locally integrable function, and f(x, z) = a(x) |z|. Then, if

$$\tilde{a}(x) = \overline{\lim_{\delta \to 0_+}} \left[\mu(B(x, \delta)) \right]^{-1} \int_{B(x, \delta)} a(y) \, dy$$

and \hat{a} is the l.s.c. hull of \tilde{a} ,

$$\overline{F}(\lambda) = \int_{\Omega} \hat{a} \, d \, |\lambda|.$$

Remark. As soon as $f^*(x, \cdot)$ is an indicator, $\overline{F}(\lambda) = \delta^*(\lambda | \Phi)$, where Φ is the set of \mathscr{C}_c -selectors of a l.s.c. multifunction Γ . For the existence of Γ see Valadier [44]. In Examples 2 and 4 below, it is possible to "calculate" Γ .

EXAMPLE 3. Let Ω be an open subset of \mathbb{R}^N , μ the Lebesgue measure, $a: \Omega \to [0, \infty[$ a measurable function, and $f(x, z) = \frac{1}{2}a(x) |z|^2$. Then, if Ω' is the greatest open subset on which 1/a is locally integrable (with the convention $1/0 = +\infty$), one has

$$\bar{F}(\lambda) = \begin{cases} \frac{1}{2} \int_{\Omega'} a(x) \left| \frac{d\lambda_a}{dx} \right|^2 dx & \text{if } |\lambda_s| (\Omega') = 0 \\ +\infty & \text{if } |\lambda_s| (\Omega') > 0. \end{cases}$$

EXAMPLE 4. Let Ω be an open subset of \mathbb{R}^N , μ the Lebesgue measure, and $A: \Omega \to \mathbb{R}^d$ a measurable function such that |A(x)| = 1 a.e. Let $f(x, z) = [A(x) \cdot z]^+$. If \tilde{A} is defined as in Example 2 but coordinate-wise, that is,

$$\forall i \in \{1, ..., d\}, \qquad \widetilde{A}_i(x) = \overline{\lim_{\delta \to 0_+}} \left[\mu(B(x, \delta)) \right]^{-1} \int_{B(x, \delta)} A_i(y) \, dy,$$

and if Ω' is the greatest open subset on which \tilde{A} is continuous, then $\bar{F}(\lambda) = \int_{\Omega'} [(d\lambda/d |\lambda|)(x) \cdot \tilde{A}(x)]^+ |\lambda| (dx).$

Remarks. (1) On Ω' , $|\tilde{A}(x)| = 1$ because $\tilde{A}(x) = A(x)$ a.e.

(2) The existence of Ω' and \tilde{A} can be proved without the ~ operation. Indeed Ω' is the greatest open subset on which A is a.e. equal to a (unique) continuous function. The existence of Ω' follows from the Lindelöf property. One can treat also $f(x, z) = |A(x) \cdot z|$: in this case it is necessary to topologize the unit sphere identifying opposite points.

EXAMPLE 5 (which describes the usual case in plasticity theory). Let Ω be an open bounded subset of \mathbb{R}^N and E the space of symmetric tensors of order 2 (dim E = N(N+1)/2). Recall that E has a euclidean stucture for which the orthogonal of $\mathbb{R}I$ (the one-dimensional subspace of diagonal tensors) is the space E^D of rensors whose traces vanish.

Let B be a closed convex-valued l.s.c. multifunction such that $\forall x$, $0 \in B(x)$. We suppose moreover that $\forall \varphi \in \mathscr{C}_0$, $\varphi(x) \in B(x)$ a.e. $\Rightarrow \varphi(x) \in B(x)$ everywhere (remark that this avoids $\Omega =]-1, 1[$, B(x) = [0, 1] if $x \neq 0$, $B(0) = \{0\}$). There exist many l.s.c. discontinuous multifunctions which satisfy this hypothesis. In practice $B(x) = B^D(x) + \mathbb{R}I$, where $B^D(x)$ is a convex compact subset of E^D containing 0.

Let $\gamma: R \to \mathbb{R}$ be continuous and ψ be a convex normal integrand on $\Omega \times E$ such that $0 \leq \psi(x, \cdot) \leq \gamma(\cdot)$. The useful integrand in plasticity is

$$f(x, \cdot) = [\psi(x, \cdot) + \delta(\cdot | B(x))]^*.$$

Let $h(x, \cdot) = \delta^*(\cdot | B(x))$. Then

$$\forall \lambda \in \mathscr{M}^{\mathsf{b}}(\Omega; E), \qquad \overline{F}_{1}(\lambda) = \int_{\Omega} f\left(x, \frac{d\lambda_{a}}{dx}\right) dx + \int_{\Omega} h(x, d\lambda_{s}).$$

Remark. When $B(x) = B^D(x) + \mathbb{R}I$,

$$h(x, z) = \begin{cases} \delta^*(z \mid B^D(x)) & \text{if } z \in E^D \\ +\infty & \text{otherwise.} \end{cases}$$

Hence dom $h(x, \cdot) = E^{D}$ and, if $u \in BD(\Omega)$ and $Du = \frac{1}{2}(u_{ij} + u_{ji})$ satisfies $\overline{F}_{1}(Du) < \infty$, the singular part of the measure div u = tr(Du) vanishes.

Proof. Since $f^*(x, \cdot) = \psi(x, \cdot) + \delta(\cdot | B(x))$, one has for $\varphi \in \mathscr{C}_0$

$$I_{f^*}(\varphi) < \infty \Leftrightarrow \varphi(x) \in B(x) \text{ a.e. } \Leftrightarrow \forall x, \varphi(x) \in B(x).$$

Thanks to the Michael theorem [26], for any $z \in B(x)$, there exists $\varphi \in \mathscr{C}_0$ with $\varphi(x) = z$ and $\forall y, \varphi(y) \in B(y)$. Thus $h(x, \cdot) = \delta^*(\cdot | B(x))$ and, since $g^* = f^* + h^*, \forall x, g(x, \cdot) = f(x, \cdot)$.

Appendix 1

LEMMA A1. Let $g: \mathbb{R}^d \to] - \infty, \infty$] be convex l.s.c., $D \subset \text{dom } g$. Suppose \overline{D} convex. Then the l.s.c. hull

$$g + \delta(\cdot | D)$$
 of $g + \delta(\cdot | D)$ is equal to $g + \delta(\cdot | \overline{D})$.

In particular $\inf_D g = \inf_{\overline{D}} g$.

Proof. Obviously $g + \delta(\cdot | \overline{D}) \leq \overline{g + \delta(\cdot | D)}$. Without loss of generality we may suppose that the affine subspace generated by D is \mathbb{R}^d itself. So int(co D) $\neq \emptyset$. Let $x_0 \in int(co D)$, one has $x_0 \in int(dom g) \cap \overline{D}$.

(a) As g is continuous at x_0 ,

$$g + \delta(\cdot | D)(x_0) = \lim_{\substack{x \to x_0 \\ x \in D}} g(x) = g(x_0)$$
$$= [g + \delta(\cdot | \overline{D})](x_0).$$

(b) Let $x_1 \in \overline{D}$, $x_1 \neq x_0$, and prove $\overline{g + \delta(\cdot | D)}(x_1) \leq g(x_1)$. Let $x_{\lambda} = \lambda x_1 + (1 - \lambda) x_0$. When λ runs through $[0, 1[, x_{\lambda}]$ belongs to int (dom $g) \cap \overline{D}$, hence, by (a),

$$\overline{g+\delta(\cdot\mid D)}(x_{\lambda})=g(x_{\lambda}).$$

On a one-dimensional interval like $[x_0, x_1]$, a convex function is u.s.c., so when it is l.s.c. it is continuous. Hence

$$\overline{g + \delta(\cdot | D)}(x_1) = \lim_{\lambda \to 1^-} \overline{g + \delta(\cdot | D)}(x_\lambda)$$
$$= \lim_{\lambda \to 1^-} g(x_\lambda) = g(x_1).$$

The last formula is easy.

Appendix 2

LEMMA A2. Let Q be a multifunction on a topological space Ω to the convex subsets of \mathbb{R}^d . Then Q is l.s.c. on Ω iff $(x, z') \mapsto \delta^*(z'|Q(x))$ is l.s.c. on $\Omega \times \mathbb{R}^d$.

Proof. Let $\varphi(x, z') = \delta^*(z' | Q(x))$.

(1) Suppose Q is l.s.c. Let $(x_0, z'_0) \in \Omega \times \mathbb{R}^d$ and $r \in \mathbb{R}$, $r < \varphi(x_0, z'_0)$. The set $W = \{(z, z') \in (\mathbb{R}^d)^2 | z \cdot z' > r\}$ is open. There exists $z_0 \in Q(x_0)$ such that $(z_0, z'_0) \in W$. There exists U an open neighborhood of z_0 and U' an open neighborhood of z'_0 such that $U \times U'$ is contained in W. As Q is l.s.c. and $z_0 \in Q(x_0) \cap U$, there exists a neighborhood V of x_0 such that $\forall x \in V$, $Q(x) \cap U \neq \emptyset$. Hence

$$(x, z') \in V \times U' \Rightarrow \varphi(x, z') \ge z_x \cdot z'$$
 (where $z_x \in Q(x) \cap U$)
> r.

Thus φ is l.s.c. at (x_0, z'_0) .

(2) Suppose φ is l.s.c. and Q is not l.s.c. at x_0 . Let U be an open subset of \mathbb{R}^d such that $Q(x_0) \cap U \neq \emptyset$. We may suppose U convex and $0 \in Q(x_0) \cap U$. Thus $\varphi(x_0, \cdot) \ge 0$. There exists a generalized sequence (y_α) such that $y_\alpha \to x_0$ and $Q(y_\alpha) \cap U = \emptyset$. By the Hahn-Banach theorem $\exists z'_\alpha$ and $r \in \mathbb{R}$ such that

$$\varphi(y_{\alpha}, z'_{\alpha}) \leq r \leq \inf_{z \in U} z \cdot z'_{\alpha}.$$

We may suppose r = -1. Thus $z'_{\alpha} \in \{z' | \forall z \in U, z \cdot z' \ge -1\}$, which is an equicontinuous set (here a bounded subset of \mathbb{R}^d). Let z' be a cluster point of the generalized sequence (z'_{α}) . By the lower semi-continuity of $\varphi, \varphi(x_0, z') \le -1$, which is a contradiction.

Remark. This improves in one direction II.21 of Castaing and Valadier [15].

REFERENCES

- 1. G. ANZELOTTI, "The Euler Equation for Functionals with Linear Growth," University of Trento, 1983.
- H. ATTOUCH, G. BOUCHITTÉ, AND M. MABROUK, Formulations variationnelles pour des équations elliptiques semi-linéaires avec second membre mesure, C. R. Acad. Sci. Paris 306 (1988), 161–164.
- H. ATTOUCH AND C. PICARD, Problèmes variationnels et théorie du potentiel non linéaire, Ann. Fac. Sci. Toulouse Math. 1 (1979), 89-136.
- G. BOUCHITTÉ, "Convergence et relaxation de fonctionnelles du calcul des variations à croissance linéaire. Application à l'homogénéisation en plasticité," Publications AVMAC, n° 10, Université de Perpignan, 1985; Ann. Fac. Sci. Toulouse Math., Sér. 5-VIII (1986-87), 7-36.

- 5. G. BOUCHITTÉ, "Représentation intégrale de fonctionnelles convexes sur un espace de mesures, I," Publications AVAMAC, n° 2, Université de Perpignan, 1986.
- G. BOUCHITTÉ, "Preprésentation intégrale de fonctionnelles convexes sur un espace de mesures, II," Publications AVAMAC, Vol. 2, exposé n° 3, Université de Perpignan, 1986.
- G. BOUCHITTÉ, "Calcul des variations en cadre non réflexif. Représentation et relaxation de fonctionnelles intégrales sur un espace de mesures. Applications en plasticité et homogénéisation," Thèse de Doctorat d'Etat, Perpignan, 1987.
- 8. G. BOUCHITTÉ, Conjuguée et sous-différentiel d'une fonctionnelle intégrale sur un espace de Sobolev, C.R. Acad. Sci. Paris, in press.
- A. BOURASS AND M. VALADIER, "Conditions de croissance associée à l'inclusion des sections (d'après A. Fougères et R. Vaudène), "Publications AVAMAC, n° 3, Université de Perpignan, 1984.
- 10. N. BOURBAKI, "Integration," Chaps. 1 à 4, Hermann, Paris, 1965.
- H. BREZIS, Intégrales convexes dans les espaces de Sobolev, Israel J. Math. 13 (1972), 9-23.
- 12. H. BREZIS, "Analyse fonctionnelle: Théorie et applications," Masson, Paris, 1983.
- H. BREZIS, Some variational problems of the Thomas-Fermi type, in "Variational Inequalities" (Cottle, Gianessi, and J. L. Lions, Eds.), pp. 53-73, Wiley, New York, 1980.
- H. BREZIS, Nonlinear elliptic equations involving measures, in "Contributions to Nonlinear Partial Differential Equation" (Bardos, Damlamian, Diaz, and Hernandez, Eds.), Pitman, New York, 1983.
- C. CASTAING AND M. VALADIER, "Convex Analysis and Measurable Multifunctions," Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin, 1977.
- 16. G. DAL MASO, Integral representation on $BV(\Omega)$ of Γ -limit of variational integrals, Manuscripta Math. 30 (1980), 387-416.
- 17. E. DE GIORGI, L. AMBROSIO, AND G. BUTTAZZO, "Integral Representation and Relaxation for Functionals Defined on Measures," Scuola Normale Superiore, Pisa, 1986.
- 18. C. DELLACHERIE AND P. A. MEYER, "Probabilités et potentiel," Chaps. I à IV, Hermann, Paris, 1975.
- 19. F. DEMENGEL AND R. TEMAM, Convex functions of a measure and applications, Indiana Univ. Math. J. 33(5) (1984), 673-709.
- 20. A. FOUGÈRES, "Separability of Integrands," Publications AVAMAC, n° 15, Université de Perpignan, 1986.
- 21. M. GIAQUINTA, G. MODICA, AND J. SOUCEK, Functionals with linear growth in the calculus of variations, Comm. Math. Univ. Carolina 20 (1979), 143-171.
- 22. C. GOFFMAN AND J. SERRIN, Sublinear functions of measures and variational integrals, Duke Math. J. 31 (1964), 159–178.
- 23. M. GRUN-REHOMME, Caractérisation du sous-différentiel d'intégrandes convexes dans les espaces de Sobolev, J. Math. Pures Appl. 56 (1977), 149-156.
- 24. T. HADHRI, Fonction convexe d'une mesure, C.R. Acad. Sci. Paris 301 (1985), 687-690.
- 25. F. HIAI AND H. UMEGAKI, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149–182.
- 26. E. MICHAEL, Continuous selections, I, Ann. of Math. 63 (1956), 361-382.
- 27. J. J. MOREAU, "Fonctionnelles convexes," Collège de France, Paris, 1966-1967.
- 28. C. OLECH, The characterization of the weak* closure of certain sets of integrable functions, SIAM J. Control 12(2) (1974), 311-318.
- 29. C. OLECH, A necessary and sufficient condition for lower semi-continuity of certain integral functionals, *in* "Mathematical Structures, Computational Mathematics, Mathematical Modelling," pp. 373–379, Sofia, 1975.
- Y. G. RESCHETNIAK, Weak convergence of completely additive vector measures on a set, Sibirsk. Mat. Zh. 9 (1968), 1386-1394.

BOUCHITTÉ AND VALADIER

- 31. R. T. ROCKAFELLAR, Integrals which are convex functionals, *Pacific J. Math.* 24 (1968), 525-539.
- 32. R. T. ROCKAFELLAR, Integrals which are convex functionals, II, *Pacific. J. Math.* 39 (1971), 439-469.
- R. T. ROCKAFELLAR, Integral functionals, normal integrands and measurable selections, in "Nonlinear Operators and the Calculus of Variations," Lecture Notes in Mathematics, Vol. 543, pp. 157–207, Springer-Verlag, Berlin, 1976.
- 34. R. T. ROCKAFELLAR, "Convex Analysis," Princeton Univ. Press, Princeton, NJ, 1970.
- 35. L. SCHWARTZ, "Théorie des distributions," Hermann, Paris, 1957.
- 36. R. TEMAM, "Problèmes mathématiques en Plasticité," Gauthier-Villars, Paris, 1983.
- 37. R. TEMAM, Approximation de fonctions convexes sur un espace de mesures et applications, *Canad. Math. Bull.* 25 (4) (1982), 392-413.
- 38. TRAN CAO NGUYEN, A characterization of some weak semi-continuity of integral functionals, Stud. Math. 66 (1) (1979), 81–92.
- 39. TRAN CAO NGUYEN, Decomposition of the conjugate integral functional on the space of regular measures, Sém. Anal. Convexe 16 (1986), exposé n° 2.
- 40. M. VALADIER, Fermeture étroite et bipolaire vague, Sém. Anal. Convexe 7 (1977), exposé n° 6.
- M. VALADIER, Closedness in the weak topology of the dual pair L¹, C, J. Math. Anal. Appl. 69 (1979), 17-34.
- 42. M. VALADIER, Fonctions et opérateurs sur les mesures. Formules de dualité, Sém. Anal. Convexe 16 (1986), exposé n° 3.
- M. VALADIER, Multi-applications mesurables à valeurs convexes compactes, J. Math. Pures Appl. 50 (1971), 265-297.
- 44. M. VALADIER, Quelques propriétés de l'ensemble des sections continues d'une multifonction s.c.i., Sém. Anal. Convexe 16 (1986), exposé n° 7.
- 45. M. VALADIER, Fonctions et opérateurs sur les mesures, C.R. Acad. Sci. Paris 304 (1987), 135-137.