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In duality pairs such as (#°, %) and (W~1#, W} ), a convex integral functional
on the space of functions has a polar which admits an integral representation. This
representation is the sum of a first term involving the absolutely continuous com-
ponent of the measure and of a second one which is a positively homogeneous
function of the singular part. The duality is useful in plasticity theory. In the
Sobolev case the study of non-parametric integrands is new. A description of the
sub-differential is obtained.  © 1988 Academic Press, Inc.

INTRODUCTION

Our motivations arise from two kinds of problems.

FirsT PROBLEM. In the mathematical theory of plasticity the energy can
be expressed by

|| £, Dugx)) ax,
2

where f(x, ') is convex with linear growth. The function » can be discon-
tinuous so its gradient (more precisely its deformation) Du has to be taken
in the distribution sense. With some appropriate hypotheses (see [36]), Du
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CONVEX FUNCTIONALS ON MEASURES 399

belongs to the space .#° of bounded measures, hence the idea of extending
the functional

Lo [ f(x, ox)) dx

from L' to .#° by taking the o(.#°, %,) lower semi-continuous hull

F: 2 lim I (v).

v— A

Let us point out that the a(.#°, 6,) topology is the one which provides
relative compactness of the sequence Du, when wu, approaches the
equilibrium.

When I, is convex and proper one has

F(A)=sup{<4 0> —1(0)| 0%}

The problem is to give an integral expression of F(1).

Seconp ProBLEM. In the variational approach of semi-linear elliptic
equations involving measures such as the Thomas-Fermi problem (see
Brezis [13, 14] and Attouch, Bouchitté, and Mabrouk [2]), the Euler
equation is obtained by computing the sub-differential on the Sobolev
space W * of an integral functional | j(x, u(x)) dx. Usually the domain of
the polar functional is contained in #°~ W17

Thus the two problems lead to the calculus on a space of measures of the
polar of an integral functional. When f or j do not depend on x, the
expression of the polar is due to Temam [37] and Demengel and Temam
[19] for the first problem (but already in Valadier [40, 417]), and Brezis
[11] completed by Grun—-Rehomme [23] for the second one.

In the two previous problems it is important to allow f and j to depend
on x (non-homogeneous media in the first situation and second member
measure in the second one). In this direction the duality (.#°, %,) has been
considered by several authors (Rockafellar [32], Olech [28, 297, Valadier
{41]). In the same way Giaquinta, Modica, and Soucek [21] and Dal
Maso [16], using a result of Reschetniak [307], obtain the integral
representation of F under hypotheses implying the continuity of f in (x, z)
and its linear growth in z. Since 1985 this problem has been intensively
studied by Hadhri [24], Valadier [42] (using Tran cao Nguyen [38, 39]),
and De Giorgi, Ambrosio, and Buttazzo [17].

Our approach is new. It reduces the calculus of

sup{[o-di-[ 1. 0) dulpesf
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to the calculus of

[+301601* (5.
im
where m is a positive measure such that y <m and A <m, and J (=1.) is
an integral functional with respect to m. The basic result (Theorem 1 of
Section 2) may seem rather abstract but it contains almost all difficulties.
On the whole the proof is shorter than those of all previous paper.
In Section 3 we recover the formula (already in Valadier [40])

A= ) o)

A’a

du
where A, + 4, is the Lebesgue decomposition (with respect to u) of A and
the integrands 4 and g derive from f. The situation is quite different from
the non-parametric case where g =f and kA= £ the recession function of f.
Indeed as shown in the examples of Section 5, g can be different from f.
Nevertheless, under some regularity assumptions which are set in Section 4,
the equality h=f_(x, -) may occur p-a.e. (which implies g(x,-)=f(x, ")
a.e.) or everywhere. A comparison is then possible with the results of
[1,16,21].

The application to the duality (W§?, W~"#) (second problem) is
studied in [5, 7, 8]; the results of Brezis [11] and Grun—-Rehomme [23]
are extended.

The present paper follows and improves in some details on Bouchitté
[4,5,6]. Sections 2 to 4 include the results of Valadier [42], with new
proofs, and some other results (especially in Section 4).

1. NOTATIONS

Throughout this paper @ denotes a locally compact metrizable space
which is g-compact, that is, a union of a countable sequence of compact
subsets. This allows £ to be compact metrizable (which from the
mathematical standpoint would be simpler). This also allows Q to be an
open subset of R,

A positive Radon measure u on £ is given. When  is an open subset of
R" it may be the Lebesgue measure. We will denote by m an auxiliary
positive measure.

The space of continous functions tending to 0 at infinity is denoted by
%,(£2), abbreviated as %,. The space of R%valued functions %,(£2; RY) is
also denoted by [%,]° and d will often be omitted. By 4. we denote the
space of continuous functions with compact supports. When £ is an open
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subset of R, ¥~ is the space of infinitely differentiable functions and ¢~
or 2 is the subspace of functions with compact supports.

By .# and " we denote respectively the spaces of Radon measures on
Q and of bounded measures. The spaces of R%-valued measures are denoted
by #(Q2; RY), #°(Q; R or [#]° [#°]? (d will often be omitted).

Most of the paper uses one of the duality pairs (.#, €,) or (#°, %,). The
bilinear form is denoted with brackets (for example {4, ¢ )) but the scalar
product of z, z’ € R? is denoted by z-z". If F is a function on a vector space
E, F* denotes its polar

F*(x")=sup{<{x’, x)— F(x)|xe E}

and dom F={x|F(x)<o}. If C is a subset of E, 8(-|C) denotes its
indicator function (taking value 0 on C, + oo outside) and 6*(-|C) its
support function.
A normal integrand f is a measurable function f:Q x R? - R. We say
that / is a convex normal integrand if moreover, Yx, f(x, -) is convex Ls.c.
Other notation: N is the set of integers n >0, N* =N\ {0}, B(x, r) is the
closed ball with center x and radius r, and &, is the Dirac measure at a.

2. PRELIMINARY RESULTS

2.1. We denote by #°(R2, m) the vector space of real measurable
functions.

DEFINITION. A subset o of [#°]¢ is said to be PCU-stable if for any
continuous partition of unity («, ..., a,) such that «,, .., «, belong to %,
(variant, when Q is an open subset of RY, «,, ..., a,€ D(2), a,e €=(Q)),
for every uy, ..., u, in J#, 37_, au; belongs to .

Remark. 1In the main applications # will be [4,]¢ or [€.]° and, in
other papers [5,7,8], {iilue [W§?~ L*]?}, where & denotes all quasi-
continuous elements of the Lebesgue equivalence class of u ([3, 12]).

2.2. Recall the following result [43, Proposition 1.14] (for a more
recent paper see Fougéres [20]). For any subset 3 of [.£°]? there
exists a smallest closed-valued measurable multifunction I” such that
Vue H#, u(x)elI'(x) m-ae. (smallest refers to inclusion a.e.). We write
I'=esssup, . » {u(-)} and say that I is the essential supremum of the mul-
tifunctions x+— {u(x)} (u€ ). Moreover there exists a sequence (u,) in
#, such that a.e. I'(x)=cl{u,(x)|ne N}. If (v,) is any other sequence in ¥,
we can add the v, to the u,. Thus if 3] < [%,(£2)]% since %, is separable
(for the uniform convergence norm), we can add a dense sequence and this
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proves I'(x)=cl{u(x)|ue# }. If H#, is convex it is easy to see that I is
(a.e.) convex valued. This remains true if 5 is PCU stable. Indeed for any
compact subset K of 2 and r, .., r, =0 such that Y r,=1, there exists a
continuous partition of unity (a, ..., a,) with a, .., a, € 6. and Vi, a,(x)=r;
on K. Then adding to the u,,, all the 3 a;u; for (ay, ..., «,) corresponding to
rational r; and K running through a countable family of compacts (X,)
such that (K, =, one can easily check that I'(x) is convex.

23. Let j: 2xR?—> ]—00, 00] be a normal convex integrand. For
any ue [£°]1% j(-, u) denotes the function x> j(x, u(x)). Denote J the
functional

ub—»f J(, u)dm
[£°])-R,

where, as usual in convex analysis, |j(-,u)dm=+oc0 as soon as
[ i, u)* dm= + co.

THEOREM 1. Let 3# be a PCU-stable subset of [ #°]%. Suppose Iuye #
with J(uo) € R. Then I' =ess SUP, ¢ 4 ~goms {#(*)} is convex valued,

inf J(u)= j [ inf j(x, z)] m(dx)
ue N Q2 zel(x)
and

inf j(x,z)= essinf j(-,u)
ze M(x) ue ¥ ndomJ

Commentary. Classical results about commutativity of { and inf assume
that o is a decomposable vector space or the set of measurable selectors of
a multifunction: see Rockafellar [31, 33], Hiai and Umegaki [25], and
Bourass and Valadier [9].

Remark/Example. We cannot take I'=esssup,. ,{u(-)}. Indeed let
2 =R, m the Lebesgue measure, d=1, K a compact subset of R such that
int(K)= & and m(K)>0 (one can construct K analogously to the Cantor
set). Let

z if xekK

J(x, z)= {5(2! {O}) otherwise.

Let s## =%.. Then inf, . , J(u) =0 because, if u # 0, the set {x|u(x)#0
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and x¢ K} is open and non-empty, so has >0 measure and J(u)= + 0.
But ess sup, . {u(-)} is the constant multifunction x — R and

inf j(x, z) = — if xek
U0 otherwise.

Proof. (1) First # ndom J is still PCU-stable (because j(-, Y o,u;) <
>a;j(, u;)"), hence I' is convex valued.

(2) Prove the first equality.
Let y(x)=1inf,_ (., j(x, z) (y is y-measurable; Castaing and Valadier [15,
Lemma I11.39]). First >holds because, Yue # ndom J, u(x)e I'(x) a.e. so

Jx u(x))Zy(x)  ae

Prove now <. Let reR, r>{ydm Thanks to Bourbaki [10] or
Dellacherie and Meyer [ 18, Théoréme 48, pp. 107-108] there exists « Ls.c.
integrable such that Vx, a(x) > y(x) and [adm<r (as y* < j(*, up) ™, 7" is
integrable and can be approached upper by a Ls.c. function, and 7~ can be
approached below by an us.c. function). We may modify slightly « to
obtain Vx, a(x)>y(x).

Let (u,),»: be a sequence in H# ndomJ such that I'(x)=
cl{u,(x)|lneN*}. Let N be a negligible set such that Vn, VxeQ\N,
J(x, u(x))eR (recall that u,edom J implies j(-,u,)* is integrable and
that j(x, z)> —o0). Let ¢ > 0. There exists K compact, K< Q\N such that
ok U1J(5 uo)l + |a| ] dm < e. There exists 1 >0 such that m(4) <7 implies
[[lj(-, uo)l + |a|Jdm<e. Let K* be a compact such that K°cK,
m(K\K?)<#n and VYn, j(-, u,) is continuous on K*.

Let A,= {xeK’| j(x, u,(x))<a(x)}. It is an open subset of K. From
Lemma Al (see Appendix 1) applied with D= {u,(x)|neN*} (so
D =Tr(x)), for any x e K%, y(x)=inf, , j(x, u,(x)), hence J,», 4, = K*. By
compactness there exists p such that K*={)?_, A4,. There exists an open
subset V¢ of € such that V*> K® and

Vn, 0$n<p=>jwmj(-,u,,)+ dm<p—§_—1.

Let V, be a relatively compact open subset of @ such that V,nK°=4,,.
We may suppose V,c V®. There exists a continuous partition of unity
(2o, ..., ;) such that Vi=1, ..., p, supp a;< V; and supp a, < 2\K* (see, for
example, Bourbaki [10, Chap. IIL1, n° 2, Lemme 1, p. 43]; when Q is an
open subset of R" it is possible to get Vi, a,e € (), see L. Schwartz [35,
Chap. I, Théoréme I1]).
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Letu=37_,a,u,. As # is PCU-stable, u € »#. One has

» o(x) f xek*
J6 u(x)) < Y a,(x) j(x, u,(x))<{
n=0 Y JOx, un(x))* if xeV:H\K*

Jx u(x))=jlx, up(x)) if xeQ\V-
Then

P
[ dowydms| adm+| S je,u)tdmt | u) dm.
Q K 22V Q\p

We have

L{ o dm =L2 o dm—(fg\Ka dm +L\Kza dm)

Sf adm+2e<r+2¢
o

[ SiCu)* dnse

VE\K® o

LM (s )] dmgfgw..,

B
Q\K K\K*

Finally, [q j(-, u) dm<r+ 5e.

(3) As shown in (2), y(x)=inf,.;j(x, u,(x)) aec Hence
y=essinf, ., - qomsJ(, 4). Conversely there exists a sequence (v;) in
# ndom J such that

essinf j(-, u)=1nf j(-, v,).
ue ¥ ndomd k
But v (x)e I'(x) ae. so

Y(x) <inf j(x, v(x))
THEOREM 2. We keep the hypotheses of Theorem 1. Let  and % be vec-
tor spaces of Rvalued measurable functions such that Vue X, Yve%,

u(+) v(*) is m-integrable and # < X. Then, in the duality (¥, %)

Voed, [J+5<~|.»f)1*(v)=jgk(-,v)dm,

where k(x, -)=[j*(x,-)Vo*(-|(x))1** (here V denotes the infimum
convolution [27]).
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Remark. 1t is possible with a minoration hypothesis to obtain that the
o(Z, %) Lsc. hull of J+8(-|#) is ur> J(u)+ | S(u(x)| I'(x)) m(dx) (see
Bouchitté [5, Théoréme 2]).

Proof.

[J+6(- | #)]*(v) = sup [{u, v) — J(u)— 6(u| #)]

ued

= sup J Lu(-)-o(-)~j(, u)] dm

ue N

= — inf jj'(-, u) dm

ue K

with j(x, z) = j(x, z) —z-v(x). Since dom J' " ¥ =dom Jn %, the mul-
tifunction ess SUpP,, . - goms {¥(*)} is still I. Moreover J'(u,) € R.
By Theorem 1,

[ +3(1#)1*w) = =[ inf [jx,2) =z v(x)] m(d)

=J Lilx, )+ 6(- [ T(x))]*(v(x)) m(dx).

Since j(x, -) and (- | (x)) are ls.c.
Jx, )+ 00 | T(x)) = [j*(x, ) Vo*(- | T(x))]*
(see, for example, Castaing and Valadier [15, Proposition 1.19]).

It is possible to choose classical spaces for & and #.

PROPOSITION 3. Let j be a normal convex integrand. Suppose # is a
vector subspace of [ L™ 1% such that Yue #, Va € €.(Q) (variant, when Q is
an open subset of RY, Yo € 2(Q)), au belongs to #. Suppose Juye H such
that J(u,)€R. Let I'=€sSSUP, . 4 ~ goms L%(")}.

(1) Consider the functional on [L*1%, J+ 6(-| ). Then its polar on
[L'] verifies

[/ +50 1)1 (0) =] k(,v)dm,

where k(x, -)=[j*(x, ) Vo*(- | I(x))J**.
(2) If # < [%]" then I'(x)=cl{u(x)lue # ndomJ} ae.

Proof. Remark that »# is PCU-stable because > 7_,au;,=u,+
20 adu—ug).
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(1} This results from Theorem 2 applied with £ =[#"]¢ and
¥=[L"]"
(2) This has been said in 2.2.

Remark. 1t is possible to give a variant with % = [ £} ] and for & the
space of ¥ -functions with compact supports.

3. DESCRIPTION OF F
Let f: QxR?—> ]—o0, 0] be a convex normal integrand. We suppose

(H1) 3¢,e%., JaeL' such that p-ae in x, Vz, f(x,2)>
@o(x) - z—a(x) (equivalently I¢,€ %, such that [.(¢,) < ©).

(H2) Juge [LLAL2, #)]¢ such that I(ug)<oo (equivalently Juge
[L)..J% 3be L such that p-ae., Yz, f*(x, ) =z up(x) — b(x)).

Here, for any ue [ L%u)1, [{u)= o f(-,u)du. Let F: [ M1 >]— 0, 0]
be defined as

I (Z—A) if 1<u
F(l)= "
+ o0 otherwise.

(Note that di/due L} and, by (H1), f(-, di/du) = @q(-): (dA/du)(-)—a,
hence F(1)> —0.)

THEOREM 4. Let
h(x, z)=sup{e(x)-z|peb.ndom I}
g(x, )= [f(x, ) Va(x, -}]**,

re[M]4 A,+ A, its Lebesgue decomposition with respect to p, 0 any
positive measure such that A; < 6. Then the a(M,6.) Ls.c. hull of F is

- di, di,
A= e(-Z2)dur | (- 55)
and the a(L\}., €.) ls.c. hull of I, is I,.
With

(H2)' Juge [L']? such that I {uy) < oo, and F,: [#°]? = ]—c0, 0]
defined by

1 <d—l) if A<y
Fy={ \#
+ otherwise

we obtain
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THEOREM 4'. The o(M°, 6,) Ls.c. hull F| of F, is

_ di, di,
Fl(l)=Lg( ’EZ) dy+jgh< ,9-9—>d0

with g and h defined as in Theorem 4. Moreover the o(L', 6,) Ls.c. hull of I,
is I,.

Remarks. (1) If (H1) were replaced by
(H1) 3¢oe%, such that I.(@,) < o0

one would have to redefine 4 and g.

(2) If u is non-atomic one can start from a measurable integrand f
not necessarily convex, and the ls.c. hulls F and F, are the same as those
obtained starting from f**; this results from the Liapunov theorem. See
Valadier [41] and Bouchitté [5].

(3) As h is sublinear the choice of 8 is immaterial as soon as 4, < 6.
See Goffman and Serrin [22].

Proof of Theorem4. First, since L} _ is decomposable and I,(u,) < o,

toc

thanks to a famous theorem by Rockafellar, the polar F* of F in the
duality (#,¥6.) is

F*(@)= sup [{u, ) —I(u)]= I (0).

ue L,loc

Thanks to minoration (H1) and convexity, F=F** hence

F(A)=sup [{A4 0> —I+(@)]

Ppeb.

Consider now a fixed A e [.# ]% There exists a Borel set 4 such that
p(\A)=14,] (4)=0.

Let m=pu+|4,|. Then A <m and

d, (x) if xed
dA dy
)=
i a, if xe@\4
PN (x) if x .

Thus di/dme L! (m). Setting

1
loc
f*(x, 2) if xed

Az, Z)z{o if xe\4
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one has

Goy=] freordu=[ Sgdm= i, 0)dn

Now we can apply Theorem 2 with ¥ = # =%, and ¥ = [L}.]° Indeed,
by (H1) and (H2), J(¢o) € R (remark J=1.). Thus

F)=swp | [~-<p i) am

PeE,

=[J+5(|€)7* (216%)

i
=Lk<-,%) dm
with k(x, -) = [j*(x, ') Vé*(- [ I'(x))]**.

Since I'(x)=cl{o(x)|pe¥.ndom .} (in fact " is defined up to
equality m-a.e. but this expression is independent of m),

O*(z| I'(x)) = h(x, z).

Since
" _{fx2) if xed
J (x’z)‘{a(zu()}) if xeQ\4,
L felx ) if xed
k(x, )_{h(x,-) if xeQ\A.
Finally,

g EJoe], o2
<[, o (- Ge) e L (o) 41

Proof of Theorem 4'. We still have, for 9 €%, Fi*(¢)=1:+(¢) and

Fi(4)=sup [<4, 0> —L.(9)].
@ e %o
For a given Ae [#°]% let A, m, and j be as in the proof of Theorem 4.
Here di/dme L'(m).
We apply Theorem 2 with & = 2!, # =%,, and ¥ =%, (or L) (we
may also apply Proposition 3). We get F,(4) = {, k(-, dA/dm) dm. Here the
only difference is that

I'x)=cl{o(x)|peb ndomI.}.
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A priori, using %, in place of €, should give a greater function A. But let
@ €% ndom I,.. There exists B,€%., $,>0, B, ” 1q, then ¥, =p,0+
(1 —B,) @, (where @, satisfies (H1)) belongs to %, ~dom I,.. Hence, for
any x, ¥,.(x)— ¢(x) and the function 6*(z|I(x)) is the same h as in
Theorem 4.

THROREM 5. Under (H1), with h and g defined in Theorem 4 one has, for
any bounded positive Borel function y,¥i.e [#]? (or [#°]Y),

[ve (G, on( )

= sup {fg Yo - d/l-jg Yf*(:, @) dul @ edoml . N6, (resp. %)}.

Moreover, if \ is continuous, the supremum can be taken on the whole space
6. or 6,.

Comment. Consider the measure G(4) with values in ]— o0, oo ] defined
by, VB Borel set,

(6B = & (5% du+ [ (- 55) o

The first member in the statement is |y dG(41). When G(4) is a Radon
measure (equivalently takes finite values on compact sets) it is charac-
terized by the knowledge of the values { ¥ dG(4), ¥ continuous. The for-
mula has been given by Temam [36, 37], Demengel and Temam [19],
Hadhri [24], and Valadier [42, 45]. The continuity of ¢ is necessary to
take the supremum on %,.

Proof. (a) Consider for a fixed 4, '=y4 and m=yu+y |A,|. Then
A <m and, if 4 is a Borel set such that u(Q\A4)=14,] (4)=0, one has

— (x if xeAd
dr’ du( )
E—(x)
" ., if Q\A
dw(x) if xeQ\4,

and, since  is bounded, di'/dme L} (m) (resp. L'(m)). Set also
{f*(x,z) if xed

X, z .
Jx 2)= otherwise.

580/80/2-12
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Then [o Yf*(*, ¢) du=fq j(-, ¢) dm, which will be denoted by J(¢). Thus
the right-hand side of the formula of Theorem 5 equals

di
:gg [L T @ dm —J(fp)],
where # =% ~dom I,. (or é,ndom I.). Since ¥ is bounded one has
# <dom J, hence # ndom J=# and p,e # ndom J. Moreover H# is
PCU-stable. We can apply Theorem 2 with & = [L} 17 (or [(L']9), ¥ =%,
or %,. Thus

dr’ dr’
g [ G oan—so| =L (- G

with k(x, -)=[j*(x, <) Vo*(- | I'(x))]** and I'=esssup, ., {u(-)}. Again
I'(x)=cl{p(x)|pe #} and one can end the proof as in Theorem 4.

(b) Suppose that the supremum is on the whole space €, (or %) and
that ¢ is continuous. Proceeding as in (a), but with # =€, or €,, the
difficulty is to check that, denoting I'=essSup,. ., gomsit(-)}=
d{p(x)|@ €%, or % and [Yf*(-, 9) du < 0}, one has y(x) *(z| I'(x)) =
Y(x)h(x,z). We may suppose ¥(x)>0. There exists a compact
neighborhood K of x such that inf, ¢ = > 0. The remainder is routine.

4. SOME PROPERTIES OF /1 AND g

Throughout this section the duality pair is either (.#, €.) or (A°, %,).
Hypotheses (H1) and (H2) are assumed, so

h(x, z)=sup{z- ¢(x)| @€, ndom .}
=sup{z  ¢(x)|peb,ndom I,.}
(see the proof of Theorem 4’).
We will sometimes use in place of (H1) the stronger
(H1)” 34,€ 70, o[, dae L' such that a.e, Yz, f(x, z) =4, |z]| — a(x).

(Remark that (H1)" = (H1) with ¢;=0.)
Recall that the recession or asymptotic function f_(x, -) of the convex
Ls.c. proper function f(x, -) satisfies

Vzoedom f(x, ), fulx,z)= lim LB Z0T2)

and f,(x,z)=05*(z|dom f*(x, -)) (Rockafellar [34, Theorem 8.5, p. 66,
and Theorem 13.3, p. 116]).
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PROPOSITION 6. Let

E(x)= {z e R?|3V open, V3 x, A¢p continuous on V such that
<P(X)=Zandj fro)du< 00}
4

El(x)={zeRd|3Vopen, Vsx such thatf f*(-,z)du<oo}.
V

Then

(1) V(x,z), h(x, z) =6*(z| E(x)),
(2) if xeQ\supp pu, E(x)=E,(x)=R? and h(x, -)=6(-|{0}),
(3) under (H1)", ¥Yx, E,(x) = E(x) < E,(x).

ExaMpLE. Without (H1)", (3) may be false. Let Q= J—mx, n[, u the
Lebesgue measure, d=2,

D, = {Acos x, sin x)| 1 e R}, f(x, -)y=06(-|D,).

Then f*(x, )=4(- | D+) and E,(0) = {(0, 0)}, E(0)= {0} x R.

Proof. (1) This is proved in Valadier [42, Proposition 7, p.22] and is
known since Olech [28].

(2) If x¢suppu, V=02\supp ¢ is an open neighborhood of x and
fvf*(x,z) p(dx)=0 for any z. So E(x)=E,(x)=R? and h(x, )=
o(-1{0}).

(3) The inclusion E,(x) < E(x) is obvious. Let ze E(x). Let V' and ¢
corresponding to z. We may, changing V in a smaller neighborhood, sup-
pose ¢ bounded. For any ¢>0, let V,={yeV||o(y)—z|<e} and W, a
compact neighborhood of x contained in V,. There exists 8,: V' — [0, 1]
continuous such that 6,(x)=1 on W, and supp 8, < V,. Define

(ps=052+ (1 ‘Gr)(p

Then ¢.(x)=z and sup, ., |9.(y) —o(y)<e.

By (H1)" the functional / on L™(V, ), defined by I(v)={, f*(-, v) du,
is bounded on a (norm) neighborhood of 0, so it is continuous on
int(dom I), which contains [0, ¢[. Hence if re [0, 1[

lim f f*e, rtpe)du=f f*C,re) dp

e—=>0vyp v
So for ¢ sufficiently small, f*(-, r@,)eL’, hence [iw, f*(-, rz)dp<oo
and rz e E(x). Finally, ze E,(x).
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PROPOSITION 7. (1) One has u-ae.

gx, )< f(x, ")
h(x, ')=goo(xs ')Sfoo()@ )

(2) I, is o(L', %) (resp. o(LL, €.)) ls.c. iff p-ae. h(x, )= fo(x, ")
{equivalently h(x, ') = f.(x, *)).

(3) If ' is an open subset of Q2 and if x> epi f*(x, *) is Ls.c. on &',
then Vxe ', f(x, )< h(x, -). As a consequence if p(2\Q')=0, I, is Ls.c.

ExaMPLE. Let 2 =R, u the Lebesgue measure, d=1, K a compact sub-
set of R with int(K)= ¥ and u(X)>0, and

Iz| if xekK
0 otherwise,

Sflx, Z)={

Then I.(¢)=06(¢[{0}), so [,;=0+#1,.
Proof. Parts (1) and (2) have been proved in Valadier [41,42]. For a
somewhat more direct proof see Bouchitté [5, 7].

(3) Let x,eQ". If zyedom f*(x,, ), by the Michael theorem [26]
there exists a continuous selector (¢, ) of xrepi f*(x, -) such that
(0(x0), ¥(x0)) = (20, f*(x0, 25))- Let K be a compact neighborhood of x
contained in £2'. Then

fmf*(u <p)d#<Ll//du<00-

Hence z, € E(x,). Therefore f(xo, -} < A(x,, -). The last assertion follows
from (2).

THEOREM 8. (1) Under one of the hypotheses
(H3) Vz, f*(.,z) is ucs. on Q,
(H4) fis ls.c. on 2 xR? and f(-, 0) is locally bounded,
one has Vxe Q, f,(x, -)<h(x, ) (hence I is Ls.c.).
(2) Under (H3) or (H4) and moreover
(H5) Vz, f.(-, 2)is ucs.,
one has

_[fo(x2)  if xesuppp
h(x’z)_{5(ZI{0}) if xeQ\supp p.
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Remarks and Comments. (1) For I, being o(L', 6,) Ls.c. it is sufficient
to have (H3) or (H4) on an open set Q' such that p(Q2\Q') =0, for exam-
ple (as said in [24]) if

_{H(@) if xeQ,
ftx2)= {fz(z) if xeQ,,
where 2, and @, are disjoint open subsets such that

R\ (2, L 2,))=0.

(2) If f(x,-) does not depend on x, (H3) and (HS) are obviously
satisfied. If moreover supp u = (2, the formula of Theorem 5 becomes, Vi
Borel bounded positive function,

sup Ull/(p'dl—ft//f*(-,(p)dul(pe%mdomlf.}

=J ./,f(‘jzj) d;w“sz (%—J d|i,l.

This is the starting formula (for ¥ continuous) of Temam [37] and
Demengel and Temam [19].

(3) 1In case f is Ls.c. on whole the space Q x R“, hypothesis (H4),
Giaquinta, Modica, and Soucek [21], and Dal Maso [16] obtain, thanks
to a result of Reschetniak [307] about sublinear functions of measures, that

the functional
di, di,
i [ 1 (Gt [ o (g7 ) i

[#°]7 > 1— o0, 0]

G

is o(#° %) lsc. As a consequence I, is o(L',%,) lsc, hence
g(x, -)=f(x, -) p-a.e. But it can happen that G # F,. Indeed consider the
following example suggested in [16, 4.4, p. 414].

ExaMpPLE. Let Q=R, u=dx, d=1.

|z] if 2] |x|"?

<1
20zl — x| i Jz] x|V =1,

Sflx, 2)= {
Then f is continuous on Q x R, (H4) is satisfied, but (HS) does not hold.

One can check that Vx, h(x, z)=2 |z| and f(0, z) = |z|. Thus G(§,)=1
and F,(6,)=2.
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(4) In [1,16] (where the more difficult problem of a functional
depending on the gradient is studied), a sufficient condition ensuring F=G
is set. This condition implies that f is continuous in x and has linear
growth in z; more precisely,

v£>09 36>09 le—x2' <6=>VZ’ |f(xlsz)—f(x2’x), <8(1 + IZI)'

This hypothesis is far more stringent that the one of (2) of Theorem 8.
Indeed (H3) or (H4) supplemented with (H5) does not imply the con-
tinuity of f(-, z) but only the continuity of f_ (-, z) (remark that f being
Ls.c., f.(', z) is Ls.c. too).

Proof of Theorem8. (1) By Proposition 7 it is sufficient to prove that
the multifunction Q: x> epi f*(x, -} is Ls.c.

(a) Under (H3). Let U be an open subset of R?x R. Then
(xeQ]|Q(x) " U# @} = {x|3(z r)e Usuch that f*(x, z) <r}
= U {xlf*x2)<r}

zrev
(the change from < to < is easy) which is open.
(b) Under (H4). Recall that, for (z, t)e R‘x R,
—tf(x, z/—1) if 1<0
J(x, 2,1)=6%((z, 1 Q(x)) = { fo(x, 2) if =0
+ 00 if ¢>0.

From Lemma A2 it is sufficient to prove that f is Ls.c. This is a con-
sequence of Dal Maso [16].

(2) Under (HS)
V={xe|3zeRsuch that f_ (x, z) <h(x, z)}

= U {51 fualx 2) < A, )

is open (h defined in Theorem 4 is ls.c.). From Proposition 7(1) a..
Jolx, <) = h(x, -), so V is negligible, hence V nsupp = .

If xesupp u, x¢ V and then using (1), f.(x, -)=h(x, -). If x¢supp u,
the result follows from Proposition 6(2).

5. EXAMPLES

The proofs of the results stated in Examples | to 4 are left to the reader.
For details see Bouchitté [5, 7].
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ExaMPLE 1. Let £ be an open subset of R" and 2 be an N — 1-dimen-
sional hypersurface contained in £. Let p denote the measure
dx+H""Y(Zn-), where H¥~' is the N— l-dimensional Hausdorff
measure (thus HY~ (X n ) is the area measure of 2'). We suppose that X
is regular, that is, u is finite on compact sets and £2\2 is dense in .

Let

_{lzl if xeQ\X2
f(x")‘{%mz if xeZ,
Let
1 2 :
_ {3l if |z|<1
ﬁ(z)’{m—% it |zl 1.

Remark that B=13|-{>V|-|. Then, if 4,+ 4, is the y-decomposition of 4,

= di
F)= [ did+ [ (5200 ) a0+ 141 @)

ExaMPLE 2. Let  be an open subset of RY, u the Lebesgue measure,
a: 2 - [0, o[ a locally integrable function, and f(x, z) = a(x) |z|. Then, if

a(x)= Tm [u(B0x )]~ [ a(y)dy
50, B )

(x,d

and 4 is the ls.c. hull of 4,
F(1)=j ad|l.
o]

Remark. As soon as f*(x, -) is an indicator, F(1) = *(1| ®), where &
is the set of %.-selectors of a 1s.c. multifunction 7. For the existence of I see
Valadier [44]. In Examples 2 and 4 below, it is possible to “calculate” I'.

ExaMPLE 3. Let Q be an open subset of RY, u the Lebesgue measure,
a: 92— [0, o[ a measurable function, and f(x, z) = 1a(x) |z|>. Then, if Q'
is the greatest open subset on which 1/a is locally integrable (with the
convention 1/0= + c0), one has

1 di,
3 L, a(x) !EE

+o0 if |4, (2)>0.

2
dx if |4,](Q)=0

F()=
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ExaMpPLE 4. Let © be an open subset of R”, u the Lebesgue measure,
and 4:Q-RY a meas_prable function such that |A(x)]=1 ae. Let
flx,z)=[A(x)-z]*. If A is defined as in Example 2 but coordinate-wise,
that is,

Vie{l,nd},  Afx)= M [u(Bx, 81" jﬂ( LA,

and if Q' is the greatest open subset on which 4 is continuous, then Fi)=
Ja [(dX/d|A])(x)- A(x)]* [4] (dx).
Remarks. (1) On ', |A(x)| =1 because A(x)= A(x) a.e.

(2) The existence of ' and A can be proved without the ~
operation. Indeed €’ is the greatest open subset on which 4 is a.e. equal to
a (unique) continuous function. The existence of Q' follows from the
Lindelof property. One can treat also f(x, z)=|A(x)-z|: in this case it is
necessary to topologize the unit sphere identifying opposite points.

ExaMPLE 5 (which describes the usual case in plasticity theory). Let Q
be an open bounded subset of RY and E the space of symmetric tensors of
order 2 (dim E= N(N +1)/2). Recall that E has a euclidean stucture for
which the orthogonal of RI (the one-dimensional subspace of diagonal
tensors) is the space E” of rensors whose traces vanish.

Let B be a closed convex-valued ls.c. multifunction such that Vx,
0 e B(x). We suppose moreover that V¢ € 4,, ¢(x) € B(x) a.e. = ¢(x) e B(x)
everywhere (remark that this avoids Q=1—1,1[, B(x)=[0, 1] if x#0,
B(0)={0}). There exist many ls.. discontinuous multifunctions which
satisfy this hypothesis. In practice B(x)= B®(x)+ RI, where B”(x) is a
convex compact subset of E? containing 0.

Let y: R— R be continuous and ¥ be a convex normal integrand on
Q2 x E such that 0 <y(x, -)<y(-). The useful integrand in plasticity is

Sx, ) =T¥(x, ) +6(- | B(x))]*

Let h(x, -)=0*(: | B(x)). Then

da,
dx

Yie #°(S:E), F(l)= fg f (x, ) dx + L h(x, dA,).

Remark. When B(x) = B?(x)+ RI,

5*(z| B®(x)) if zeE?
+ o0 otherwise.

h(x, z)={



CONVEX FUNCTIONALS ON MEASURES 417

Hence dom A(x, -)=E” and, if ue BD(Q) and Du=}{u;+u;) satisfies
F,(Du) < oo, the singular part of the measure div u = tr(Du) vanishes.
Proof. Since f*(x, -)=y(x, -}+ (- | B(x)), one has for ¢ €6,
I.(¢) < © <+ o(x) € B(x) ae. <> Vx, ¢(x) € B(x).

Thanks to the Michael theorem [267], for any z € B(x), there exists p € 4,
with @(x)=z and Vy, ¢(y)e B(y). Thus hA(x, -)=48*(- | B(x)) and, since
gr=f*+h* Vx, g(x, )= f(x, ).

APPENDIX 1

LEMMA Al. Let g:R?*> ]—o0, o] be convex ls.c., Dcdom g. Sup-
pose D convex. Then the Ls.c. hull

g+6(-|D) of  g+6(-|D)isequal to g+ (-|D).
In particular inf, g =infs g.

Proof. Obviously g+ (- |D)<g+d(-|D). Without loss of generality
we may suppose that the affine subspace generated by D is R? itself. So
int(co D) # . Let x,€int(co D), one has x,eint(dom g)n D.

(a) As g is continuous at x,

g+d( | D)(xo)= ll_m g(x) = g(xo)
xeD0

=[g+3(-1D)1(xo)-

(b) Let x,eD, x,#x,, and prove g+ d(: | D)(x,) < g(x,). Let x; =
Ax;+(1—2A)xg. When A runs through [0,1[, x, belongs to
int (dom g) n D, hence, by (a),

g+o(- | D)(x;) = g(x;).

On a one-dimensional interval like [x,, x,], a convex function is us.c., so
when it is Ls.c. it is continuous. Hence

g+3( 1D)x)= lim g+3(1D)(x,)

= lim g(x;)= glx,)

The last formula is easy.
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APPENDIX 2

LemMMma A2, Let Q be a multifunction on a topological space Q2 to the
convex subsets of R%. Then Q is Ls.c. on Q iff (x,2') 6*(z'| Q(x)) is Ls.c.
on 2xR%

Proof. Let o(x, z')=6*(z'| Q(x)).

(1) Suppose Q is ls.c. Let (xo,z5)e 2xR? and re R, r < @(x,, zp).
The set W= {(z,z')e (R¥)?|z-2’ >r} is open. There exists z,€ Q(x,) such
that (z,, zp) € W. There exists U an open neighborhood of z, and U’ an
open neighborhood of zj such that Ux U’ is contained in W. As Q is ls.c.
and zq€ Q(xo) N U, there exists a neighborhood V of x, such that Yxe V,
O(x)nU# . Hence

(x,2)eVxU=¢(xz2)2z.2 (where z,.e Q(x) n U)
>r.
Thus ¢ is Ls.c. at (x,, zg).

(2) Suppose ¢ is Ls.c. and Q is not ls.c. at x,. Let U be an open sub-
set of R? such that Q(x,)nU# . We may suppose U convex and
0e Q(xy) N U. Thus ¢(x,, -)=0. There exists a generalized sequence (y,)
such that y, — x, and Q(y,) »n U= . By the Hahn-Banach theorem 3z,
and re R such that

Qo(y,,z,)<r<inf z- 2.,
ze U

We may suppose r= —1. Thus z,e {z'|Vze U, z-z'> —1}, which is an
equicontinuous set (here a bounded subset of R?). Let z’ be a cluster
point of the generalized sequence (z,). By the lower semi-continuity of
@, ¢(xy, z’) < —1, which is a contradiction.

Remark. This improves in one direction I1.21 of Castaing and Valadier

[15].

REFERENCES

1. G. AnzeLotTl, “The Euler Equation for Functionals with Linear Growth,” University of
Trento, 1983.

2. H. AttoucH, G. BouCHITTE, AND M. MaBROUK, Formulations variationnelles pour des
équations elliptiques semi-linéaires avec second membre mesure, C. R. Acad. Sci. Paris 306
(1988), 161-164.

3. H. ATtToucH AND C. PICARD, Problémes variationnels et théorie du potentiel non linéaire,
Ann. Fac. Sci. Toulouse Math. 1 (1979), 89-136.

4. G. BoucHITTE, “Convergence et relaxation de fonctionnelles du calcul des variations a
croissance linéaire. Application 4 'homogénéisation en plasticité,” Publications AVMAC,

n°® 10, Université de Perpignan, 1985; Ann. Fac. Sci. Toulouse Math., Sér.5-VIII
(1986-87), 7-36.



10.
11.

12.
13.

20.

21.

22.

23.

24,
25.

26.
27.
28.

29.

30.

CONVEX FUNCTIONALS ON MEASURES 419

G. BoucHITTE, “Représentation intégrale de fonctionnelles convexes sur un espace de
mesures, 1,” Publications AVAMAC, n° 2, Université de Perpignan, 1986.

. G. BoucHITTE, “Preprésentation intégrale de fonctionnelles convexes sur un espace de

mesures, II,” Publications AVAMAC, Vol. 2, exposé n° 3, Université de Perpignan, 1986.

. G. BOUCHITTE, “Calcul des variations en cadre non réflexif. Représentation et relaxation

de fonctionnelles intégrales sur un espace de mesures. Applications en plasticite et
homogeénéisation,” Thése de Doctorat d’Etat, Perpignan, 1987.

. G. BoucHITTE, Conjuguée et sous-différentiel d’'une fonctionnelle intégrale sur un espace

de Sobolev, C.R. Acad. Sci. Paris, in press.

. A. BOURASS AND M. VaALADIER, “Conditions de croissance associée a l'inclusion des

sections (d’aprés A. Fougéres et R. Vaudéne), “Publications AVAMAC, n° 3, Université
de Perpignan, 1984.

N. BourBakl, “Integration,” Chaps. 1 4 4, Hermann, Paris, 1965.

H. Brezis, Intégrales convexes dans les espaces de Sobolev, Israel J. Math. 13 (1972),
9-23.

H. Brezis, “Analyse fonctionnelle: Théorie et applications,” Masson, Paris, 1983.

H. Brezis, Some variational problems of the Thomas—Fermi type, in “Variational
Inequalities” (Cottle, Gianessi, and J. L. Lions, Eds.), pp. 53-73, Wiley, New York, 1980.

. H. BRrezis, Nonlinear elliptic equations involving measures, in “Contributions to Non-

linear Partial Differential Equation” (Bardos, Damlamian, Diaz, and Hernandez, Eds.),
Pitman, New York, 1983.

. C. CASTAING AND M. VALADIER, “Convex Analysis and Measurable Multifunctions,”

Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin, 1977.

. G. DAL Maso, Integral representation on BV(£2) of I'limit of variational integrals,

Manuscripta Math. 30 (1980), 387-416.

. E. DE GIORGI, L. AMBROSIO, AND G. BUTTAZZO, “Integral Representation and Relaxation

for Functionals Defined on Measures,” Scuola Normale Superiore, Pisa, 1986.

. C. DELLACHERIE AND P. A. MEYER, “Probabilités et potentiel,” Chaps. I & IV, Hermann,

Paris, 1975.

. F. DEMENGEL AND R. TEMAM, Convex functions of a measure and applications, Indiana

Univ. Math. J. 33(5) (1984), 673-709.

A. FouGtres, “Separability of Integrands,” Publications AVAMAC, n° 15, Université de
Perpignan, 1986.

M. GiaQuintA, G. Mobica, aAND J. SoUCEK, Functionals with linear growth in the
calculus of variations, Comm. Math. Univ. Carolina 20 (1979), 143-171.

C. GOFFMAN AND J. SERRIN, Sublinear functions of measures and variational integrals,
Duke Math. J. 31 (1964), 159-178.

M. GrUN-REHOMME, Caractérisation du sous-différentiel d'intégrandes convexes dans les
espaces de Sobolev, J. Math. Pures Appl. 56 (1977), 149-156.

T. Hapnri, Fonction convexe d’'une mesure, C.R. Acad. Sci. Paris 301 (1985), 687-690.
F. Hia1 anp H. UMeGaki, Integrals, conditional expectations, and martingales of
multivalued functions, J. Multivariate Anal. 7 (1977), 149-182.

E. MicHAEL, Continuous selections, I, Ann. of Marh. 63 (1956), 361-382.

J. J. Moreau, “Fonctionnelles convexes,” Collége de France, Paris, 1966-1967.

C. OrecH, The characterization of the weak* closure of certain sets of integrable
functions, SIAM J. Control 12(2) (1974), 311-318.

C. OLECH, A necessary and sufficient condition for lower semi-continuity of certain
integral functionals, in “Mathematical Structures, Computational Mathematics,
Mathematical Modelling,” pp. 373-379, Sofia, 1975.

Y. G. REsCHETNIAK, Weak convergence of completely additive vector measures on a set,
Sibirsk. Mat. Zh. 9 (1968), 1386-1394.



420 BOUCHITTE AND VALADIER

31
32.
33
34.
3s.
. R. TEMAM, “Problémes mathématiques en Plasticite,” Gauthier—Villars, Paris, 1983.
37.
38.

39.

41.

42.

43,

45.

R. T. ROCKAFELLAR, Integrals which are convex functionals, Pacific J. Math. 24 (1968),
525-539.

R. T. ROCKAFELLAR, Integrals which are convex functionals, II, Pacific. J. Math. 39
(1971), 439-469.

R. T. ROCKAFELLAR, Integral functionals, normal integrands and measurable selections, in
“Nonlinear Operators and the Calculus of Variations,” Lecture Notes in Mathematics,
Vol. 543, pp. 157-207, Springer-Verlag, Berlin, 1976.

R. T. ROCKAFELLAR, “Convex Analysis,” Princeton Univ. Press, Princeton, NJ, 1970.

L. ScuwarTz, “Théorie des distributions,” Hermann, Paris, 1957,

R. TemaM, Approximation de fonctions convexes sur un espace de mesures et
applications, Canad. Math. Bull. 25 (4) (1982), 392-413.

TRAN CA0 NGUYEN, A characterization of some weak semi-continuity of integral
functionals, Stud. Math. 66 (1) (1979), 81-92.

TrAN Cao NGUYEN, Decomposition of the conjugate integral functional on the space of
regular measures, Sém. Anal. Convexe 16 (1986), exposé n° 2.

. M. VALADIER, Fermeture étroite et bipolaire vague, Sém. Anal. Convexe 7 (1977), exposé

n°6.

M. VALADIER, Closedness in the weak topology of the dual pair L!, ¥, J. Math. Anal.
Appl. 69 (1979), 17-34.

M. VALADIER, Fonctions et opérateurs sur les mesures. Formules de dualité, Sém. Anal.
Convexe 16 (1986), exposé n° 3.

M. VALADIER, Multi-applications mesurables a valeurs convexes compactes, J. Math.
Pures Appl. 50 (1971), 265-297.

. M. VaLADIER, Quelques propriétés de l'ensemble des sections continues d’une multi-

fonction s.c.i., Sém. Anal. Convexe 16 (1986), exposé n° 7.
M. VALADIER, Fonctions et opérateurs sur les mesures, C.R. Acad. Sci. Paris 304 (1987),
135-137.



