

A DISCRETE STOCHASTIC INTERPRETATION OF THE DOMINATIVE p -LAPLACIAN.

JUAN J. MANFREDI
UNIVERSITY OF PITTSBURGH

BIRS WORKSHOP:
ADVANCED DEVELOPMENTS FOR SURFACE AND INTERFACE DYNAMICS –
ANALYSIS AND COMPUTATION

The Dominative p -Laplacian introduced by Brustad for $2 \leq p < \infty$ is the operator

$$\mathcal{L}_p u(x) = \frac{1}{p} (\lambda_1 + \dots + \lambda_{N-1}) + \frac{(p-1)}{p} \lambda_N,$$

where we have ordered the eigenvalues of $D^2u(x)$ as $\lambda_1 \leq \lambda_2 \dots \leq \lambda_N$. The operator \mathcal{L}_p is sublinear, therefore convex, and uniformly elliptic. Thus, the viscosity solutions of the equation $\mathcal{L}_p u(x) = 0$ are locally in the class $C^{2,\alpha}$.

In this talk, we first discuss the relation between \mathcal{L}_p and the regular p -Laplacian and then present a discrete stochastic approximation to the unique viscosity solution of the Dirichlet problem for the Dominative p -Laplace Equation.

This is joint work with Karl Brustad (NTNU) and Peter Linqvist (NTNU).

Date: June, 2018.