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ROBERT ŚMIECH

Abstract. In this note we propose the generalisation of a notion
of a holomorphic contact structure on a manifold (smooth variety)
to normal varieties with canonical singularities, give some examples
and prove basic properties of such objects.

1. Introduction

1.1. Background. The study of holomorphic symplectic manifolds is
a classical topic (...). The odd-dimensional counterpart, (holomorphic)
contact manifolds came into light when LeBrun and Salamon showed
in [LS94] the bijection (the twistor construction) between a subclass
of them and quaternion-Kähler manifolds with positive scalar curva-
ture. Conjecturally, the only examples of the latter are some symmet-
ric spaces and one can use the twistor correspondence to translate the
conjecture to the complex algebraic category, where partial progress
have been achieved, see for example [Bea98], [KPSW00], [BWW18]
and [ORCW21], however the problem is still wide open.
In the meantime, the seminal paper of Beauville ([Bea00]) marked the
birth of a notion of a (complex) symplectic singularity. Such objects
are still actively researched, both from the local and global (i.e. vari-
eties with symplectic singularities) point of view. There is a classical,
although not very recent survey by Fu [Fu06]. On the other hand, ac-
cording to author’s knowledge there is only one work by Campana and
Flenner [CF02] concerning complex contact singularities.
Therefore, the goal of our note is to restart the study of this undevel-
oped field, however from a different angle. Since our interest in contact
structures comes from the conjecture of LeBrun and Salamon, we will
adopt more global point of view than [CF02].

1.2. Notation and conventions. All objects considered in this note
are complex algebraic varieties and by symplectic (contact) structure
we always mean a holomorphic one. Likewise, a manifold for us is
a smooth algebraic variety. For a line bundle L we denote by L• its
total space with the image of the zero section removed, it is clearly a
C∗–principal bundle.
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2. Definition of contact variety and symplectisation

Definition 2.1. Contact variety is a normal algebraic variety X over
C of odd dimension 2n + 1 with canonical singularities and a globally
defined line bundle L such that on the smooth locus Xreg we have an
exact sequence of vector bundles:

0→ F → TXreg
ϑ−→ L|Xreg → 0

which defines contact structure on Xreg, i.e. dϑ :
∧2 F → L|Xreg is

nowhere degenerate. Equivalently one can demand that ϑ ∧ (dϑ)∧n as
an element ofH0(Xreg,Ω

2n+1
|Xreg
⊗Ln+1

|Xreg
) has no zeroes. We will sometimes

call L from the definition contact line bundle.

It is clear that the singularities of such varieties are contact in the
sense of [CF02]. We will note some easy consequences of the given
definition, which will be useful later:

Proposition 2.2. −KX is a Cartier divisor and we have O(−KX) =
L⊗n+1 in Pic(X). Therefore singularities of X are rational Gorenstein.

Proof. ϑ∧ (dϑ)∧n gives equality of (n+ 1)L and −KX in class group of
Xreg. Since X is normal, we can take unique closures of both divisors
and prolong considered equality to whole X and because L is in fact
a Cartier divisor, canonical class also is. This means that X is quasi-
Gorenstein. We know that singularities of X are canonical and those
are rational in characteristic 0 by [KM98, Thm 5.22]. Then from [Fle81,
Satz 1.1] it follows that X is Cohen-Macaulay, therefore Gorenstein.

�

The slogan ”contact geometry is an odd-dimensional counterpart
of symplectic geometry” can be made precise in the smooth case by
the standard construction of symplectisation, described for example in
[Buc09, Thm. E.6]. In essence, for each contact manifold with con-
tact line bundle L, the space L• is a symplectic manifold. To have an
analogous statement in the singular case recall the Namikawa’s char-
acterisation of symplecticity:

Theorem 2.3 ([Nam01, Theorem 6]). A normal variety is symplectic
if and only if it has rational Gorenstein singularities and its smooth
part admits a holomorphic symplectic form.

It allows us to prove the following:

Theorem 2.4. For a contact variety X with a contact line bundle L,
the space L• is a symplectic variety.

Proof. Since L• is locally trivial C∗-bundle over X, it has rational
Gorenstein singularities if and only if X has. On the smooth part we
can define holomorphic symplectic form by the standard construction
([Buc09, Section C.5]) �
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Theorem 2.5. Let Y be a symplectic variety equipped with free action
of C∗ such that the symplectic form ω is homogeneous of weight 1. Then
the quotient X is a contact variety.

Proof. Since we have a free C∗ action, Y locally looks like U ×C∗ (also
near the singularities). Therefore, if singularities of Y (U) are rational
Gorenstein, so are singularities of X (and those are canonical). On
the smooth locus of X there exists a twisted 1-form by the standard
argument ([Buc09, Proposition C.16]). �

It should be clear now that we defined contact variety in such a way
to keep the correspondence (symplectisation) in the singular setting.
Thanks to it we obtain a natural way to study contact varieties - we
can check which properties of symplectic varieties behave well when
they are equipped with a free C∗ action and in this way we obtain an
analogous property for contact varieties. We will see one such case in
the next section.

3. Kaledin’s stratification for contact varieties

We have the following analogue of Kaledin’s result ([Kal06]):

Theorem 3.1. Let X be a contact variety. Then we have a canonical
stratification X = X0 ⊃ X1 ⊃ X2 ⊃ ... such that:

(1) Xi+1 is the singular part of Xi

(2) the normalisation of each irreducible component of Xi is a con-
tact variety.

The statement first appeared without a proof in [MnOSC+15, Prop.
5.9].

Proof. Consider the symplectisation of X - L•. By [Kal06, Thm 2.3]
it is stratified and the normalisation of each irreducible component of
stratum is a symplectic variety. It is clear that C∗ action has to preserve
the stratification. On the strata we still have a free C∗ action, and the
induced action on the normalisation of each component is still free.
Therefore we only need to check that the induced symplectic forms
on the strata are homogeneous of weight 1. On the smooth locus,
the symplectic form ω defines Poisson bivector Θ ∈

∧2 TL•reg which in
turn defines the Poisson bracket of functions {f, g} ∈ OL•reg . Since L• is
normal, {f, g} can be extended to the whole variety and its restriction
to a stratum is again a Poisson bracket. Going the other way, we obtain
a symplectic form on the smooth part of the stratum and we need to
check that it is homogeneous of weight 1. Both Θ and {, } have weight
-1 on L•reg, therefore so does the extension of the bracket over the
(components of the) singular locus and its normalisation(s). It follows
that the induced symplectic forms have weights 1, as demanded.

�
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One immediate consequence of this result is that codimensions of the
strata are even. In particular, it provides another proof of the main
result of [CF02] that there are no isolated contact singularities.

4. Quotients of contact manifolds

We will begin by considering some simple examples and non-examples,
namely quotients of P3 by finite subgroups of contactomorphisms. Start
with associated affine space C4 equipped with symplectic form ω =
dx0 ∧ dx2 + dx1 ∧ dx3. For a point in C4 3 (a0, a1, a2, a3) the ω-
perpendicular space at this point is given by a0x2+a1x3−a2x0−a3x1 =
0. Twisted 1-form with the kernel given by the above equation can be
written as ϑ = x2dx0 + x3dx1 − x0dx2 − x1dx3.

Example 4.1. Consider the action of Z2 on C4, where the generator
A acts via A · (x0, x1, x2, x3) = (x0, x1,−x2,−x3). This is not a sym-
plectomorphism, since it does not preserve the symplectic form, but it
preserves the perpendicular space at each point, so it is a contactomor-
phism of the associated projective space. However A · ϑ = −ϑ.

Example 4.2. Again consider the action of of Z2 on C4, but this time
the generator B acts via B · (x0, x1, x2, x3) = (x0,−x1, x2,−x3). It is
a symplectomorphism descending to a contactomorphism on P3 and
moreover it preserves the contact form, B · ϑ = ϑ.

Example 4.3. Now consider the action of Z4 on C4, where the gener-
ator C acts via C · (x0, x1, x2, x3) = (ix0, ix1,−ix2,−ix3). It is again
symplectomorphism which descends to a contactomorphism, but it does
not preserve the contact form, C · ϑ = −ϑ.

The study of examples leads us to the following:

Theorem 4.4. Let X be a contact manifold with contact distibution
F , contact line bundle L and twisted form ϑ. Let G ⊂ Aut(X,F ) be a
finite subgroup of contactomorphisms. Then the quotient is a contact
variety if and only if for all x ∈ X the stabilizer Gx preserves the
contact form ϑ restricted to x.

To prove this theorem we recall a useful lemma:

Lemma 4.5. [ [DN89, Th. 2.3]] Let X be a variety equipped with
an action of reductive algebraic group G such that there exists a good
quotient. Let E be a G-vector bundle on X. Then E descends to
quotient variety if and only if for all x ∈ X such that the orbit G · x is
closed the stabilizer Gx acts trivially on the fiber Ex.

Proof. If the quotient is a contact variety then we have a contact line
bundle L̃ on it, and this bundle must be descended from L. Therefore
by 4.5 ∀x∈XGx acts trivially on Lx. It follows that Gx · ϑ|x = ϑ|x.
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Now lets suppose that for all points x the stabilizer subgroup Gx pre-
serves ϑ|x. Then Gx acts trivially on the fiber Lx, so again by 4.5 we
know that the line bundle L descends to the quotient. Away from the
fixed points of the action we still have the contact exact sequence, and
quotient singularities are canonical. �

5. Resolution of singularities

A natural question arising in the study of structures on singular
varieties is: does considered structure behave well with respect to reso-
lution of singularities? In our case: is the resolution of contact variety
a contact manifold in the usual sense? In general the answer is no,
although for special (crepant) resolutions, it is affirmative.

Example 5.1. Take P2n+1 equipped with standard contact form. Let
G = Z×n2 and H = Z2 be finite subgroups of contactomorphisms. Then
quotient of P2n+1 by G or by H is a (toric) contact variety in the sense
of our definition but only the former has crepant resolution, which is
isomorphic to P(T ∗(P1× ...×P1)), which is well-known to be a contact
manifold.

Theorem 5.2. If X ′
f−→ X is a crepant morphism (i.e. KX′ ≈ f ∗(KX))

with Exc(f) ⊂ Sing(X) and X is a contact variety, then X ′ is again
a contact variety with structure F ′ compatible with projection to X,
i.e. f∗F

′ = F on the smooth locus of X and a contact line bundle
f ∗L. In particular, a terminalization of a contact variety preserves the
contact structure and a crepant resolution of singularities produces a
usual contact manifold.

Proof. To prove the theorem we need to define ϑ′ on the smooth locus
of X ′ and check whether it satisfies the nondegeneracy condition. To

this end, let X̃
g−→ X ′ be a resolution of singularities, which is also

(via composition) a resolution of singularities for X. By [GKKP11,
Thm 1.4] the sheaf (fg)∗Ω

1
X̃

is reflexive. Then by projection formula

it follows that (fg)∗(Ω
1
X̃
⊗ (fg)∗L) is also reflexive. ϑ is a section of

the last sheaf, so by reflexivity it extends to a section of Ω1
X̃
⊗ (fg)∗L,

since the singular locus of X has codimension ≥ 2. Finally since there

is an isomorphism between the smooth locus of X ′ and X̃ \Exc(g), we
can define ϑ′ on smooth locus of X ′.
Now observe that ϑ ∧ (dϑ)∧n can be extended to nowhere vanishing
section of KX ⊗ Ln+1. Since f is crepant, the pullback of this section
by f is a nowhere vanishing section of KX′ ⊗ f ∗Ln+1. It agrees with
ϑ′∧(dϑ′)∧n on the intersection of X ′reg and any open U ⊂ X ′ trivializing
f ∗L.
To finish the proof, observe that ϑ′ is surjective on X ′reg: if it were not
the case for some x ∈ X ′ then in some neighbourhood of x trivializing
f ∗L we would have ϑ ∧ (dϑ)∧n(x) = 0, which is absurd. �
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Theorem and proof above motivate the following definition:

Definition 5.3. Let f : X̃ → X be a resolution of singularities for

contact variety X. We say that it is contact iff X̃ is a contact manifold
with compatible contact structure.

In light of this definition, one may wonder whether there exist non-
crepant but contact resolutions.

Conjecture. If a resolution of singularities as above is contact and
obtained contact manifold is projective, then the resolution is crepant.

Possible strategy. Let L be the contact line bundle on X. If f ∗(L) is the

contact line bundle on X̃ then we are done, because then f ∗(−KX) =
f ∗((n+ 1)L) = (n+ 1)f ∗(L) = −KX̃ . Note that this is the case if the
resolution is small.
Since X̃ is a projective contact manifold, it does not admit birational
Mori contractions ([KPSW00][Lemma 2.10]). Note that it still can
admit divisorial contractions (like in example above), but they cannot
be Mori. From the Mori condition we should be able to somehow
rule out the case when the contact line bundle on the resolution is
f ∗(L)⊗O(−E). If one can reason step by step, i.e. by contracting one
irreducible divisor at a time then relative nefness and ampleness are
the same thing, so it would conclude the proof. �

Unfortunately currently we are unable to conclude, even using ad-
ditional assumption of projectivity. The problem lies in a fact that in
general one cannot assume that resolution algorithm works one smooth
blow-up at a time.

6. Projective threefolds

In this section we will use the developed tools to study projective
singular contact threefolds.

Remark 6.1. If X is a contact variety of dimension 3 then it has a
crepant resolution of singularities.

Proof. Take the terminalization of X which by 5.2 is still contact. Its
singular locus by 3.1 has dimension 1, however at the same time it must
have codimension at least 3 by terminality. Therefore the terminaliza-
tion is already smooth. �

In the projective case, the only possible manifold resolving X is of
the form P(T ∗S) for some smooth surface S. Therefore we can form
the following commutative square of morphisms:
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P(T ∗S) X

S Y

f

p q

g

p is the unique elementary Mori contraction of P(T ∗S) (see [KPSW00]
for details) and denote by [F ] the class of the fiber of p. Then, since
f is the surjective and crepant morphism (resolution of singularities),
contraction of f∗[F ] is the unique elementary Mori contraction of X,
which is denoted by q. Finally g is a contraction (not necessarily Mori)
making the diagram commutative.
The singular locus of X consists of smooth, disjoint curves Ci by 3.1
and the exceptional divisors Ei of the resolution are mapped to these
curves. They are covered by rational curves and so have negative Ko-
daira dimension. There are two possibilities:

(1) at least one of Ei is mapped onto S via p,
(2) p maps every Ei to some curve Di ⊂ S.

In the first case we can observe that κ(S) = −∞ as some Ei with
κ(Ei) = −∞ is mapped onto it by p. Moreover the contraction g
cannot be a birational morphism, so Y has to be a point or a curve. If
Y = ∗ then since it comes from an elementary Mori contraction of X,
it follows that X has b2 = 1 and is Gorenstein-Fano.
Now consider the situation where every Ei is mapped by p to a curve
Di, that is every Ei is a P1-bundle over Di. By rigidity lemma no
fiber of p gets contracted to a point by f . Therefore every P1-fiber
of Ei is mapped onto Ci, so each of them has to be a projective line
and moreover this mapping is isomorphism, since the fibers of f are
connected.

Example 6.2 (Basic example in dimension 3). Start with a C4 with
coordinates x0, x1, x2, x3 and a symplectic form: dx0 ∧ dx2 + dx1 ∧ dx3.
The associated projective space P3 is a contact manifold. Now consider
diagonal action of diag(i, i,−i,−i) on C4, this is a symplectomorphism
and it descends to a contactomorphism. The fixed point locus on P3

consists of two lines: x0 = x1 = 0 and x2 = x3 = 0. The quotient is a
contact variety X with singular locus being precisely the image of two
fixed lines. We can resolve X by two blowups at singular lines. The
smooth variety that we obtain is isomorphic to P(T ∗(P×P)) and both
exceptional divisors are sections of this projective bundle. X is Fano
and has b2 = 1. Moreover, the partial resolution (that is X blown up in
one of the lines, there is a contactomorphism swapping them) is also a
contact variety. The unique Mori contraction maps it to the projective
line.

Remark 6.3. The example above presents all possible toric contact
threefolds: they have to be resolved by P(T ∗(P×P)), and the only crepant
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contractions of this manifold are contractions of two (torus invariant)
sections.
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