
Single use restriction
A new trend in transformations with atoms

Rafał Stefański
Joint work with Mikołaj Bojańczyk

Work in progress

Deterministic register
automata
Fix a countably infinite set of atoms.
They can only be compared for equality.

A= {1 2 3 … }

model by Kaminski, Francez 1994

Deterministic register
automata

1 23 4 2 1 5

The first letter appears again

Deterministic register
automata

1 23 4 2 1 5
qstart(⊥)

1

The first letter appears again

Deterministic register
automata

1 23 4 2 1 5
qscan()

1

The first letter appears again

Deterministic register
automata

1
23 4 2 1 5

qscan()

1

The first letter appears again

Deterministic register
automata
The first letter appears again

1
23 4 2 1 5

qscan()

1

Deterministic register
automata

1
23 4 2 1 5

qscan()

1

The first letter appears again

Deterministic register
automata

1
23 4 2 1 5
qscan()

1

The first letter appears again

Deterministic register
automata

1
23 4 2 1 5

qscan()

1

The first letter appears again

Deterministic register
automata

23 4 2 1 5

qfound(⊥)

1

The first letter appears again

Deterministic register
automata

23 4 2 1 5

qfound(⊥)

1

The first letter appears again

Deterministic register
automata

23 4 2 1 51

The first letter appears again

Single use restriction
Every read access destroys the
contents of the register.

Single use restriction
Every read access destroys the
contents of the register.

1 23 4 2 1 5
qstart(⊥)

1

Single use restriction
Every read access destroys the
contents of the register.

1
23 4 2 1 5

qscan()

1

Single use restriction
Every read access destroys the
contents of the register.

23 4 2 1 5

qscan(⊥)

1

Single use restriction
Every read access destroys the
contents of the register.

23 4 2 1 5

qscan(⊥)

1

???

Single use restriction
Every read access destroys the
contents of the register.

23 4 2 1 5

qscan(⊥)

1

???

?

(Single use register automata

Register automata

The first letter
appears again

Single use register
automata
There are at most 3 distinct letters

32 1 3 41

Single use register
automata
There are at most 3 distinct letters

32 1 3 41

1
1
1

Single use register
automata
There are at most 3 distinct letters

32 1 3 41

1
1

Single use register
automata
There are at most 3 distinct letters

32 1 3 41

1
1

Single use register
automata
There are at most 3 distinct letters

32 1 3 41

1
1

2
2
2

Single use register
automata
There are at most 3 distinct letters

32 1 3 41

1
1

2
2
2

Single use register
automata
There are at most 3 distinct letters

32 1 3 41

1
1

2
2

Single use register
automata
There are at most 3 distinct letters

32 1 3 41
1

2
2

Single use register
automata
There are at most 3 distinct letters

32 1 3 41
1

2
2

Single use register
automata
There are at most 3 distinct letters

32 1 3 41
1

2
2

3
3
3

Single use register
automata
There are at most 3 distinct letters

32 1 3 41
1

2
2

3
3
3

Single use register
automata
There are at most 3 distinct letters

32 1 3 41
1

2
2

3
3

Single use register
automata
There are at most 3 distinct letters

32 1 3 41
12

3
3

Single use register
automata
There are at most 3 distinct letters

32 1 3 41
2

3
3

Single use register
automata
There are at most 3 distinct letters

32 1 3 41
2

3
3

1
1
1

Single use register
automata
There are at most 3 distinct letters

32 1 3 41
2

3
3

1
1
1

Single use register
automata
There are at most 3 distinct letters

32 1 3 41
2

3
3

1
1

Single use register
automata
There are at most 3 distinct letters

32 1 3 41
23

1
1

Single use register
automata
There are at most 3 distinct letters

32 1 3 41
2

1
1

Single use register
automata
There are at most 3 distinct letters

32 1 3 41
2

1
13

3
3

Single use register
automata
There are at most 3 distinct letters

32 1 3 41
13

3
3

2
1

Single use register
automata
There are at most 3 distinct letters

32 1 3 41
13

3
2

1

Single use register
automata
There are at most 3 distinct letters

32 1 3 41
13

3
2

Single use register
automata
There are at most 3 distinct letters

32 1 3 41
13

3

Single use register
automata
There are at most 3 distinct letters

32 1 3 41

Single use register
automata
There are at most 3 distinct letters

32 1 3 41

Single-use register
automata

Two-way single-use
register automata

Orbit-finite semigroups
Bojańczyk 2013

Rigidly guarded MSO~

Colcombet, Ley, Puppis 2015

All the following models recognise
different classes of languages

Multiple-use, deterministic register automata

Multiple-use, 2-way deterministic register automata

MSO~

Robustness — a case for
the single use restriction

Transducers
with atoms

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 1 2 3 3 3 2 21 3 3 2

An example
Remove repetitions from the input

1 1 2 3 3 3 2 2
1

1
2 3

3 3
2
2

An example
Remove repetitions from the input

1 1 2 3 3 3 2 2
1

1
2 3

3 3
2

2

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1
1

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1
1

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2
1

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1
1

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1
1

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2
1

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1

2
2

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1

2
2

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1

2

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2

3
3

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2

3
3

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2

3

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2

3
3

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2

3
3

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2

3

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2

3
3

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2

3
3

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2

3

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2 3

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2 3

2
2

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2 3

2
2

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2 3

2
2

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2 3

2

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2 3

2
2

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2 3

2
2

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2

1 2 3 2

2

An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2
1 2 3 2

Krohn-Rhodes
theorem

Prime functions

(Equivariant) homomorphism
Delay
Finite group on prefixes
Flip-flop on prefixes

Letter propagation

Prime functions

(Equivariant) homomorphism
Delay
Finite group on prefixes
Flip-flop on prefixes

Letter propagation

Prime functions
(Equivariant) homomorphism

f⇤ : ⌃⇤ ! �⇤

An equivariant function: f : ⌃ ! �⇤

Extended to:

Prime functions
(Equivariant) homomorphism

1 2 3 21 2 3 21 2 3 21 2 3 2

Double the letters:

Prime functions
(Equivariant) homomorphism

1 2 3 21 2 3 2
1 2 3 21 2 3 2

Prime functions
(Equivariant) homomorphism

1 2 3 21 2 3 2

Prime functions

(Equivariant) homomorphism
Delay
Finite group on prefixes
Flip-flop on prefixes

Letter propagation

Prime functions
Delay

Remove repetitions:

1 1 2 3 3 3 2 21 3 3 21 1 2 3 3 3 2 21 3 3 2

⌃⇤ !
�
(⌃+ {`,a})2

�⇤

Prime functions

Remove repetitions:

1 1 2 3 3 3 2 21 3 3 2
1
1

2 3
3 3

2
2

1 3 3 2
˧

˧

Delay ⌃⇤ !
�
(⌃+ {`,a})2

�⇤

Prime functions

Remove repetitions:

2 3 2
21 3 2

˧

Delay ⌃⇤ !
�
(⌃+ {`,a})2

�⇤

Prime functions

Remove repetitions:

21 3 2

Delay ⌃⇤ !
�
(⌃+ {`,a})2

�⇤

Prime functions

Remove repetitions:

21 3 2

Delay ⌃⇤ !
�
(⌃+ {`,a})2

�⇤

Prime functions

(Equivariant) homomorphism
Delay
Finite group on prefixes
Flip-flop on prefixes

Letter propagation

Prime functions
Finite group on prefixes (⌃⇥G)⇤ ! (⌃⇥G)⇤

Prime functions

1 9 3 91 3 2 7

Finite group on prefixes (⌃⇥G)⇤ ! (⌃⇥G)⇤

Remove letters from odd positions:

1 9 3 91 3 2 7
1 1 1 1 1 1

Prime functions
Finite group on prefixes (⌃⇥G)⇤ ! (⌃⇥G)⇤

Remove letters from odd positions:

(Z2)

1 9 3 91 3 2 7
1 0 1 0 1 0

Prime functions
Finite group on prefixes (⌃⇥G)⇤ ! (⌃⇥G)⇤

Remove letters from odd positions:

9 9 7
0 0 0

Prime functions
Finite group on prefixes (⌃⇥G)⇤ ! (⌃⇥G)⇤

Remove letters from odd positions:

9 9 7

Prime functions
Finite group on prefixes (⌃⇥G)⇤ ! (⌃⇥G)⇤

Remove letters from odd positions:

Prime functions

(Equivariant) homomorphism
Delay
Finite group on prefixes
Flip-flop on prefixes

Letter propagation

Prime functions
Flip-flop monoid on prefixes (⌃⇥ F)⇤ ! (⌃⇥ F)⇤

Prime functions
Flip-flop monoid on prefixes (⌃⇥ F)⇤ ! (⌃⇥ F)⇤

F = {1, a, b}
1a = aa = ba = a

1b = bb = ab = b

Prime functions
Flip-flop monoid on prefixes (⌃⇥ F)⇤ ! (⌃⇥ F)⇤

Remove everything after the first repetition:

1 2 5 7 7 7 8 8 91 2 5 7 7 7 8 8 9

Prime functions
Flip-flop monoid on prefixes (⌃⇥ F)⇤ ! (⌃⇥ F)⇤

Remove everything after the first repetition:

1 2 5 7 7 7 8 8 9
1 2 5 7 7 7 8 8 9

˧
˧

Prime functions
Flip-flop monoid on prefixes (⌃⇥ F)⇤ ! (⌃⇥ F)⇤

Remove everything after the first repetition:

1 2 5 7 7 7 8 8 9
1 2 5 7 7 7 8 8 9

˧
˧

1 1 1 1 a a 1 a 1 1

Prime functions
Flip-flop monoid on prefixes (⌃⇥ F)⇤ ! (⌃⇥ F)⇤

Remove everything after the first repetition:

1 2 5 7 7 7 8 8 9
1 2 5 7 7 7 8 8 9

˧
˧

1 1 1 1 a a a a a a

Prime functions
Flip-flop monoid on prefixes (⌃⇥ F)⇤ ! (⌃⇥ F)⇤

Remove everything after the first repetition:

2 5 7
1 2 5
1 1 1

Prime functions
Flip-flop monoid on prefixes (⌃⇥ F)⇤ ! (⌃⇥ F)⇤

Remove everything after the first repetition:

2 5 7

Original Krohn-Rhodes
theorem

Every function f recognised by a one-way transducer iff
it is an element of (prime)*

Original Krohn-Rhodes
theorem

Every function f recognised by a one-way transducer can also be
expressed as an element of (prime)*

remove repetitions = f⇤ � delay

f(hx, yi) =
(
y if x 6= y

✏ otherwise

Prime functions

(Equivariant) homomorphism
Delay
Finite group on prefixes
Flip-flop on prefixes

Letter propagation

Prime functions
Letter propagataion (⌃⇥ P{", #})⇤ ! (⌃⇥ ({.}+ ⌃))⇤

Prime functions
Letter propagation (⌃⇥ P{", #})⇤ ! (⌃⇥ ({.}+ ⌃))⇤

Operations on 1 register:

" Read value

Output value#

Prime functions
(⌃⇥ P{", #})⇤ ! (⌃⇥ ({.}+ ⌃))⇤

Operations on 1 register:

" Read value

Output value#
Subject to single-use restriction

Letter propagation

Prime functions
(⌃⇥ P{", #})⇤ ! (⌃⇥ ({.}+ ⌃))⇤

1 2 5 7 7 91 2 5 7 7 9

Change the last letter to the first letter:
Letter propagation

Prime functions
(⌃⇥ P{", #})⇤ ! (⌃⇥ ({.}+ ⌃))⇤

1 2 5 7 7 9 ˧
1 2 5 7 7 9

˧

Change the last letter to the first letter:
˧

Letter propagation

Prime functions
(⌃⇥ P{", #})⇤ ! (⌃⇥ ({.}+ ⌃))⇤

1 2 5 7 7 9 ˧
1 2 5 7 7 9

˧

Change the last letter to the first letter:
˧# "˧

1

Letter propagation

Prime functions
(⌃⇥ P{", #})⇤ ! (⌃⇥ ({.}+ ⌃))⇤

1 2 5 7 7 9 ˧
1 2 5 7 7 9

˧

Change the last letter to the first letter:
˧ 1

˧

Letter propagation

Prime functions
(⌃⇥ P{", #})⇤ ! (⌃⇥ ({.}+ ⌃))⇤

1 2 5 7 7

Change the last letter to the first letter:

1

Letter propagation

Prime functions
(⌃⇥ P{", #})⇤ ! (⌃⇥ ({.}+ ⌃))⇤

1 2 5 7 7

Change the last letter to the first letter:

1

Letter propagation

Krohn-Rhodes theorem with
atoms

Every function f recognised by a single use, one-way iff
it is an element of (prime + letter propagation)*

Two more prime functions
(Equivariant) homomorphism
Delay
Finite group on prefixes
Flip-flop on prefixes

Letter propagation

Iterated reverse
Iterated duplicate

Prime functions
Iterated reverse (⌃+ {#})⇤ ! (⌃+ {#})⇤

1 2 5 9# 7 9 #1 2 5 9# 7 9 #

Prime functions
Iterated reverse (⌃+ {#})⇤ ! (⌃+ {#})⇤

1 2 5 9# 7 9 #
125 9# 79 #

Prime functions
Iterated reverse (⌃+ {#})⇤ ! (⌃+ {#})⇤

125 9# 79 #

Prime functions
Iterated duplicate (⌃+ {#})⇤ ! (⌃+ {#})⇤

1 2 5 9# 7 9 #1 2 5 9# 7 9 #1 2 5 9# 7 9 #1 2 5 9# 7 9 #

Prime functions
Iterated duplicate (⌃+ {#})⇤ ! (⌃+ {#})⇤

1 2 5 9# 7 9 #1 2 5 9# 7 9 #
1 2 5

9#
7 9

#
1 2 5 9# 7 9 #

Prime functions
Iterated duplicate (⌃+ {#})⇤ ! (⌃+ {#})⇤

1 2 5 7 91 2 5 9# 7 9 #

Two more prime functions
(Equivariant) homomorphism
Delay
Finite group on prefixes
Flip-flop on prefixes

Letter propagation

Iterated reverse
Iterated duplicate

Two-way Krohn-Rhodes
theorem with atoms

single use, two way register transducer

=

 (two-way prime + letter propagation)*

Two corollaries

One-way single-use register automata
are closed under compositions

Two-way single-use register automata
are closed under compositions

One more corollary
All of the following recognise the
same class of transductions:

(Two-way prime + letter propagation)*

Two-way, single-use register transducers

String streaming, single-use register transducers

Regular list functions

original model by Krohn, Rhodes 1963

original model by Alur, Cerny 2010

original model by Bojańczyk, Daviaud, Krishna 2018

original model by Shepherdson 1959

The general picture
1. (Two-way prime + letter propagation)*

2. Two-way, single-use register transducers

3. String streaming, single-use register transducers

4. Regular list functions

5. Rigid MSO~ transductions

1. (Prime + letter propagation)*

2. One-way, single-use register transducers

1. (Prime + reversed flip-flop + letter propagation +
reversed letter propagation)*

The general picture
1. (Two-way prime + letter propagation)*

2. Two-way, single-use register transducers

3. String streaming, single-use register transducers

4. Regular list functions

5. Rigid MSO~ transductions

1. (Prime + letter propagation)*

2. One-way, single-use register transducers

The end

1. (Prime + reversed flip-flop + letter propagation +
reversed letter propagation)*

