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Deterministic register 
automata
Fix a countably infinite set of atoms. 
They can only be compared for equality.

A= {1 2 3 … }

model by Kaminski, Francez 1994
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(Single use register automata

Register automata

The first letter 
appears again
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Single-use register 
automata

Two-way single-use 
register automata

Orbit-finite semigroups
Bojańczyk 2013

Rigidly guarded MSO~

Colcombet, Ley, Puppis 2015



All the following models recognise 
different classes of languages

Multiple-use, deterministic register automata

Multiple-use, 2-way deterministic register automata

MSO~

Robustness — a case for 
the single use restriction



Transducers
with atoms
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An example
Remove repetitions from the input

1 1 2 3 3 3 2 21 3 3 2
1 2 3 2



Krohn-Rhodes 
theorem
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An equivariant function: f : ⌃ ! �⇤
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F = {1, a, b}
1a = aa = ba = a

1b = bb = ab = b
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Flip-flop monoid on prefixes (⌃⇥ F )⇤ ! (⌃⇥ F )⇤

Remove everything after the first repetition:

2 5 7
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Original Krohn-Rhodes 
theorem

Every function f recognised by a one-way transducer can also be 
expressed as an element of (prime)*

remove repetitions = f⇤ � delay

f(hx, yi) =
(
y if x 6= y

✏ otherwise



Prime functions

(Equivariant) homomorphism
Delay
Finite group on prefixes
Flip-flop on prefixes

Letter propagation



Prime functions
Letter propagataion (⌃⇥ P{", #})⇤ ! (⌃⇥ ({.}+ ⌃))⇤



Prime functions
Letter propagation (⌃⇥ P{", #})⇤ ! (⌃⇥ ({.}+ ⌃))⇤

Operations on 1 register:

" Read value

Output value#



Prime functions
(⌃⇥ P{", #})⇤ ! (⌃⇥ ({.}+ ⌃))⇤

Operations on 1 register:

" Read value

Output value#
Subject to single-use restriction

Letter propagation



Prime functions
(⌃⇥ P{", #})⇤ ! (⌃⇥ ({.}+ ⌃))⇤

1 2 5 7 7 91 2 5 7 7 9

Change the last letter to the first letter:
Letter propagation



Prime functions
(⌃⇥ P{", #})⇤ ! (⌃⇥ ({.}+ ⌃))⇤

1 2 5 7 7 9 ˧
1 2 5 7 7 9

˧

Change the last letter to the first letter:
˧

Letter propagation



Prime functions
(⌃⇥ P{", #})⇤ ! (⌃⇥ ({.}+ ⌃))⇤

1 2 5 7 7 9 ˧
1 2 5 7 7 9

˧

Change the last letter to the first letter:
˧# "˧

1

Letter propagation



Prime functions
(⌃⇥ P{", #})⇤ ! (⌃⇥ ({.}+ ⌃))⇤

1 2 5 7 7 9 ˧
1 2 5 7 7 9

˧

Change the last letter to the first letter:
˧ 1

˧

Letter propagation



Prime functions
(⌃⇥ P{", #})⇤ ! (⌃⇥ ({.}+ ⌃))⇤

1 2 5 7 7

Change the last letter to the first letter:

1

Letter propagation



Prime functions
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1 2 5 7 7

Change the last letter to the first letter:

1

Letter propagation



Krohn-Rhodes theorem with 
atoms

Every function f recognised by a single use, one-way iff 
it is an element of (prime + letter propagation)*
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Two more prime functions
(Equivariant) homomorphism
Delay
Finite group on prefixes
Flip-flop on prefixes

Letter propagation

Iterated reverse
Iterated duplicate



Two-way Krohn-Rhodes 
theorem with atoms

single use, two way register transducer

=


 (two-way prime + letter propagation)*



Two corollaries

One-way single-use register automata 
are closed under compositions

Two-way single-use register automata 
are closed under compositions



One more corollary
All of the following recognise the 
same class of transductions:

(Two-way prime + letter propagation)*

Two-way, single-use register transducers

String streaming, single-use register transducers

Regular list functions

original model by Krohn, Rhodes 1963

original model by Alur, Cerny 2010

original model by Bojańczyk, Daviaud, Krishna 2018 

original model by Shepherdson 1959
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3. String streaming, single-use register transducers

4. Regular list functions

5. Rigid MSO~ transductions

1. (Prime + letter propagation)*

2. One-way, single-use register transducers

1. (Prime + reversed flip-flop + letter propagation + 
reversed letter propagation)*



The general picture
1. (Two-way prime + letter propagation)*

2. Two-way, single-use register transducers

3. String streaming, single-use register transducers

4. Regular list functions

5. Rigid MSO~ transductions

1. (Prime + letter propagation)*

2. One-way, single-use register transducers

The end

1. (Prime + reversed flip-flop + letter propagation + 
reversed letter propagation)*


