A new trend in transformations with atoms

Rafał Stefański Joint work with Mikołaj Bojańczyk

Work in progress

Fix a countably infinite set of *atoms*. They can only be compared for equality.

A = {**1 2 3 ...** }

model by Kaminski, Francez 1994

The first letter appears again

1324215

The first letter appears again

q_{start}(⊥) ↓ 1324215

The first letter appears again

 $q_{scan}()$ \downarrow 1324215

The first letter appears again

$q_{scan}(1)$ \downarrow 1324215

The first letter appears again

$q_{scan}(1)$ \downarrow 1324215

The first letter appears again

Qfound(⊥) ↓ 1 3 2 4 2 1 5

The first letter appears again

qfound(⊥) ↓ 1 3 2 4 2 1 5

The first letter appears again

Every read access destroys the contents of the register.

Every read access destroys the contents of the register.

q_{start}(⊥) ↓ 1324215

Every read access destroys the contents of the register.

Every read access destroys the contents of the register.

$q_{scan}(\perp)$ \downarrow 1324215

Every read access destroys the contents of the register.

Every read access destroys the contents of the register.

??? $q_{scan}(\perp)$ \downarrow **1324215**?

Image: Note that with the second se

Register automata

There are at most 3 distinct letters

1 2 3 1 3 4

Rigidly guarded MSO~

Colcombet, Ley, Puppis 2015

Orbit-finite semigroups

Bojańczyk 2013

Single-use register automata

Two-way single-use register automata

Robustness — a case for the single use restriction

All the following models recognise different classes of languages

Multiple-use, deterministic register automata

Multiple-use, 2-way deterministic register automata

MSO~

Transducers

with atoms

Remove repetitions from the input

Remove repetitions from the input

 1
 2
 3
 2

 1
 1
 2
 3
 3
 2
 2

Remove repetitions from the input

1 2 3 2 1 1 2 3 3 3 2 2

Remove repetitions from the input

Remove repetitions from the input

⁺11233222

Remove repetitions from the input

1 1 2 3 3 3 2 2

Remove repetitions from the input

1 1 1 1 1 1 2 3 3 3 2 2

1

Remove repetitions from the input

1

Remove repetitions from the input

1

Remove repetitions from the input

1 1 2 3 3 3 2 2

Remove repetitions from the input

1 2

Remove repetitions from the input

1 2

$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$ 1 1 2 3 3 3 2 2

Remove repetitions from the input

1 2

Remove repetitions from the input

1 2

$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$ 1 1 2 3 3 3 2 2

Remove repetitions from the input

1 2

Remove repetitions from the input

1 2

Remove repetitions from the input

1 2

□ 3 1 1 2 3 3 3 2 2

Remove repetitions from the input

1 2
Remove repetitions from the input

1 2

Remove repetitions from the input

1 2

 $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$

Remove repetitions from the input

123

☐ 1 1 2 3 3 3 2 2

Remove repetitions from the input

123

2 2 1 1 2 3 3 3 2 2

Remove repetitions from the input

123

Remove repetitions from the input

123

Remove repetitions from the input

123

2 1 1 2 3 3 3 2 2

Remove repetitions from the input

123

Remove repetitions from the input

123

2 1 1 2 3 3 3 2 2

Remove repetitions from the input

1232

1 1 2 3 3 3 2 2⁺

Remove repetitions from the input

1 2 3 2 1 1 2 3 3 3 2 2

Krohn-Rhodes theorem

(Equivariant) homomorphism Delay Finite group on prefixes Flip-flop on prefixes

Letter propagation

(Equivariant) homomorphism

Delay Finite group on prefixes Flip-flop on prefixes

Letter propagation

(Equivariant) homomorphism

An equivariant function: $f: \Sigma \to \Gamma^*$

Extended to: $f^*: \Sigma^* \to \Gamma^*$

(Equivariant) homomorphism

Double the letters:

(Equivariant) homomorphism

1 1 2 2 3 3 2 2 1 2 3 2

(Equivariant) homomorphism

(Equivariant) homomorphism

Delay

Finite group on prefixes

Flip-flop on prefixes

Letter propagation

Delay $\Sigma^* \to \left((\Sigma + \{\vdash, \dashv\})^2 \right)^*$

Remove repetitions:

Delay $\Sigma^* \to \left((\Sigma + \{\vdash, \dashv\})^2 \right)^*$

Remove repetitions:

+ 1 1 2 3 3 3 2 2 1 1 2 3 3 3 2 2 4

Delay $\Sigma^* \to \left((\Sigma + \{\vdash, \dashv\})^2 \right)^*$

Remove repetitions:

1 2 3 2 2 3 2 4

Delay $\Sigma^* \to \left((\Sigma + \{\vdash, \dashv\})^2 \right)^*$

Remove repetitions:

Delay $\Sigma^* \to \left((\Sigma + \{\vdash, \dashv\})^2 \right)^*$

Remove repetitions:

(Equivariant) homomorphism

Delay

Finite group on prefixes

Flip-flop on prefixes

Letter propagation

Finite group on prefixes $(\Sigma \times G)^* \to (\Sigma \times G)^*$

Finite group on prefixes $(\Sigma \times G)^* \to (\Sigma \times G)^*$

Remove letters from odd positions:

Finite group on prefixes $(\Sigma \times G)^* \to (\Sigma \times G)^*$

Remove letters from odd positions:

Finite group on prefixes $(\Sigma \times G)^* \to (\Sigma \times G)^*$

Remove letters from odd positions:

1 0 1 0 1 0 **1 9 3 9 2 7**

Finite group on prefixes $(\Sigma \times G)^* \to (\Sigma \times G)^*$

Remove letters from odd positions:

0 0 0 9 9 7

Finite group on prefixes $(\Sigma \times G)^* \to (\Sigma \times G)^*$

Remove letters from odd positions:

(Equivariant) homomorphism Delay Finite group on prefixes Flip-flop on prefixes

Letter propagation

Flip-flop monoid on prefixes $(\Sigma \times F)^* \to (\Sigma \times F)^*$

Flip-flop monoid on prefixes $(\Sigma \times F)^* \to (\Sigma \times F)^*$

$$F = \{1, a, b\}$$
$$1a = aa = ba = a$$
$$1b = bb = ab = b$$

Flip-flop monoid on prefixes $(\Sigma \times F)^* \to (\Sigma \times F)^*$

Remove everything after the first repetition:

Flip-flop monoid on prefixes $(\Sigma \times F)^* \to (\Sigma \times F)^*$

Remove everything after the first repetition:

+125777889125777889
Flip-flop monoid on prefixes $(\Sigma \times F)^* \to (\Sigma \times F)^*$

Remove everything after the first repetition:

1111aa1a11 **+ 125777889 12577889**

Flip-flop monoid on prefixes $(\Sigma \times F)^* \to (\Sigma \times F)^*$

Remove everything after the first repetition:

1111aaaaaa +125777889 125777889

Flip-flop monoid on prefixes $(\Sigma \times F)^* \to (\Sigma \times F)^*$

Remove everything after the first repetition:

111 125 257

Flip-flop monoid on prefixes $(\Sigma \times F)^* \to (\Sigma \times F)^*$

Remove everything after the first repetition:

257

Original Krohn-Rhodes theorem

Every function *f* recognised by a one-way transducer iff it is an element of *(prime)**

Original Krohn-Rhodes theorem

Every function *f* recognised by a one-way transducer can also be expressed as an element of *(prime)**

 $\texttt{remove_repetitions} = f^* \circ \texttt{delay}$

$$f(\langle x, y \rangle) = \begin{cases} y & \text{if } x \neq y \\ \epsilon & \text{otherwise} \end{cases}$$

(Equivariant) homomorphism Delay Finite group on prefixes Flip-flop on prefixes

Letter propagation

Letter propagataion $(\Sigma \times P\{\uparrow,\downarrow\})^* \to (\Sigma \times (\{.\} + \Sigma))^*$

Letter propagation $(\Sigma \times P\{\uparrow,\downarrow\})^* \to (\Sigma \times (\{.\} + \Sigma))^*$

Operations on 1 register:

Read value
Output value

Letter propagation $(\Sigma \times P\{\uparrow,\downarrow\})^* \to (\Sigma \times (\{.\} + \Sigma))^*$

Operations on 1 register:

↑ Read value

↓ Output value

Subject to single-use restriction

Letter propagation $(\Sigma \times P\{\uparrow,\downarrow\})^* \to (\Sigma \times (\{.\} + \Sigma))^*$

Change the last letter to the first letter:

125779

Letter propagation $(\Sigma \times P\{\uparrow,\downarrow\})^* \to (\Sigma \times (\{.\} + \Sigma))^*$

Change the last letter to the first letter:

+ 125779 125779 +

Letter propagation $(\Sigma \times P\{\uparrow,\downarrow\})^* \to (\Sigma \times (\{.\} + \Sigma))^*$

Change the last letter to the first letter:

Letter propagation $(\Sigma \times P\{\uparrow,\downarrow\})^* \to (\Sigma \times (\{.\} + \Sigma))^*$

Change the last letter to the first letter:

+ + 125779 125779 +

Letter propagation $(\Sigma \times P\{\uparrow,\downarrow\})^* \to (\Sigma \times (\{.\} + \Sigma))^*$

Change the last letter to the first letter:

12577

Letter propagation $(\Sigma \times P\{\uparrow,\downarrow\})^* \to (\Sigma \times (\{.\} + \Sigma))^*$

Change the last letter to the first letter:

125771

Krohn-Rhodes theorem with atoms

Every function *f* recognised by a single use, one-way iff it is an element of (*prime* + *letter propagation*)*

Two more prime functions

(Equivariant) homomorphism Delay Finite group on prefixes Flip-flop on prefixes

Letter propagation

Iterated reverse Iterated duplicate

Iterated reverse $(\Sigma + \{\#\})^* \rightarrow (\Sigma + \{\#\})^*$

125#79#9

Iterated reverse $(\Sigma + \{\#\})^* \rightarrow (\Sigma + \{\#\})^*$

521#97#9 125#79#9

Iterated reverse $(\Sigma + \{\#\})^* \rightarrow (\Sigma + \{\#\})^*$

521 #97 #9

Iterated duplicate $(\Sigma + \{\#\})^* \rightarrow (\Sigma + \{\#\})^*$

125#79#9

Iterated duplicate $(\Sigma + \{\#\})^* \rightarrow (\Sigma + \{\#\})^*$

125125#7979#9 125#79#9

Iterated duplicate $(\Sigma + \{\#\})^* \rightarrow (\Sigma + \{\#\})^*$

125125#7979#9

Two more prime functions

(Equivariant) homomorphism Delay Finite group on prefixes Flip-flop on prefixes

Letter propagation

Iterated reverse Iterated duplicate

Two-way Krohn-Rhodes theorem with atoms

single use, two way register transducer = (two-way prime + letter propagation)*

Two corollaries

One-way single-use register automata are closed under compositions

Two-way single-use register automata are closed under compositions

One more corollary

All of the following recognise the same class of transductions:

(Two-way prime + letter propagation)* original model by Krohn, Rhodes 1963

Two-way, single-use register transducers original model by Shepherdson 1959

String streaming, single-use register transducers original model by Alur, Cerny 2010

Regular list functions original model by Bojańczyk, Daviaud, Krishna 2018

The general picture

- 1. (Two-way prime + letter propagation)*
- 2. Two-way, single-use register transducers
- 3. String streaming, single-use register transducers
- 4. Regular list functions

(Prime + reversed flip-flop + letter propagation + reversed letter propagation)*

(Prime + letter propagation)*
 One-way, single-use register transducers

The general picture

- 1. (Two-way prime + letter propagation)*
- 2. Two-way, single-use register transducers
- 3. String streaming, single-use register transducers
- 4. Regular list functions
- 5. Rigid MSO~ transductions

(Prime + reversed flip-flop + letter propagation + reversed letter propagation)*

(Prime + letter propagation)*
 One-way, single-use register transducers