Single-use restriction vs. associativity

Rafał Stefański (University College London) joint work with Mikołaj Bojańczyk

Cambridge, July 2023

Data words

Data words

$A=$
 $$
\{1,2,3 \ldots\}
$$

Register automata

The first letter appears again

$$
\begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
$$

Register automata

The first letter appears again

$q_{\text {init }}$

 213312312

Register automata

The first letter appears again

$q_{\text {check }}$

 \downarrow
 213312312

Register automata

The first letter appears again

$q_{\text {check }}$

 \downarrow
 $\begin{array}{lllllllll}2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2\end{array}$

Register automata

The first letter appears again

$q_{\text {check }}$

 \downarrow

$$
\begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
$$

Register automata

The first letter appears again

$$
\begin{array}{llllllll}
& & & & & & q_{\text {found }} \\
& & & & & & \\
\hline 2 \\
& & & & & \\
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1
\end{array}
$$

Register automata

The first letter appears again
$q_{\text {found }}$

\downarrow

$$
\begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
$$

Register automata

The first letter appears again
There are at most 3 different letters in the word

The first and the last letters are equal

No two consecutive letters are equal

Semigroups with atoms (nominal semigroups)

- Set with one associative operations
- Each element can store a finite number of atoms
- The operation commutes with atom renaming:

$$
\pi(x \cdot y)=\pi(x) \cdot \pi(y)
$$

Semigroups with atoms (nominal semigroups)

$$
\begin{gathered}
P_{f i n}(A) \\
x \cdot y=x \cup y
\end{gathered}
$$

Semigroups with atoms (nominal semigroups)

$$
\begin{gathered}
\mathbb{A}^{2} \\
\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right)=\left(x_{1}, y_{2}\right)
\end{gathered}
$$

Orbit-finite semigroups

There are only finitely many elements up to atom renaming

Semigroups and languages

$$
\begin{array}{ll}
S, & h: \Sigma \rightarrow S, \quad \lambda: S \rightarrow\{Y, N\} \\
& \Sigma^{*} \xrightarrow{h^{*}} S^{*} \xrightarrow{\text { mult }} S \xrightarrow{\lambda}\{Y, N\}
\end{array}
$$

Semigroups and languages

There are at most 3 different letters in the word

$$
\binom{A}{\leq 3}+\perp
$$

$$
x \cdot y=\left\{\begin{array}{cl}
x \cup y & \text { if }|x \cup y| \leq 3 \\
\perp & \text { otherwise }
\end{array}\right.
$$

Semigroups and languages

The first letter appears again

Semigroups and languages

The first letter appears again

The semigroup would have to remember every letter from the word

$$
P_{f i n}(\mathbb{A})
$$

Orbit-finite semigroups

The first letter appears again

There are at most 3 different letters in the word

The first and the last letters are equal

No two consecutive letters are equal

Other models

Nondeterministic register automata

Two-way deterministic register automata

register automata

Orbit-finite semigroups

Single-use register automaton

Every read access to a register destroys its contents

Single-use register automaton

The first letter appears again

$$
\begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
$$

Single-use register automaton

The first letter appears again
$q_{\text {init }}$

213312312

Single-use register automaton

The first letter appears again
$q_{\text {check }}$

\downarrow
213312312

Single-use register automata

The first letter appears again

There are at most 3 different letters in the word

The first and the last letters are equal

No two consecutive letters are equal

Single-use models

One-way single-use determinstic register automata

Two-way single-use deterministic register automata

Orbit-finite semigroups

Single-use transducers

Single-use register Mealy machines

Shift all letters one position to the right

$$
\mathbb{A}^{*} \rightarrow(\vdash+\mathbb{A})^{*}
$$

$$
\begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
$$

Single-use register Mealy machines

Shift all letters one position to the right

$$
\mathbb{A}^{*} \rightarrow(\vdash+\mathbb{A})^{*}
$$

$$
\begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
$$

Single-use register Mealy machines

Shift all letters one position to the right

$$
\mathbb{A}^{*} \rightarrow(\vdash+\mathbb{A})^{*}
$$

$$
\begin{aligned}
& \vdash \\
& 2 \\
& \downarrow \\
& \begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
\end{aligned}
$$

Single-use register Mealy machines

Shift all letters one position to the right

$$
\begin{aligned}
& \vdash 2 \\
& 1 \\
& \downarrow \\
& \begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
\end{aligned}
$$

Single-use register Mealy machines

Shift all letters one position to the right

$$
\mathbb{A}^{*} \rightarrow(\vdash+\mathbb{A})^{*}
$$

$$
\begin{aligned}
& \vdash 21 \\
& 3 \\
& \downarrow \\
& 213312312
\end{aligned}
$$

Single-use register Mealy machines

Shift all letters one position to the right

$$
\mathbb{A}^{*} \rightarrow(\vdash+\mathbb{A})^{*}
$$

$$
\vdash 213
$$

$$
213312312
$$

Single-use register Mealy machines

Shift all letters one position to the right

$$
\mathbb{A}^{*} \rightarrow(\vdash+\mathbb{A})^{*}
$$

$$
\vdash 213
$$

$$
213312312
$$

Single-use register Mealy machines

Shift all letters one position to the right

$$
\begin{aligned}
& \mathrm{A}^{*} \rightarrow(\vdash+\mathrm{A})^{*} \\
& \vdash 21131311231 \\
& \begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
\end{aligned}
$$

Single-use register Mealy machines

Compare every letter with the first letter

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

$$
\begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
$$

Single-use register Mealy machines

Compare every letter with the first letter

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

Y

$$
\begin{array}{cccccccccc}
\hline 2 \\
\downarrow \\
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
$$

Single-use register Mealy machines

Compare every letter with the first letter

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

Y N

 \downarrow
 $$
\begin{array}{lllllllll} 2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2 \end{array}
$$

Single-use register Mealy machines

Compare every letter with the first letter

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

$$
\begin{array}{lllllllllll}
Y & N \\
& & ? \\
& & & & & & & & \\
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
$$

Single-use register Mealy machines

Shift all letters one position to the right
Replace all letters with the first letter
Compare every letter with the previous one
Compare every letter with the first letter

Why single-use transducers?

- Single-use Mealy machines admit Krohn-Rhodes decompositions
- All of the following models are equivalent:

1. Single-use two-way automata
2. Single-use copyless SSTs
3. Regular list functions with atoms
4. Compositions of two-way primes with atoms

- Single-use automata are equivalent to orbit-finite semigroups

Semigroups and transducers

$$
\begin{aligned}
& S, \quad h: \Sigma \rightarrow S, \quad \lambda: S \rightarrow \Gamma \\
& \Sigma^{*} \xrightarrow{h^{*}} S^{*} \xrightarrow{\text { prefixes }} S^{*} \xrightarrow{\lambda^{*}} \Gamma^{*}
\end{aligned}
$$

Semigroups and transducers

Shift all letters one position to the right

$$
\begin{gathered}
\mathbb{A}^{2}+\mathbb{A} \\
\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right)=\left(y_{1}, y_{2}\right) \\
\left(x_{1}, x_{2}\right) \cdot y=\left(x_{2}, y\right)
\end{gathered}
$$

Semigroups and transducers

Replace all letters with the first letter
Compare every letter with the first letter

$$
A^{2}
$$

$$
\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right)=\left(x_{1}, y_{2}\right)
$$

Locality restriction

$$
\lambda(x e y)=\lambda(\pi(x) e y)
$$

As long as:

- π fixes all atoms in e
- e is an idempotent $(e \cdot e=e)$
- y is a prefix of $e(e \cdot b=y$, for some $b)$

Local orbit-finte semigroup transductions \simeq Single-use Mealy machines

Research directions

- Rational single-use functions
- Krohn-Rhodes decompositions of orbit-finite semigroups
- Atoms with more structure such as (\mathbb{Q}, \leq)

Thank you!

