## Single-use restriction vs. associativity

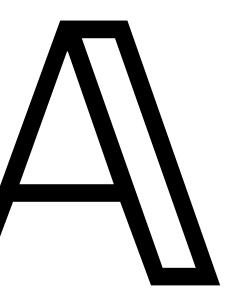
#### Rafał Stefański (University College London) joint work with Mikołaj Bojańczyk

Cambridge, July 2023

Founded by EPSRC project "Resources in Computation"

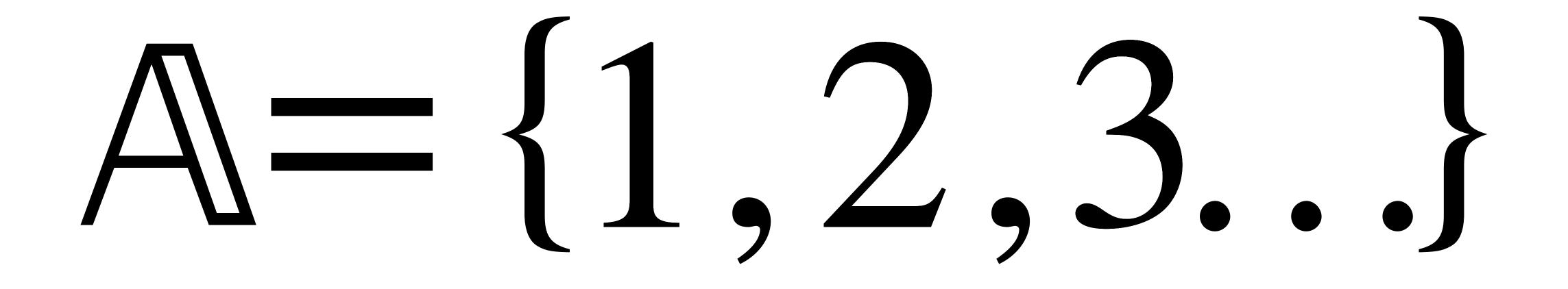


## **Data words**





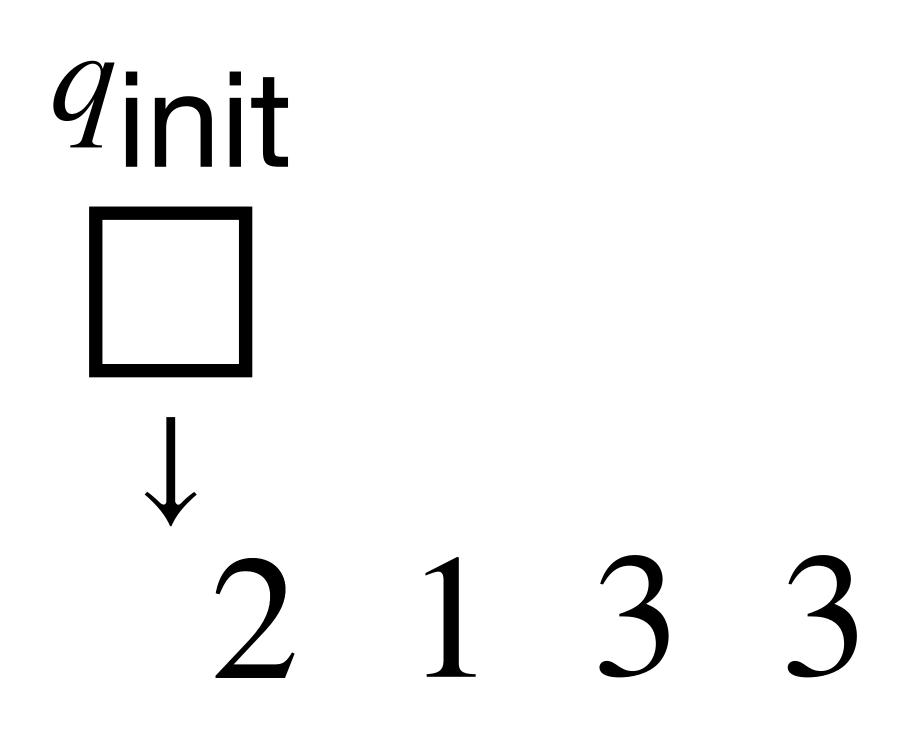
## **Data words**





#### The first letter appears again

#### The first letter appears again



## 3 3 1 2 3 1 2



#### The first letter appears again

# <sup>9</sup>check

## 3 3 1 2 3 2



#### The first letter appears again

# <sup>9</sup>check

## 3 3 1 2 3 2



#### The first letter appears again

## 9check 3 3 1 2 3 2



#### The first letter appears again

## 9 found 3 3 1 2 3 1 2



#### The first letter appears again

## 9 found 3 3 1 2 3 2



#### The first letter appears again

#### There are at most 3 different letters in the word

#### The first and the last letters are equal

#### No two consecutive letters are equal



## Semigroups with atoms (nominal semigroups)

- Set with one associative operations
- Each element can store a finite number of atoms
- The operation commutes with atom renaming:

$$\pi(x \cdot y) = \pi(x) \cdot \pi(y)$$





## Semigroups with atoms (nominal semigroups)

 $P_{fin}(A)$ 

 $x \cdot y = x \cup y$ 



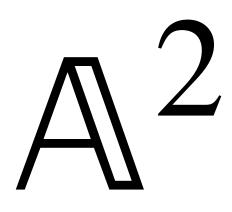
## Semigroups with atoms (nominal semigroups)



## $(x_1, x_2) \cdot (y_1, y_2) = (x_1, y_2)$



## **Orbit-finite semigroups**



#### There are only finitely many elements up to atom renaming





## **Semigroups and languages** $S, h: \Sigma \to S, \lambda: S \to \{Y, N\}$

## $\Sigma^* \xrightarrow{h^*} S^* \xrightarrow{\text{mult}} S \xrightarrow{\lambda} \{Y, N\}$

## Semigroups and languages

 $\begin{pmatrix} A \\ \leq 3 \end{pmatrix} + \bot$  $x \cdot y = \begin{cases} x \cup y & \text{if } |x \cup y| \le 3 \\ \bot & \text{otherwise} \end{cases}$ 

#### There are at most 3 different letters in the word



## **Semigroups and languages**

#### The first letter appears again





## **Semigroups and languages**

#### The first letter appears again

#### The semigroup would have to remember every letter from the word



## $P_{fin}(A)$



## **Orbit-finite semigroups**

#### The first letter appears again

#### There are at most 3 different letters in the word

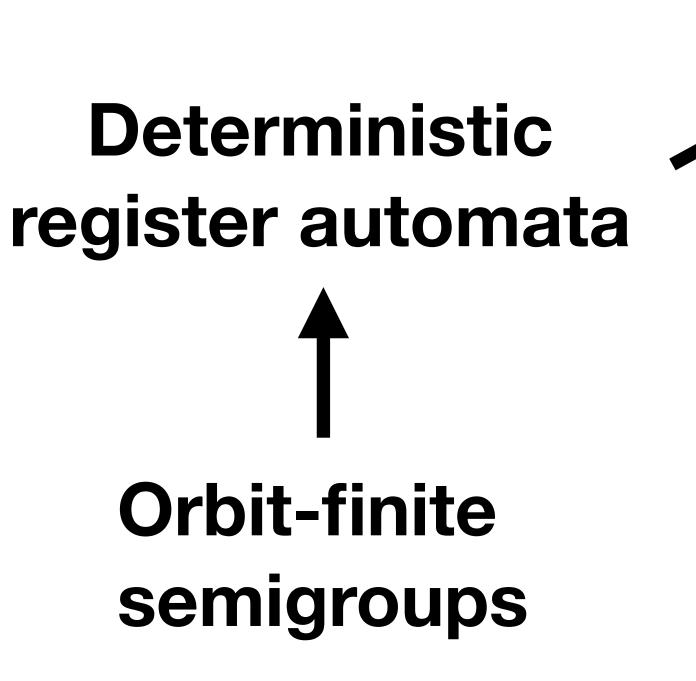
#### The first and the last letters are equal

No two consecutive letters are equal



## Other models

## Nondeterministic register automata



## Two-way deterministic register automata



#### Every read access to a register destroys its contents



#### The first letter appears again

## 2 1 3 3 1 2 3 1 2



#### The first letter appears again



## 13312



#### The first letter appears again

# 9check

## 1 3 3 1 2 3 1 2



#### The first letter appears again

#### There are at most 3 different letters in the word

#### The first and the last letters are equal

No two consecutive letters are equal



## Single-use models

#### **One-way single-use** determinstic register automata

#### **Two-way single-use** deterministic register automata

### **Orbit-finite** semigroups

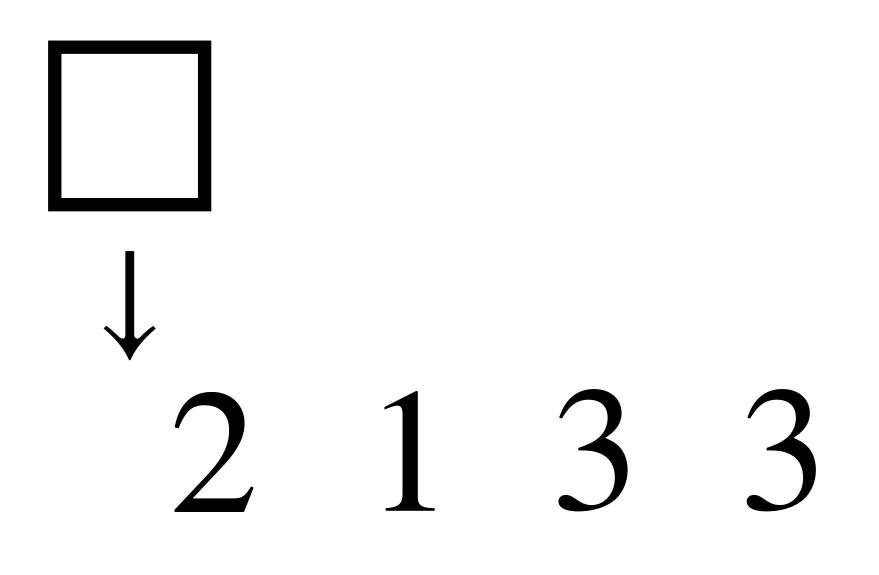


## Single-use transducers

#### Shift all letters one position to the right

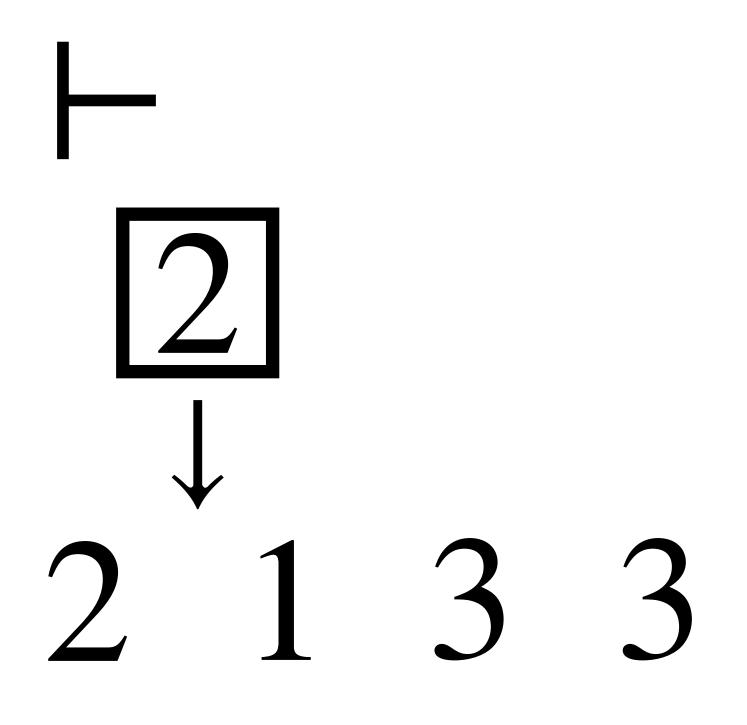
 $\mathbb{A}^* \to (\mathbb{F} + \mathbb{A})^*$ 

#### Shift all letters one position to the right



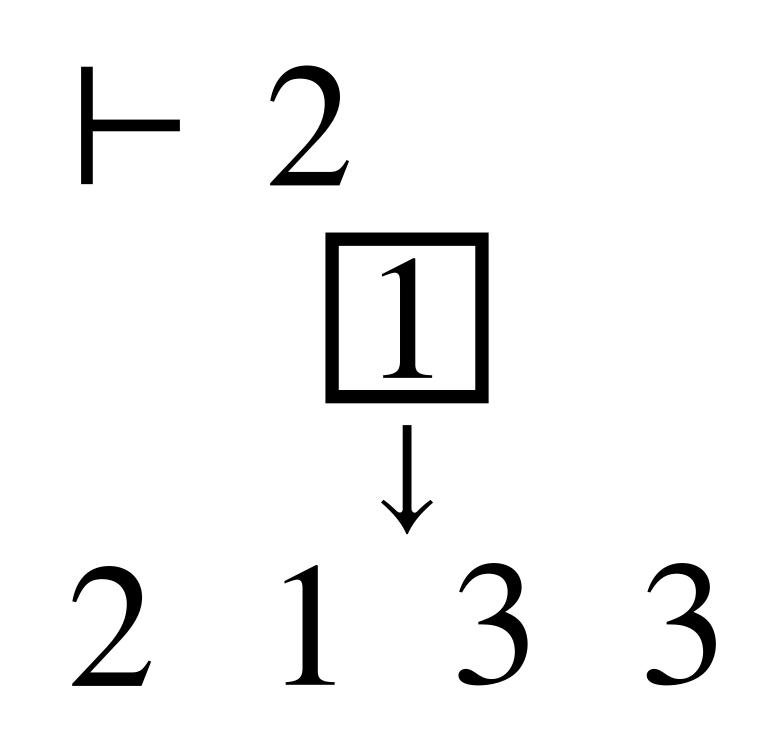
 $\mathbb{A}^* \to (\vdash + \mathbb{A})^*$ 

#### Shift all letters one position to the right



 $\mathbb{A}^* \to (\vdash + \mathbb{A})^*$ 

#### Shift all letters one position to the right



#### Shift all letters one position to the right

-21

 $\mathbb{A}^* \to (\vdash + \mathbb{A})^*$ 

### Shift all letters one position to the right

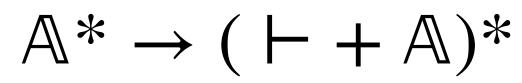
H 2 1 31 3 3 1 2 3 1 2

 $\mathbb{A}^* \to (\vdash + \mathbb{A})^*$ 

### Shift all letters one position to the right

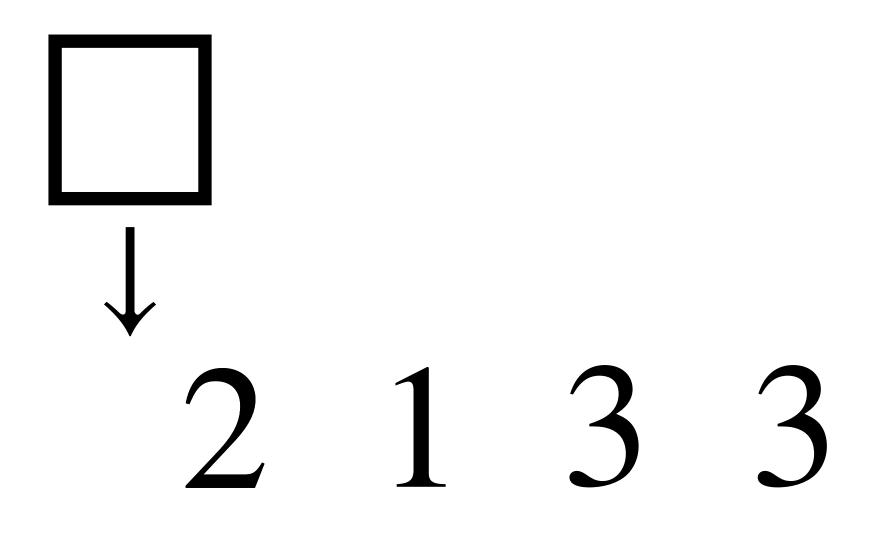
H 2 1 31 3 3 1 2 3 1 2

 $\mathbb{A}^* \to (\vdash + \mathbb{A})^*$ 

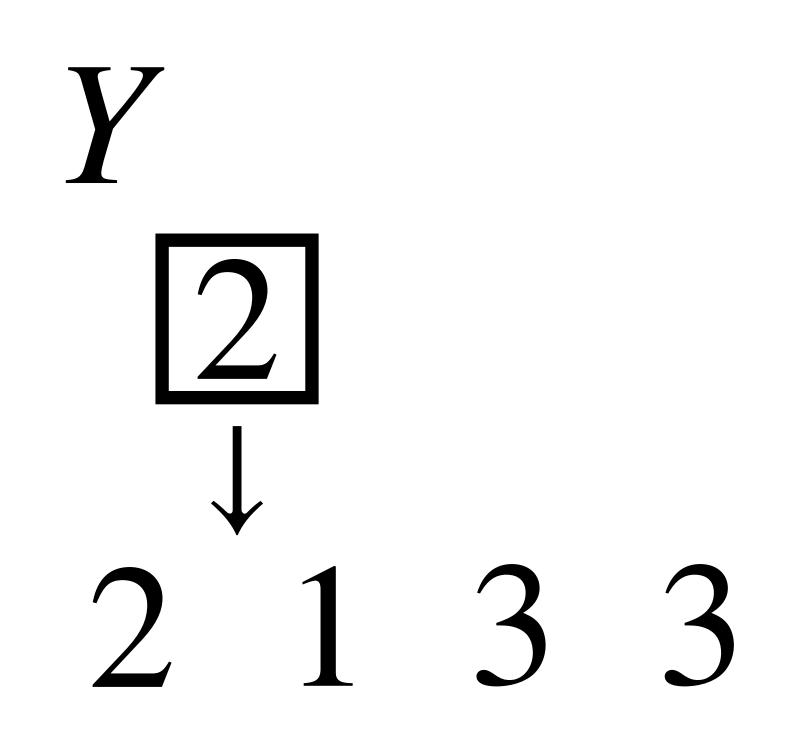


- Shift all letters one position to the right
- -2133121 3 3 1 2 3 1 2

#### **Compare every letter with the first letter**



 $\mathbb{A}^* \to \{Y, N\}^*$ 

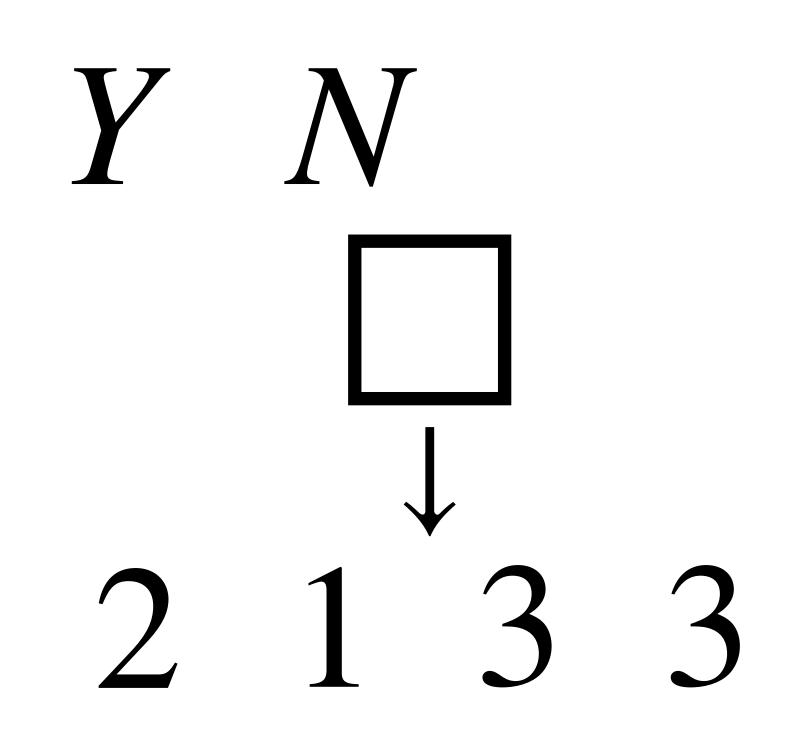


#### **Compare every letter with the first letter**

 $\mathbb{A}^* \to \{Y, N\}^*$ 

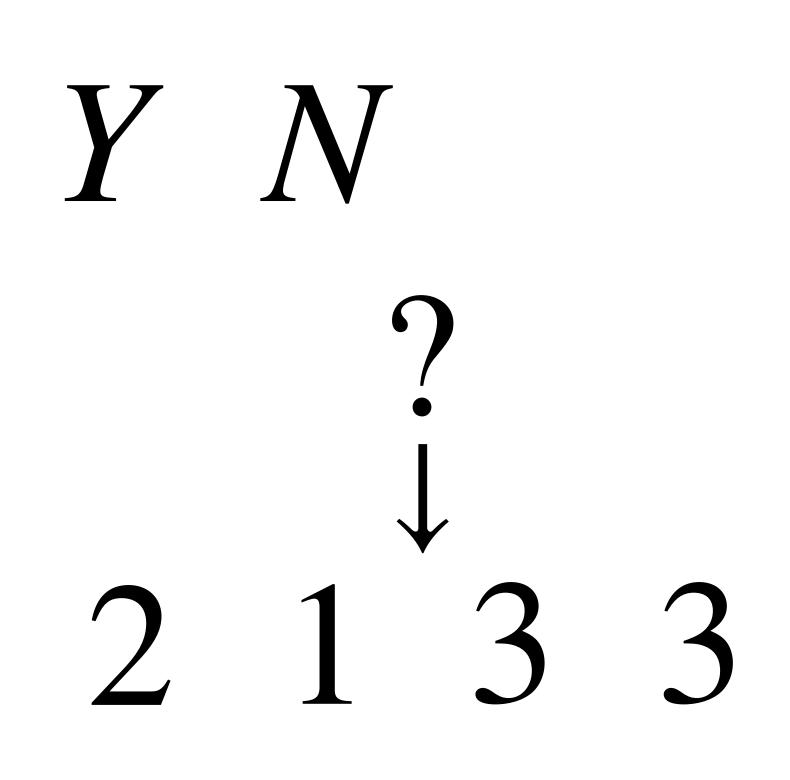
#### **Compare every letter with the first letter**





 $\mathbb{A}^* \to \{Y, N\}^*$ 

#### **Compare every letter with the first letter**



 $\mathbb{A}^* \to \{Y, N\}^*$ 

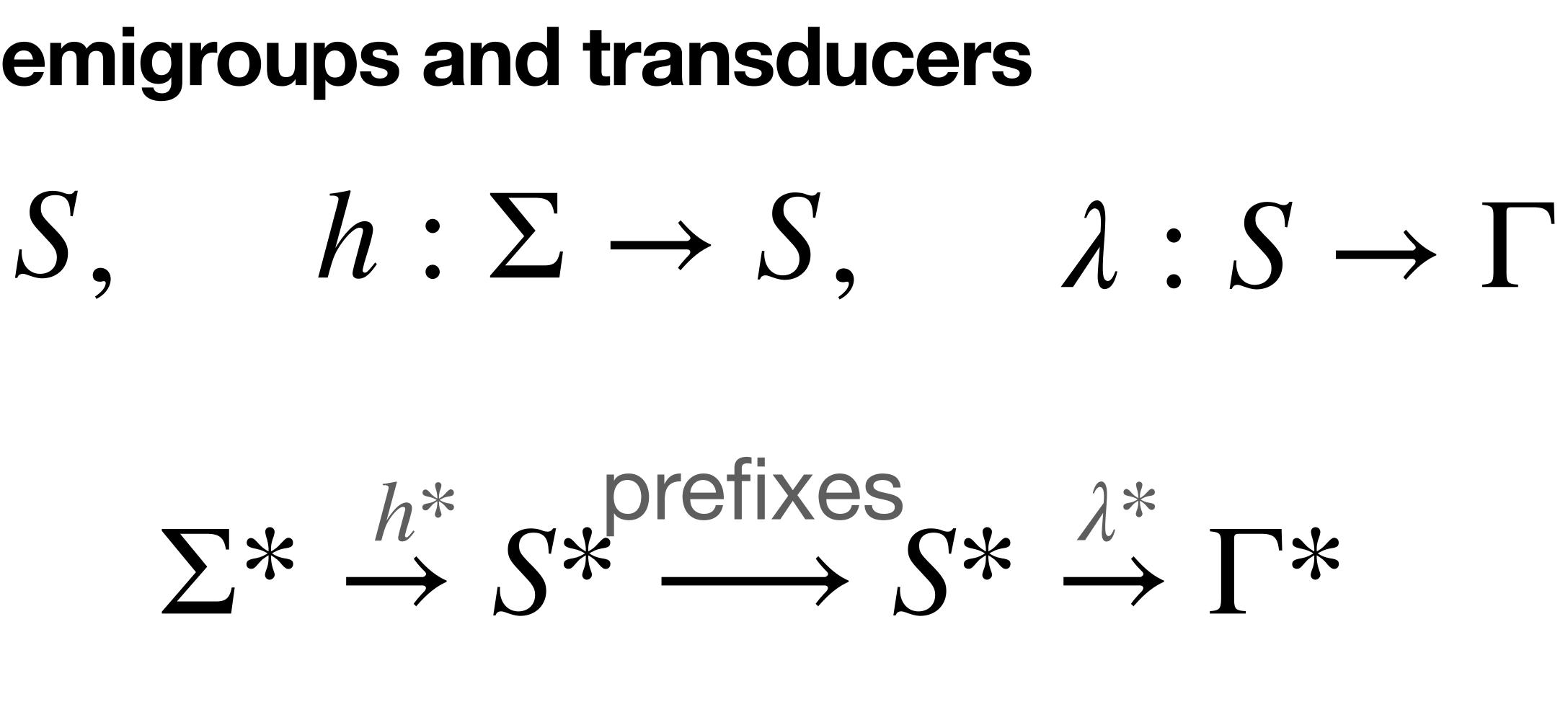
- Shift all letters one position to the right
  - **Replace all letters with the first letter**
- **Compare every letter with the previous one** 
  - **Compare every letter with the first letter**

## Why single-use transducers?

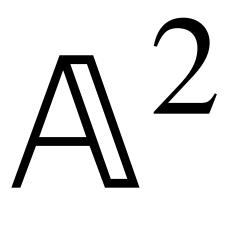
- Single-use Mealy machines admit Krohn-Rhodes decompositions
- All of the following models are equivalent:
  - 1. Single-use two-way automata
  - 2. Single-use copyless SSTs
  - 3. Regular list functions with atoms
  - 4. Compositions of two-way primes with atoms
- Single-use automata are equivalent to orbit-finite semigroups



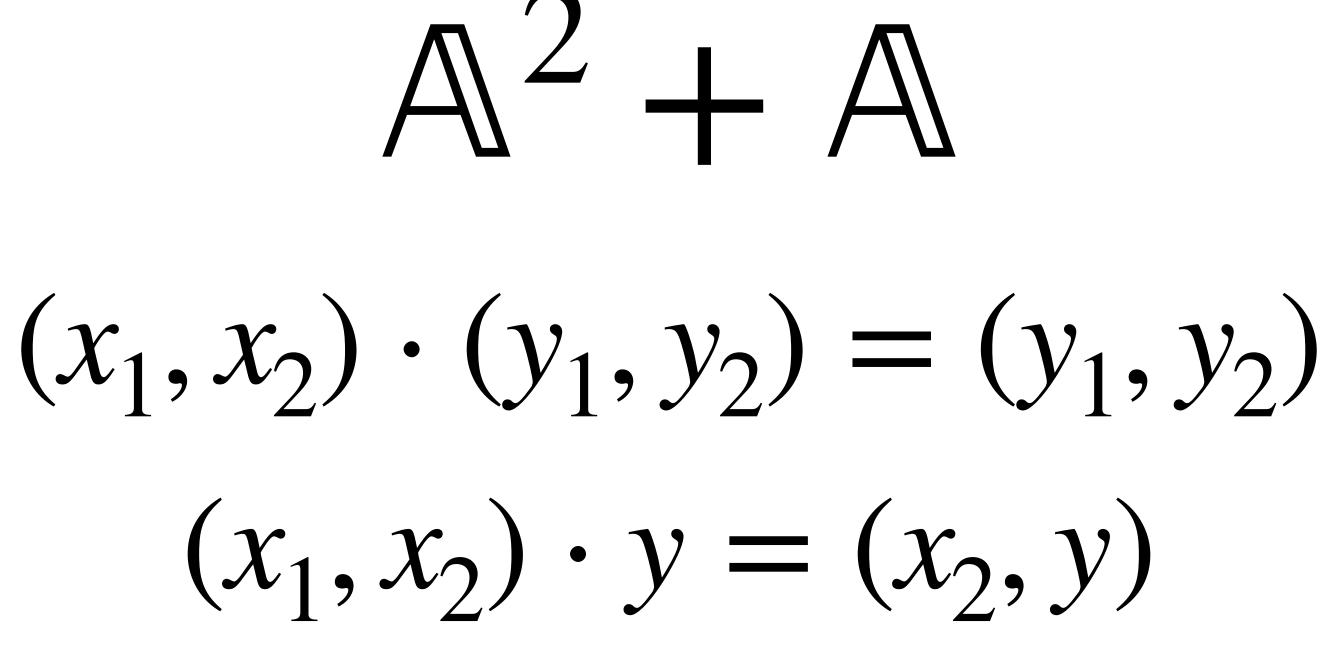
# Semigroups and transducers



## **Semigroups and transducers**



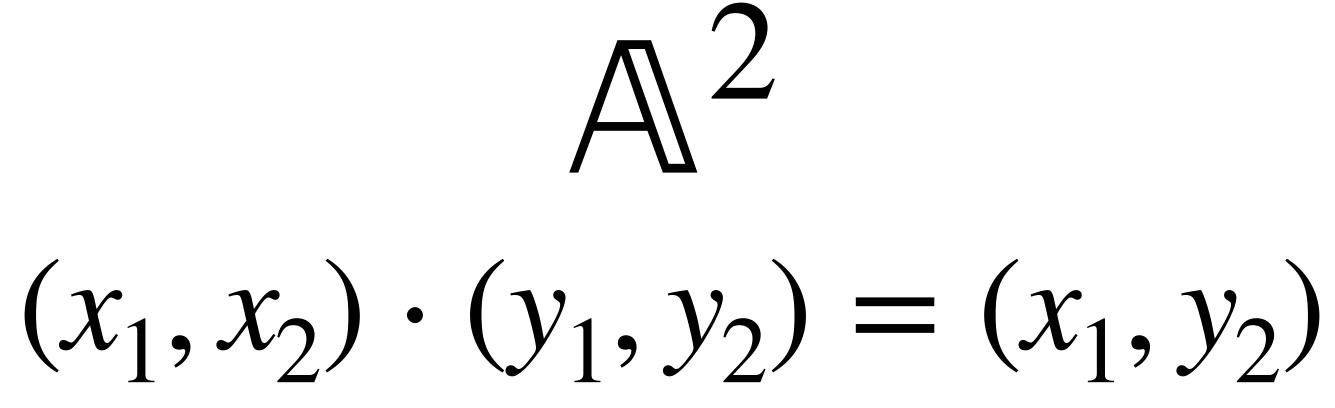
#### Shift all letters one position to the right



## **Semigroups and transducers**

#### **Replace all letters with the first letter**

#### **Compare every letter with the first letter**



## Locality restriction

As long as:

- $\pi$  fixes all atoms in e
- e is an idempotent ( $e \cdot e = e$ )
- y is a prefix of  $e (e \cdot b = y, \text{ for some } b)$

Local orbit-finte semigroup transductions  $\simeq$  Single-use Mealy machines

 $\lambda(xey) = \lambda(\pi(x)ey)$ 



## **Research directions**

- Rational single-use functions
- Atoms with more structure such as  $(\mathbb{Q}, \leq)$

Krohn-Rhodes decompositions of orbit-finite semigroups

### **Thank you!**