University College London

Highlights '23

Rafał Stefański

Founded by EPSRC project "Resources in Computation"

Monads

MA Data structure

$MMA \longrightarrow MA$ Flattening operation

 $A \longrightarrow MA$

Singleton operation

Monads

MA Data structure

 $A \longrightarrow MA$

Singleton operation

Monads

MA Data structure

Together with coherence axioms

$MMA \longrightarrow MA$ Flattening operation

 $A \longrightarrow MA$

Singleton operation

MA Data structure

$MMA \longleftarrow MA$ Expanding operation

A - MA

Extracting operation

Together with coherence axioms

Monads = Languages Monads + Comonads = Transducers

Monads = Languages^{*} Monads + Comonads = Transducers

Monads = Languages Monads = Transducers

Monads = Languages Monads = Languages Monads = Transducers This talk.

 $MA \rightarrow MMA$ $MA \rightarrow A$

 $MA = A^+$

 $MA \rightarrow MMA$ $MA \rightarrow A$

 $MA = A^+$

$[[1, 2, 3], [4, 5], [6, 7]] \mapsto [1, 2, 3, 4, 5, 7]$

$7 \mapsto [7]$

 $MA \rightarrow MMA$ $MA \rightarrow A$

 $MA = A^+$

$[[1, 2, 3], [4, 5], [6, 7]] \mapsto [1, 2, 3, 4, 5, 7]$

$7 \mapsto [7]$

 $MA \rightarrow MMA$ $MA \rightarrow A$

 $MA = A^+$

$[[1, 2, 3], [4, 5], [6, 7]] \mapsto [1, 2, 3, 4, 5, 7]$

$7 \mapsto [7]$

$[1,2,3,4] \mapsto [[1],[1,2],[1,2,3],[1,2,3,4]]$

 $MA = A^+$

$[[1, 2, 3], [4, 5], [6, 7]] \mapsto [1, 2, 3, 4, 5, 7]$

$7 \mapsto [7]$

$[1,2,3,4] \mapsto [[1],[1,2],[1,2,3],[1,2,3,4]]$

 $MA = A^+$

$[[1, 2, 3], [4, 5], [6, 7]] \mapsto [1, 2, 3, 4, 5, 7]$

$7 \mapsto [7]$

$[1,2,3,4] \mapsto [[1],[1,2],[1,2,3],[1,2,3,4]]$

 $[1,2,3,4] \mapsto 4$

Given a regular language:

We define the following transduction:

$L: M\Sigma \rightarrow \{ Yes, No \}$

$M\Sigma \longrightarrow MM\Sigma \longrightarrow MM\Sigma \longrightarrow M\{Yes, No\}$

Given a regular language:

We define the following transduction:

[a, b, a, a]

$L: M\Sigma \rightarrow \{ Yes, No \}$

$M\Sigma \longrightarrow MM\Sigma \longrightarrow MM\Sigma \longrightarrow M\{Yes, No\}$

Given a regular language:

We define the following transduction:

$L: M\Sigma \rightarrow \{\text{Yes}, \text{No}\}$

Given a regular language:

We define the following transduction:

$L: M\Sigma \rightarrow \{\text{Yes}, \text{No}\}$

Given a regular language:

We define the following transduction:

$L: M\Sigma \to \Gamma$

$M\Sigma \longrightarrow MM\Sigma \longrightarrow ML$

Given a regular language:

We define the following transduction:

$L: M\Sigma \to \Gamma$

This gives us a class of M-transductions.

Μ

Expressive Power

Μ

Non-empty lists with prefixes

Expressive Power

Mealy machines

Μ

Non-empty lists with prefixes

Non-empty lists with suffixes

Expressive Power

Mealy machines

Right-to-left Mealy machines

Μ

Non-empty lists with prefixes

Non-empty lists with suffixes

Lists with an underlined element

Expressive Power
Mealy machines
Right-to-left Mealy machines
Rational letter-to-letter functions

Μ

Non-empty lists with prefixes

Non-empty lists with suffixes

Lists with an underlined element

Other examples of M:

	Expressive Power
	Mealy machines
	Right-to-left Mealy machines
d	Rational letter-to-letter functions

Μ

Non-empty lists with prefixes

Non-empty lists with suffixes

Lists with an underlined element

Other examples of M:

Words over countable orders with a maximal/minimal/underlined element.

	Expressive Power
	Mealy machines
	Right-to-left Mealy machines
d	Rational letter-to-letter functions

Μ

Non-empty lists with prefixes

Non-empty lists with suffixes

Lists with an underlined element

Other examples of M:

Words over countable orders with a maximal/minimal/underlined element. Terms with an underlined variable.

	Expressive Power
	Mealy machines
	Right-to-left Mealy machines
d	Rational letter-to-letter functions

Μ

Non-empty lists with prefixes

Non-empty lists with suffixes

Lists with an underlined element

Other examples of M:

Words over countable orders with a maximal/minimal/underlined element. Terms with an underlined variable.

	Expressive Power
	Mealy machines
	Right-to-left Mealy machines
d	Rational letter-to-letter functions

M-transductions are closed under compositions.

This needs some axioms about the monad-comonad interactions.

M-transductions are closed under compositions.

This needs some axioms about the monad-comonad interactions.

Verified in Coq

M-transductions are closed under compositions.

Verified in Coq

This needs some axioms about the monad-comonad interactions.

Thank you!