Monads, Comonads, and transducers

Rafał Stefański

University College London

Monads

MA
Data structure
$M M A \longrightarrow M A$
Flattening operation

$A \longrightarrow M A$

Singleton operation

Monads

MA
Data structure
$M M A \longrightarrow M A$
Flattening operation

$A \longrightarrow M A$

Singleton operation

Monads

MA
Data structure

$M M A \longrightarrow M A$
Flattening operation

$A \longrightarrow M A$

Singleton operation

Together with coherence axioms

Comonads

MA
Data structure
$M M A \longleftarrow M A$
Expanding operation

$A \longleftarrow M A$

Extracting operation

Together with coherence axioms

Slogan:

Monads = Languages

Monads + Comonads $=$ Transducers

Slogan:

Monads = Languages

Regular
Recognisable by finite algebras

Monads + Comonads $=$ Transducers

Slogan:

Monads = Languages

Regular

Recognisable by finite algebras
M. Bojańczyk. 2015.

Recognisable languages over monads.

Monads + Comonads $=$ Transducers

Slogan:
 Monads = Languages
 Regular
 Recognisable by finite algebras
 M. Bojańczyk. 2015.
 Recognisable languages over monads.

Monads + Comonads $=$ Transducers

This talk.

Monad and comonad

$$
M A=A^{+}
$$

```
\(M M A \rightarrow M A\) \(A \rightarrow M A\)
```

$M A \rightarrow M M A$
$M A \rightarrow A$

Monad and comonad

$$
M A=A^{+}
$$

$$
\begin{array}{lll}
M M A \rightarrow M A & \text { Flatten } & {[[1,2,3],[4,5],[6,7]] \mapsto[1,2,3,4,5,7]} \\
A \rightarrow M A & \text { Singleton } & 7 \mapsto[7]
\end{array}
$$

$$
\begin{aligned}
& M A \rightarrow M M A \\
& M A \rightarrow A
\end{aligned}
$$

Monad and comonad

$$
M A=A^{+}
$$

$$
\begin{array}{lll}
M M A \rightarrow M A & \text { Flatten } & {[[1,2,3],[4,5],[6,7]] \mapsto[1,2,3,4,5,7]} \\
A \rightarrow M A & \text { Singleton } & 7 \mapsto[7]
\end{array}
$$

$$
\begin{array}{ll}
M A & \rightarrow M M A \quad \text { Prefixes } \\
M A \rightarrow A
\end{array}
$$

Monad and comonad

$$
M A=A^{+}
$$

$$
\begin{array}{lll}
M M A \rightarrow M A & \text { Flatten } & {[[1,2,3],[4,5],[6,7]] \mapsto[1,2,3,4,5,7]} \\
A \rightarrow M A & \text { Singleton } & 7 \mapsto[7]
\end{array}
$$

$M A \rightarrow M M A$
$M A \rightarrow A$

Prefixes
$[1,2,3,4] \mapsto[[1],[1,2],[1,2,3],[1,2,3,4]]$

Monad and comonad

$$
M A=A^{+}
$$

$$
\begin{array}{lll}
M M A \rightarrow M A & \text { Flatten } & {[[1,2,3],[4,5],[6,7]] \mapsto[1,2,3,4,5,7]} \\
A \rightarrow M A & \text { Singleton } & 7 \mapsto[7] \\
\hline
\end{array}
$$

$M A \rightarrow M M A$	Prefixes	$[1,2,3,4] \mapsto[[1],[1,2],[1,2,3],[1,2,3,4]]$
$M A \rightarrow A$	Last element	

Monad and comonad

$$
M A=A^{+}
$$

$$
\begin{array}{lll}
M M A \rightarrow M A & \text { Flatten } & {[[1,2,3],[4,5],[6,7]] \mapsto[1,2,3,4,5,7]} \\
A \rightarrow M A & \text { Singleton } & 7 \mapsto[7] \\
\hline
\end{array}
$$

$M A \rightarrow M M A$	Prefixes	$[1,2,3,4] \mapsto[[1],[1,2],[1,2,3],[1,2,3,4]]$
$M A \rightarrow A$	Last element	$[1,2,3,4] \mapsto 4$

Monads, comonads, and transducers

Given a regular language:

$$
L: M \Sigma \rightarrow\{\text { Yes, No }\}
$$

We define the following transduction:

$$
M \Sigma \xrightarrow{\text { comonad }} M M \Sigma \xrightarrow{M L} M\{\mathrm{Yes}, \mathrm{No}\}
$$

Monads, comonads, and transducers

Given a regular language:

$$
L: M \Sigma \rightarrow\{\text { Yes, No }\}
$$

We define the following transduction:

$$
M \Sigma \xrightarrow{\text { comonad }} M M \Sigma \xrightarrow{M L} M\{\mathrm{Yes}, \mathrm{No}\}
$$

$$
[a, b, a, a]
$$

Monads, comonads, and transducers

Given a regular language:

$$
L: M \Sigma \rightarrow\{\text { Yes, No }\}
$$

We define the following transduction:

$$
\begin{aligned}
M \Sigma \xrightarrow[\text { comonad }]{\longrightarrow} M M \Sigma \xrightarrow{M L} M\{Y e s, N o\} \\
{[a, b, a, a] \longmapsto[[a],[a, b],[a, b, a],[a, b, a, a]] }
\end{aligned}
$$

Monads, comonads, and transducers

Given a regular language:

$$
L: M \Sigma \rightarrow\{\text { Yes, No }\}
$$

We define the following transduction:

$$
\begin{gathered}
M \Sigma \xrightarrow[\text { comonad }]{\longrightarrow} M M \Sigma \xrightarrow{M L} M\{Y \mathrm{Yes}, \mathrm{No}\} \\
{[a, b, a, a] \longmapsto[[a],[a, b],[a, b, a],[a, b, a, a]] \longmapsto[\mathrm{Yes}, \mathrm{Yes}, \mathrm{No}, \mathrm{Yes}]}
\end{gathered}
$$

Monads, comonads, and transducers

Given a regular language:

$$
L: M \Sigma \rightarrow \Gamma
$$

We define the following transduction:

$$
M \Sigma \xrightarrow{\text { comonad }} M M \Sigma \xrightarrow{M L} M \Gamma
$$

Monads, comonads, and transducers

Given a regular language:

$$
L: M \Sigma \rightarrow \Gamma
$$

We define the following transduction:

$$
M \Sigma \xrightarrow{\text { comonad }} M M \Sigma \xrightarrow{M L} M \Gamma
$$

This gives us a class of M-transductions.

Structure vs. power

Structure vs. power

\mathbf{M}	Expressive Power
Non-empty lists with prefixes	Mealy machines

Structure vs. power

\mathbf{M}	Expressive Power
Non-empty lists with prefixes	Mealy machines
Non-empty lists with suffixes	Right-to-left Mealy machines

Structure vs. power

\mathbf{M}	Expressive Power
Non-empty lists with prefixes	Mealy machines
Non-empty lists with suffixes	Right-to-left Mealy machines
Lists with an underlined element	Rational letter-to-letter functions

Structure vs. power

\mathbf{M}	Expressive Power
Non-empty lists with prefixes	Mealy machines
Non-empty lists with suffixes	Right-to-left Mealy machines
Lists with an underlined element	Rational letter-to-letter functions

Other examples of M :

Structure vs. power

\mathbf{M}	Expressive Power
Non-empty lists with prefixes	Mealy machines
Non-empty lists with suffixes	Right-to-left Mealy machines
Lists with an underlined element	Rational letter-to-letter functions

Other examples of M:

Words over countable orders with a maximal/minimal/underlined element.

Structure vs. power

\mathbf{M}	Expressive Power
Non-empty lists with prefixes	Mealy machines
Non-empty lists with suffixes	Right-to-left Mealy machines
Lists with an underlined element	Rational letter-to-letter functions

Other examples of M :

Words over countable orders with a maximal/minimal/underlined element.
Terms with an underlined variable.

Structure vs. power

\mathbf{M}	Expressive Power
Non-empty lists with prefixes	Mealy machines
Non-empty lists with suffixes	Right-to-left Mealy machines
Lists with an underlined element	Rational letter-to-letter functions

Other examples of M :

Words over countable orders with a maximal/minimal/underlined element.
Terms with an underlined variable.

Theorem

M-transductions are closed under compositions.

Theorem

M-transductions are closed under compositions.

Theorem

M-transductions are closed under compositions.

Theorem

M-transductions are closed under compositions.

Theorem

M-transductions are closed under compositions.

This needs some axioms about the monad-comonad interactions.

Theorem

M-transductions are closed under compositions.

This needs some axioms about the monad-comonad interactions.

Theorem

M-transductions are closed under compositions.

This needs some axioms about the monad-comonad interactions.

