
May 2023

An algebraic theory for
single-use transducers
over data words

Rafał Stefański (University College London)
unpublished joint work with Mikołaj

Founded by EPSRC project “Resources in Computation”

Single-use register Mealy machines

𝔸

𝔸 {= 1 2 3…}, ,1 2 32 31

Single-use register Mealy machines

1 2 3 1 232 31

Shift all letters one position to the right

Single-use register Mealy machines

𝔸* → (⊢ + 𝔸)*

↓
1 2 3 1 232 31

Single-use register Mealy machines

2

Shift all letters one position to the right
𝔸* → (⊢ + 𝔸)*

1 2 3 1 232 31

Single-use register Mealy machines

↓

⊢
2

1

Shift all letters one position to the right
𝔸* → (⊢ + 𝔸)*

1 2 3 1 232 31

Single-use register Mealy machines

↓

⊢ 2
1

Shift all letters one position to the right

1 2 3 1 232 31

Single-use register Mealy machines

↓

⊢ 2 1
3

3

Shift all letters one position to the right
𝔸* → (⊢ + 𝔸)*

1 2 3 1 2

3

2 31

Single-use register Mealy machines

↓

⊢ 2 1 3

3

Shift all letters one position to the right
𝔸* → (⊢ + 𝔸)*

1 2 3 1 2

3

2 31

Single-use register Mealy machines

↓

⊢ 2 1 3

3

Shift all letters one position to the right
𝔸* → (⊢ + 𝔸)*

1 2 3 1 22 31

Single-use register Mealy machines

↓

⊢ 2 1 3

3

1 2 3 1
2

3

Shift all letters one position to the right
𝔸* → (⊢ + 𝔸)*

1 2 3 1 232 31

Replace all letters with the first letter

Single-use register Mealy machines

𝔸* → 𝔸*

↓
22

1 2 3 1 232 31

Replace all letters with the first letter
𝔸* → 𝔸*

↓
2

2

Single-use register Mealy machines

1 2 3 1 232 31

Replace all letters with the first letter

Single-use register Mealy machines

𝔸* → 𝔸*

↓

22

1 2 3 1 232 31

Replace all letters with the first letter

Single-use register Mealy machines

𝔸* → 𝔸*

22
?
↓

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → 𝔸*

22
?
↓

Replace all letters with the first letter

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → 𝔸*

↓

Replace all letters with the first letter

222

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → 𝔸*

Replace all letters with the first letter

↓

2
2

2

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → 𝔸*

Replace all letters with the first letter

↓

2 22

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → 𝔸*

Replace all letters with the first letter

↓

2 22

?

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → {Y, N}*

Compare every letter with the previous one

↓
2

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → {Y, N}*

Compare every letter with the previous one

↓

N
2

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → {Y, N}*

Compare every letter with the previous one

↓

N
2

1

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → {Y, N}*

Compare every letter with the previous one

↓

N

1

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → {Y, N}*

Compare every letter with the previous one

N
1
↓

3

N

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → {Y, N}*

Compare every letter with the previous one

N

↓
3

N

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → {Y, N}*

Compare every letter with the previous one

N

↓
3

N

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → {Y, N}*

Compare every letter with the previous one

N

↓
3

3

N N

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → {Y, N}*

Compare every letter with the previous one

N

↓
3

N N

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → {Y, N}*

Compare every letter with the previous one

↓
3

N N N

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → {Y, N}*

Compare every letter with the previous one

↓
3

N N N Y

2

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → {Y, N}*

Compare every letter with the previous one

↓

N N N Y N N N N N
2

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → {Y, N}*

Compare every letter with the first letter

↓
2

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → {Y, N}*

Compare every letter with the first letter

↓

Y
2

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → {Y, N}*

Compare every letter with the first letter

↓

Y

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → {Y, N}*

Compare every letter with the first letter

↓

Y N

1 2 3 1 232 31

Single-use register Mealy machines

𝔸* → {Y, N}*

Compare every letter with the first letter

↓

Y N
?

Single-use register Mealy machines

Compare every letter with the previous one

Shift all letters one position to the right

Replace all letters with the first letter

Compare every letter with the first letter

Why single-use transducers?

Bojanczyk, S. 2020

Why single-use transducers?
• Single-use Mealy machines admit Krohn-Rhodes decompositions

Bojanczyk, S. 2020

Why single-use transducers?
• Single-use Mealy machines admit Krohn-Rhodes decompositions

• All of the following models are equivalent:

Bojanczyk, S. 2020

Why single-use transducers?
• Single-use Mealy machines admit Krohn-Rhodes decompositions

• All of the following models are equivalent:

1. Single-use two-way automata

Bojanczyk, S. 2020

Why single-use transducers?
• Single-use Mealy machines admit Krohn-Rhodes decompositions

• All of the following models are equivalent:

1. Single-use two-way automata

2. Single-use copyless SSTs

Bojanczyk, S. 2020

Why single-use transducers?
• Single-use Mealy machines admit Krohn-Rhodes decompositions

• All of the following models are equivalent:

1. Single-use two-way automata

2. Single-use copyless SSTs

3. Regular list functions with atoms

Bojanczyk, S. 2020

Why single-use transducers?
• Single-use Mealy machines admit Krohn-Rhodes decompositions

• All of the following models are equivalent:

1. Single-use two-way automata

2. Single-use copyless SSTs

3. Regular list functions with atoms

4. Compositions of two-way primes with atoms

Bojanczyk, S. 2020

Why single-use transducers?
• Single-use Mealy machines admit Krohn-Rhodes decompositions

• All of the following models are equivalent:

1. Single-use two-way automata

2. Single-use copyless SSTs

3. Regular list functions with atoms

4. Compositions of two-way primes with atoms

• Single-use automata are equivalent to orbit-finite semigroups
Bojanczyk, S. 2020

Orbit-finite semigroups

𝔸2 Pfin(𝔸)

Orbit-finite semigroups

• Set with one associative operations

𝔸2 Pfin(𝔸)

Orbit-finite semigroups

• Set with one associative operations

• The elements can store atoms, but ...

𝔸2 Pfin(𝔸)

Orbit-finite semigroups

• Set with one associative operations

• The elements can store atoms, but ...

1. The operation has to commute with atom renaming

𝔸2 Pfin(𝔸)

Orbit-finite semigroups

• Set with one associative operations

• The elements can store atoms, but ...

1. The operation has to commute with atom renaming

2. There can only be finitely many elements up to atom renaming

𝔸2 Pfin(𝔸)

Orbit-finite semigroups

• Set with one associative operations

• The elements can store atoms, but ...

1. The operation has to commute with atom renaming

2. There can only be finitely many elements up to atom renaming

𝔸2

Semigroups and languages

S λ : S → {Y, N}h : Σ → S, ,

Semigroups and languages

S λ : S → {Y, N}h : Σ → S, ,

Σ* → S* → S → {Y, N}h* mult λ

Semigroups and languages

S λ : S → {Y, N}h : Σ → S, ,

Σ* → S* → S → {Y, N}h* mult λ

The first and the last letters are equal

Semigroups and transducers

S λ : S → Γh : Σ → S, ,

Semigroups and transducers

S λ : S → Γh : Σ → S, ,

Σ* → S* ⟶ S* → Γ*h* prefixes λ*

Semigroups and transducers

S λ : S → Γh : Σ → S, ,

Σ* → S* ⟶ S* → Γ*h* prefixes λ*

Shift all letters one position to the right

Semigroups and transducers

Replace all letters with the first letter

Compare every letter with the first letter

Locality restriction

Locality restriction

λ(xey) = λ(π(x)ey)

Locality restriction

λ(xey) = λ(π(x)ey)
As long as:

• fixes all atoms in

• is an idempotent ()

• is a prefix of (, for some)

π e

e e ⋅ e = e

y e e ⋅ b = y b

Locality restriction

λ(xey) = λ(π(x)ey)
As long as:

• fixes all atoms in

• is an idempotent ()

• is a prefix of (, for some)

π e

e e ⋅ e = e

y e e ⋅ b = y b

Local orbit-finte semigroup transductions Single-use Mealy machines ≃

Research directions

Research directions

• Rational single-use functions

Research directions

• Rational single-use functions

• Krohn-Rhodes decompositions of orbit-finite semigroups

Research directions

• Rational single-use functions

• Krohn-Rhodes decompositions of orbit-finite semigroups

• Atoms with more structure such as (ℚ, ≤)

Research directions

• Rational single-use functions

• Krohn-Rhodes decompositions of orbit-finite semigroups

• Atoms with more structure such as (ℚ, ≤)

Thank you!

