An algebraic theory for single-use transducers over data words

Rafał Stefański (University College London) unpublished joint work with Mikołaj

Single-use register Mealy machines

Single-use register Mealy machines

$\{1,2,3 \ldots\}$

Single-use register Mealy machines

Shift all letters one position to the right

$$
\mathbb{A}^{*} \rightarrow(\vdash+\mathbb{A})^{*}
$$

$$
\begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
$$

Single-use register Mealy machines

Shift all letters one position to the right

$$
\mathbb{A}^{*} \rightarrow(\vdash+\mathbb{A})^{*}
$$

$$
\begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
$$

Single-use register Mealy machines

Shift all letters one position to the right

$$
\mathbb{A}^{*} \rightarrow(\vdash+\mathbb{A})^{*}
$$

$$
\begin{aligned}
& \vdash \\
& 2 \\
& \downarrow \\
& \begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
\end{aligned}
$$

Single-use register Mealy machines

Shift all letters one position to the right

$$
\begin{aligned}
& \vdash 2 \\
& 1 \\
& \downarrow \\
& \begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
\end{aligned}
$$

Single-use register Mealy machines

Shift all letters one position to the right

$$
\mathbb{A}^{*} \rightarrow(\vdash+\mathbb{A})^{*}
$$

$$
\begin{aligned}
& \vdash 21 \\
& 3 \\
& \downarrow \\
& 213312312
\end{aligned}
$$

Single-use register Mealy machines

Shift all letters one position to the right

$$
\mathbb{A}^{*} \rightarrow(\vdash+\mathbb{A})^{*}
$$

$$
\vdash 213
$$

$$
213312312
$$

Single-use register Mealy machines

Shift all letters one position to the right

$$
\mathbb{A}^{*} \rightarrow(\vdash+\mathbb{A})^{*}
$$

$$
\vdash 213
$$

$$
213312312
$$

Single-use register Mealy machines

Shift all letters one position to the right

$$
\begin{aligned}
& \mathrm{A}^{*} \rightarrow(\vdash+\mathrm{A})^{*} \\
& \vdash 21131311231 \\
& \begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
\end{aligned}
$$

Single-use register Mealy machines

Replace all letters with the first letter

$$
\mathbb{A}^{*} \rightarrow \mathbb{A}^{*}
$$

$$
\begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
$$

Single-use register Mealy machines

Replace all letters with the first letter

$$
\mathbb{A}^{*} \rightarrow \mathbb{A}^{*}
$$

Single-use register Mealy machines

Replace all letters with the first letter

$$
\mathbb{A}^{*} \rightarrow \mathbb{A}^{*}
$$

$\begin{array}{lllllllll}2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2\end{array}$

Single-use register Mealy machines

Replace all letters with the first letter

$$
\mathbb{A}^{*} \rightarrow \mathbb{A}^{*}
$$

22

$\begin{array}{lllllllll}2 & 1 & 3 & 3 & 2 & 3 & 2\end{array}$

Single-use register Mealy machines

Replace all letters with the first letter

$$
\mathbb{A}^{*} \rightarrow \mathbb{A}^{*}
$$

22

$\begin{array}{lllllllll}2 & 1 & 3 & 3 & 2 & 3 & 2\end{array}$

Single-use register Mealy machines

Replace all letters with the first letter

$$
\mathbb{A}^{*} \rightarrow \mathbb{A}^{*}
$$

213312312

Single-use register Mealy machines

Replace all letters with the first letter
2

$$
\mathbb{A}^{*} \rightarrow \mathbb{A}^{*}
$$

$\begin{array}{lllllllll}2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2\end{array}$

Single-use register Mealy machines

Replace all letters with the first letter

$22 \square^{A^{*}-A^{*}}$
 213312312

Single-use register Mealy machines

Replace all letters with the first letter

$$
\begin{aligned}
& 222 \\
& \mathbb{A}^{*} \rightarrow \mathbb{A}^{*} \\
& \begin{array}{lllllllll}
2 & 1 & 3^{i} & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
\end{aligned}
$$

Single-use register Mealy machines

Compare every letter with the previous one

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

$$
\begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
$$

Single-use register Mealy machines

Compare every letter with the previous one

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

N
 2
 \downarrow
 213312312

Single-use register Mealy machines

Compare every letter with the previous one

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

N
 2
 \downarrow
 $\begin{array}{llllllll}2 & 3 & 3 & 2 & 1 & 2\end{array}$

Single-use register Mealy machines

Compare every letter with the previous one

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

N
$\begin{array}{lllllllll}\square \\ 2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2\end{array}$

Single-use register Mealy machines

Compare every letter with the previous one

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

$N N$

 213312312

Single-use register Mealy machines

Compare every letter with the previous one

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

$N N$

 213312312

Single-use register Mealy machines

Compare every letter with the previous one

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

$N N$

 213312312

Single-use register Mealy machines

Compare every letter with the previous one

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

$N N N$
 3 \downarrow

$\begin{array}{lllllllll}2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2\end{array}$

Single-use register Mealy machines

Compare every letter with the previous one

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

$$
21333122312
$$

Single-use register Mealy machines

Compare every letter with the previous one

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

$$
21333122312
$$

Single-use register Mealy machines

Compare every letter with the previous one

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

$N N N Y$

$$
\begin{aligned}
& 3 \\
& \downarrow
\end{aligned}
$$

$$
\begin{array}{llllllll}
2 & 1 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
$$

Single-use register Mealy machines

Compare every letter with the previous one

$$
\begin{array}{lllllllllll}
\\
N & N & N & Y & N & N & N & N & \\
\left.\hline A^{* *} \rightarrow Y, N\right\}^{*} \\
\hline
\end{array}
$$

Single-use register Mealy machines

Compare every letter with the first letter

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

$$
\begin{array}{lllllllll}
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
$$

Single-use register Mealy machines

Compare every letter with the first letter

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

Y

$$
\begin{array}{cccccccccc}
\hline 2 \\
\downarrow \\
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
$$

Single-use register Mealy machines

Compare every letter with the first letter

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

Y

213312312

Single-use register Mealy machines

Compare every letter with the first letter

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

Y N

 \downarrow
 $$
\begin{array}{lllllllll} 2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2 \end{array}
$$

Single-use register Mealy machines

Compare every letter with the first letter

$$
\mathbb{A}^{*} \rightarrow\{Y, N\}^{*}
$$

$$
\begin{array}{lllllllllll}
Y & N \\
& & ? \\
& & & & & & & & \\
2 & 1 & 3 & 3 & 1 & 2 & 3 & 1 & 2
\end{array}
$$

Single-use register Mealy machines

Shift all letters one position to the right
Replace all letters with the first letter
Compare every letter with the previous one
Compare every letter with the first letter

Why single-use transducers?

Why single-use transducers?

- Single-use Mealy machines admit Krohn-Rhodes decompositions

Why single-use transducers?

- Single-use Mealy machines admit Krohn-Rhodes decompositions
- All of the following models are equivalent:

Why single-use transducers?

- Single-use Mealy machines admit Krohn-Rhodes decompositions
- All of the following models are equivalent:

1. Single-use two-way automata

Why single-use transducers?

- Single-use Mealy machines admit Krohn-Rhodes decompositions
- All of the following models are equivalent:

1. Single-use two-way automata
2. Single-use copyless SSTs

Why single-use transducers?

- Single-use Mealy machines admit Krohn-Rhodes decompositions
- All of the following models are equivalent:

1. Single-use two-way automata
2. Single-use copyless SSTs
3. Regular list functions with atoms

Why single-use transducers?

- Single-use Mealy machines admit Krohn-Rhodes decompositions
- All of the following models are equivalent:

1. Single-use two-way automata
2. Single-use copyless SSTs
3. Regular list functions with atoms
4. Compositions of two-way primes with atoms

Why single-use transducers?

- Single-use Mealy machines admit Krohn-Rhodes decompositions
- All of the following models are equivalent:

1. Single-use two-way automata
2. Single-use copyless SSTs
3. Regular list functions with atoms
4. Compositions of two-way primes with atoms

- Single-use automata are equivalent to orbit-finite semigroups

Orbit-finite semigroups

A^{2}
$P_{f i n}(\mathbb{A})$

Orbit-finite semigroups

- Set with one associative operations

$$
A^{2}
$$

$$
P_{f i n}(\mathrm{~A})
$$

Orbit-finite semigroups

- Set with one associative operations
- The elements can store atoms, but ...
A^{2}
$P_{f i n}(\mathbb{A})$

Orbit-finite semigroups

- Set with one associative operations
- The elements can store atoms, but ...

1. The operation has to commute with atom renaming

$$
A^{2}
$$

$P_{f i n}(\mathbb{A})$

Orbit-finite semigroups

- Set with one associative operations
- The elements can store atoms, but ...

1. The operation has to commute with atom renaming
2. There can only be finitely many elements up to atom renaming

$P_{\text {fin }}(\mathbb{A})$

Orbit-finite semigroups

- Set with one associative operations
- The elements can store atoms, but ...

1. The operation has to commute with atom renaming
2. There can only be finitely many elements up to atom renaming

Semigroups and languages

$$
S, \quad h: \Sigma \rightarrow S, \quad \lambda: S \rightarrow\{Y, N\}
$$

Semigroups and languages

$$
\begin{array}{ll}
S, & h: \Sigma \rightarrow S, \quad \lambda: S \rightarrow\{Y, N\} \\
& \Sigma^{*} \xrightarrow{h^{*}} S^{*} \xrightarrow{\text { mult }} S \xrightarrow{\lambda}\{Y, N\}
\end{array}
$$

Semigroups and languages

$$
\begin{gathered}
S, \quad h: \Sigma \rightarrow S, \quad \lambda: S \rightarrow\{Y, N\} \\
\Sigma^{*} \xrightarrow{h^{*}} S^{*} \xrightarrow{\text { mult }} S \xrightarrow{\lambda}\{Y, N\}
\end{gathered}
$$

The first and the last letters are equal

Semigroups and transducers

$$
S, \quad h: \Sigma \rightarrow S, \quad \lambda: S \rightarrow \Gamma
$$

Semigroups and transducers

$$
\begin{aligned}
& S, \quad h: \Sigma \rightarrow S, \quad \lambda: S \rightarrow \Gamma \\
& \Sigma^{*} \xrightarrow{h^{*}} S^{*} \xrightarrow{\text { prefixes }} S^{*} \xrightarrow{\lambda^{*}} \Gamma^{*}
\end{aligned}
$$

Semigroups and transducers

$$
\begin{aligned}
& S, \quad h: \Sigma \rightarrow S, \quad \lambda: S \rightarrow \Gamma \\
& \Sigma^{*} \xrightarrow{h^{*}} S^{*} \xrightarrow{\text { prefixes }} S^{*} \xrightarrow{\lambda^{*}} \Gamma^{*}
\end{aligned}
$$

Shift all letters one position to the right

Semigroups and transducers

Replace all letters with the first letter

Compare every letter with the first letter

Locality restriction

Locality restriction

$$
\lambda(x e y)=\lambda(\pi(x) e y)
$$

Locality restriction

$\lambda(x e y)=\lambda(\pi(x) e y)$

As long as:

- π fixes all atoms in e
- e is an idempotent $(e \cdot e=e)$
- y is a prefix of $e(e \cdot b=y$, for some $b)$

Locality restriction

$$
\lambda(x e y)=\lambda(\pi(x) e y)
$$

As long as:

- π fixes all atoms in e
- e is an idempotent $(e \cdot e=e)$
- y is a prefix of $e(e \cdot b=y$, for some $b)$

Local orbit-finte semigroup transductions \simeq Single-use Mealy machines

Research directions

Research directions

- Rational single-use functions

Research directions

- Rational single-use functions
- Krohn-Rhodes decompositions of orbit-finite semigroups

Research directions

- Rational single-use functions
- Krohn-Rhodes decompositions of orbit-finite semigroups
- Atoms with more structure such as (\mathbb{Q}, \leq)

Research directions

- Rational single-use functions
- Krohn-Rhodes decompositions of orbit-finite semigroups
- Atoms with more structure such as (\mathbb{Q}, \leq)

Thank you!

