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Why single-use transducers?
• Single-use Mealy machines admit Krohn-Rhodes decompositions

• All of the following models are equivalent:

1. Single-use two-way automata

2. Single-use copyless SSTs

3. Regular list functions with atoms

4. Compositions of two-way primes with atoms

• Single-use automata are equivalent to orbit-finite semigroups
Bojanczyk, S. 2020
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• Set with one associative operations

• The elements can store atoms, but ...

1. The operation has to commute with atom renaming

2. There can only be finitely many elements up to atom renaming

𝔸2
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The first and the last letters are equal
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λ(xey) = λ(π(x)ey)
As long as:


•  fixes all atoms in 


•  is an idempotent ( )


•  is a prefix of  ( , for some )

π e

e e ⋅ e = e

y e e ⋅ b = y b

Local orbit-finte semigroup transductions  Single-use Mealy machines ≃
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Thank you!


