An algebraic theory for single-use transducers over data words

Rafał Stefański (University College London) unpublished joint work with Mikołaj

May 2023

Founded by EPSRC project "Resources in Computation"

$A = \{1, 2, 3...\}$

Shift all letters one position to the right

 $\mathbb{A}^* \to (\mathbb{F} + \mathbb{A})^*$

Shift all letters one position to the right

 $\mathbb{A}^* \to (\vdash + \mathbb{A})^*$

Shift all letters one position to the right

 $\mathbb{A}^* \to (\vdash + \mathbb{A})^*$

Shift all letters one position to the right

Shift all letters one position to the right

-21

 $\mathbb{A}^* \to (\vdash + \mathbb{A})^*$

Shift all letters one position to the right

H 2 1 31 3 3 1 2 3 1 2

 $\mathbb{A}^* \to (\vdash + \mathbb{A})^*$

Shift all letters one position to the right

H 2 1 31 3 3 1 2 3 1 2

 $\mathbb{A}^* \to (\vdash + \mathbb{A})^*$

- Shift all letters one position to the right
- -2133121 3 3 1 2 3 1 2

Replace all letters with the first letter

 $\mathbb{A}^* \to \mathbb{A}^*$

Replace all letters with the first letter

 $\mathbb{A}^* \to \mathbb{A}^*$

Replace all letters with the first letter

 $\mathbb{A}^* \to \mathbb{A}^*$

Replace all letters with the first letter

 $\mathbb{A}^* \to \mathbb{A}^*$

Replace all letters with the first letter

 $\mathbb{A}^* \to \mathbb{A}^*$

Replace all letters with the first letter

 $\mathbb{A}^* \to \mathbb{A}^*$

Replace all letters with the first letter

 $\mathbb{A}^* \to \mathbb{A}^*$

13312312

Replace all letters with the first letter

 $\mathbb{A}^* \to \mathbb{A}^*$

222

Replace all letters with the first letter

 $\mathbb{A}^* \to \mathbb{A}^*$

Compare every letter with the previous one

 $\mathbb{A}^* \to \{Y, N\}^*$

Compare every letter with the previous one

 $\mathbb{A}^* \to \{Y, N\}^*$

Compare every letter with the previous one

 $\mathbb{A}^* \to \{Y, N\}^*$

Compare every letter with the previous one

 $\mathbb{A}^* \to \{Y, N\}^*$

Compare every letter with the previous one

 \mathcal{N}

 $\mathbb{A}^* \to \{Y, N\}^*$

Compare every letter with the previous one

 $\mathbb{A}^* \to \{Y, N\}^*$

Compare every letter with the previous one

 $\mathbb{A}^* \to \{Y, N\}^*$

N N N

Compare every letter with the previous one

 $\mathbb{A}^* \to \{Y, N\}^*$

Compare every letter with the previous one

N N N

 $\mathbb{A}^* \to \{Y, N\}^*$

Compare every letter with the previous one

N N N

 $\mathbb{A}^* \to \{Y, N\}^*$

N N Y

Compare every letter with the previous one

 $\mathbb{A}^* \to \{Y, N\}^*$

- **Compare every letter with the previous one**
 - $\mathbb{A}^* \to \{Y, N\}^*$
- NNYNNNN 13312312

Compare every letter with the first letter

 $\mathbb{A}^* \to \{Y, N\}^*$

Compare every letter with the first letter

 $\mathbb{A}^* \to \{Y, N\}^*$

Compare every letter with the first letter

 $\mathbb{A}^* \to \{Y, N\}^*$

Compare every letter with the first letter

 $\mathbb{A}^* \to \{Y, N\}^*$

Compare every letter with the first letter

 $\mathbb{A}^* \to \{Y, N\}^*$

- Shift all letters one position to the right
 - **Replace all letters with the first letter**
- **Compare every letter with the previous one**
 - **Compare every letter with the first letter**

Bojanczyk, S. 2020

Bojanczyk, S. 2020

Single-use Mealy machines admit Krohn-Rhodes decompositions

- Single-use Mealy machines admit Krohn-Rhodes decompositions
- All of the following models are equivalent:

- Single-use Mealy machines admit Krohn-Rhodes decompositions
- All of the following models are equivalent:
 - 1. Single-use two-way automata

- Single-use Mealy machines admit Krohn-Rhodes decompositions
- All of the following models are equivalent:
 - 1. Single-use two-way automata
 - 2. Single-use copyless SSTs

- Single-use Mealy machines admit Krohn-Rhodes decompositions
- All of the following models are equivalent:
 - 1. Single-use two-way automata
 - 2. Single-use copyless SSTs
 - 3. Regular list functions with atoms

Bojanczyk, S. 2020

- Single-use Mealy machines admit Krohn-Rhodes decompositions
- All of the following models are equivalent:
 - 1. Single-use two-way automata
 - 2. Single-use copyless SSTs
 - 3. Regular list functions with atoms
 - 4. Compositions of two-way primes with atoms

- Single-use Mealy machines admit Krohn-Rhodes decompositions
- All of the following models are equivalent:
 - 1. Single-use two-way automata
 - 2. Single-use copyless SSTs
 - 3. Regular list functions with atoms
 - 4. Compositions of two-way primes with atoms
- Single-use automata are equivalent to orbit-finite semigroups

Bojanczyk, S. 2020

 $P_{fin}(\mathbb{A})$

Set with one associative operations

- Set with one associative operations
- The elements can store atoms, but ...

- Set with one associative operations
- The elements can store atoms, but ...
 - 1. The operation has to commute with atom renaming

I fin (A)

- Set with one associative operations
- The elements can store atoms, but ...
 - 1. The operation has to commute with atom renaming
 - 2. There can only be finitely many elements up to atom renaming

$$\mathbb{A}^2$$

I fin (A)

- Set with one associative operations
- The elements can store atoms, but ...
 - 1. The operation has to commute with atom renaming
 - 2. There can only be finitely many elements up to atom renaming

$$\mathbb{A}^2$$

Semigroups and languages $S, h: \Sigma \to S, \lambda: S \to \{Y, N\}$

Semigroups and languages $S, h: \Sigma \to S, \lambda: S \to \{Y, N\}$

$\Sigma^* \xrightarrow{h^*} S^* \xrightarrow{\text{mult}} S \xrightarrow{\lambda} \{Y, N\}$

Semigroups and languages $S, h: \Sigma \to S, \lambda: S \to \{Y, N\}$

$\Sigma^* \xrightarrow{h^*} S^* \xrightarrow{\text{mult}} S \xrightarrow{\lambda} \{Y, N\}$

The first and the last letters are equal

Semigroups and transducers $S, \quad h: \Sigma \to S, \quad \lambda: S \to \Gamma$

Semigroups and transducers

Semigroups and transducers $S, \quad h: \Sigma \to S, \quad \lambda: S \to \Gamma$

$\Sigma^* \xrightarrow{h^*} S^* \xrightarrow{} S^* \xrightarrow{\lambda^*} \Gamma^*$

Shift all letters one position to the right

Semigroups and transducers

Replace all letters with the first letter

Compare every letter with the first letter

 $\lambda(xey) = \lambda(\pi(x)ey)$

As long as:

- π fixes all atoms in e
- e is an idempotent ($e \cdot e = e$)

 $\lambda(xey) = \lambda(\pi(x)ey)$

• y is a prefix of $e (e \cdot b = y, \text{ for some } b)$

As long as:

- π fixes all atoms in e
- e is an idempotent ($e \cdot e = e$)
- y is a prefix of $e (e \cdot b = y, \text{ for some } b)$

Local orbit-finte semigroup transductions \simeq Single-use Mealy machines

 $\lambda(xey) = \lambda(\pi(x)ey)$

Rational single-use functions

- Rational single-use functions

Krohn-Rhodes decompositions of orbit-finite semigroups

- Rational single-use functions
- Atoms with more structure such as (\mathbb{Q}, \leq)

Krohn-Rhodes decompositions of orbit-finite semigroups

- Rational single-use functions
- Atoms with more structure such as (\mathbb{Q}, \leq)

Krohn-Rhodes decompositions of orbit-finite semigroups

Thank you!