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Streszczenie

Praca stanowi przeglad metod umozliwiajacych wnioskowanie w oparciu o dane z niekom-
pletnym opisem obiektow. Przedstawione sg tutaj zarbwno metody majgce na celu uzupet-
nianie brakujacych wartoéci jak i takie, ktore staraja sie wnioskowac bezpoSrednio w oparciu
o0 dane z niekompletnym opisem obiektéw. Zamierzeniem autora byto mozliwie najbardziej
kompletne zestawienie metod stosowanych analizie danych i odkrywaniu wiedzy wraz ze
wskazaniem, z ktdrej dziedziny matematyki sie wywodza. Rozdziat pierwszy wprowadza
czytelnika w problematyke analizy danych i obiektow o niekompletnym opisie. Rozdziat
drugi stanowi wstep do teorii zbioréw przyblizonych i na tej podstawie porusza podsta-
wowe zagadnienia zwigzane z wnioskowaniem na podstawie danych. W trzecim rozdziale
zaprezentowane sg rozszerzenia teorii zbioroéw przyblizonych, umozliwiajace wnioskowanie
w obliczu brakujacych wartosci atrybutow. Rozdziat czwarty prezentuje metody wniosko-
wania w oparciu o dane z niekompletnym opisem obiektow, nie wywodzace sig z nurtu
zbioréw przyblizonych. W rozdziale pigtym opisane zostaty metody realizujgce paradygmat
leniwego uczenia sie poje€. Rozdziat szdsty prezentuje rozwigzania eliminujace brakujace
wartoSci podczas wstepnego przetwarzania danych za pomocg uzupetniania. Na zakohcze-
nie prezentowana jest nowa metoda, umozliwiajaca zaadaptowanie istniejgcych algorytmow
uczenia si¢ poje¢ do danych z brakujagcymi wartoSciami obiektow. Zamieszczone wyniki
eksperymentalne wskazujg na duzg skutecznos¢ tej metody.

Stowa kluczowe

systemy decyzyjne, wnioskowanie indukcyjne, zbiory przyblizone, brakujace wartoSci atry-
butow

Klasyfikacja tematyczna

Klasyfikacja tematyczna wedtug AMS MSC 2000: 68T37, 68U35.






Spis tresci

Streszczenie

Spis tresci

1

Wprowadzenie

1.1 Inteligentne przetwarzanie informacji . . . . . .. ... .. ... ... ..
1.2 Logika . . . . . . .
1.3 Whnioskowanie indukcyjne . . . . . ...
1.4 NiedoskonatoSCdanych . . . . . . .. . ... ... ...
1.5 Brakujace wartosci atrybutow . . . . . ...
1.6 Metody postepowania wobec brakujacych wartosci . . . . . ... ... ..
Wstep do teorii zbioréw przyblizonych

2.1 ReprezentacjaWiedzy . . . . . . . ...
2.2 Relacja nierozréznialnodci . . . . . . ...
2.3 Zbiory przyblizone . . . . .. ...
2.4 DefiniowalnoS€ pojec . . . . . . . ...
2.5 Redukcjawiedzy . . . . . .. ...
2.6 Wnioskowanie na podstawie danych . . . . . . ... ... ... ... ...
2.7 Systemy decyzyjne . . . . . . .

Rozszerzenia teorii zbiorow przyblizonych

3.1 Wprowadzenie . . . . . .o

3.2 Tolerancja - Podobiehstwo symetryczne . . . . . .. ... ... ... ...
3.2.1 Podstawy algebraiczne . . . . . .. ... ... o
3.22 Relacjatolerancji . . . . . . . ... ...

3.3 Podobienstwo niesymetryczne . . . . . .. ... o

3.4 Relacje parametryzowane . . . . . . . ...

3.5 Podsumowanie . . . . . ...

Metody wnioskowania bezposredniego

41 CA5 .
411 Drzewadecyzyjne . . . . . . . ..
412 BrakujgcewartoSCi . . . . . .. ...
42 LRI .
4.2.1 Indukcjaregutdecyzyjnych . . ... ... ... ... ... ...




SPIS TRESCI

4.2.2 Brakujgcewartosci . . . . .. ... 40
4.3 Podsumowanie . . . . . . ... e 41
Leniwe metody uczenia maszynowego 43
5.1 Metoda najblizszych sgsiadow . . . . . . ... ... ... ... ...... 43
5.1.1 Podobiefstwo obiektow . . . . . ... ... . L 44
5.1.2 Wybor zbioru najblizszych sgsiadow . . . . . . .. ... ... ... 45
513 Kilasyfikacjaobiektu . . . ... ... ... ... ... oL 46
514 BrakujgcewartoSci . . . . . ... ... 46
5.2 Leniwedrzewadecyzyjne . . . . . . . . . 47
5.2.1 Realizacjaalgorytmiczna . . . . . ... ... ... ... ... ... 47
5.2.2 BrakujgcewartoSCi . . . . . . ... 48
Uzupetnianie 51
6.1 Motywacje i podstawowe problemy . . . . ... ... oL 51
6.2 Uzupehianieglobalne . . . . .. ... ... ... ... ... 52
6.3 Uzupekianie lokalne wzgledem decyzji . . . . . .. .. ... ... .... 53
6.4 Uzupehianie lokalne wzgledem atrybutu . . . . . . . . ... ... ..... 54
6.5 Uzupetnianie metodg najblizszych sgsiadéw . . . . . .. .. .. ... ... 55
6.6 Uzupetnianie za pomocg systemu decyzyjnego. . . . . . . . . . ... ... 57
6.7 Podsumowanie . . . . .. . ... 58
Metoda podziatu 59
7.1 Wprowadzenie . . . . . ... 59
7.2 MOtyWaCje . . . . . o e 60
7.3 Metodapodziaku . .. ... .. ... .. 61
7.4 Wzorce wypetnienia . . . . ... 62
7.5 Opisalgorytmu . . . . . . . . 63
751 Podziat ... ... 63
752 SyntezawynikOw . . . . ... 64
7.6 Podziat danych wejéciowych . . . . . ... ... oo 65
7.6.1 ZiozonoSC obliczeniowa . . . . . ... ... ... . L 66
7.6.2 Wyszukiwanie wieluwzorcow . . . . .. .. ... 67
7.6.3 Zachfanna konstrukcjapokrycia . . . . . ... ... ... .. ... 68
7.7 Algorytmy wyszukiwaniawzorca . . . . . ... 69
7.7.1 Algorytmygenetyczne . . . . . . . .. ... 70
7.7.2 Optymalizacja wyszukiwaniawzorca . . . . ... ... ... ... 71
7.7.3 Podsumowanie . . . . .. ... 71
7.8 Opiseksperymentdw . . . . . . . . .. 71
7.8.1 Algorytmy . . . . ... 72
782 Tabele. . .. .. .. ... 73
7.8.3 Implementacja . . .. ... ... ... 75
7.9 Wynikieksperymentow . . . . . . .. 76
7.9.1 Hipotezastatystyczna. . . . . . . ... ... ... ... 76
7.9.2 Algorytmagenetyczny . . . . . . . . ... 76
7.9.3 JakoSC predykcyjnawzorca. . ... ... 77

Uniwersytet Warszawski — Wydziat Matematyki, Informatyki i Mechaniki



SPIS TRESCI 5
8 Zakonczenie 81
Bibliografia 83

Uniwersytet Warszawski — Wydziat Matematyki, Informatyki i Mechaniki






Rozdziat 1

Wprowadzenie

Od momentu powstania maszyn umozliwiajacych przetwarzanie informacji — komputerdw,

mys$la zaprzatajgca umysty wielu ludzi, czy to badaczy, czy tez rezyserow filmow S-F, jest
mozliwos¢ skonstruowania maszyny inteligentnej. Bardzo trudno jest jednak zdefiniowac,
czym dok#adnie jest owa inteligentna maszyna. Jak czytamy w encyklopedii [1], inteligencja
to zespot zdolnosci umystowych, umozliwiajacych jednostce sprawne korzystanie z nabytej
wiedzy, oraz skuteczne zachowanie sig wobec nowych zadan i sytuacji.

1.1 Inteligentne przetwarzanie informacji

W dzisiejszych czasach, na poczatku XXI wieku, rozwijane od dziesigcioleci systemy kom-
puterowe umozliwiaja sktadowanie gigantycznych wrecz iloci informacji. Moga to by¢ dane
dotyczace badah medycznych, zdjecia satelitarne ziemi, informacje o sterowaniu urzadzen,
transakcje dokonywane w sklepach czy tez dane dotyczace wypadkdw. Wszystkie te infor-
macje, wykorzystane w nalezyty sposéb, moga postuzy¢ do coraz skuteczniejszego zacho-
wania sie wobec nowo powstatych sytuacji i zadah. Przy diagnozowaniu pacjenta nieoce-
niong pomoca jest wiedza uzyskana na podstawie analizy danych medycznych, tak jak przy
poszukiwaniu z+t6z surowcow mineralnych postugiwanie sie zdjeciami satelitarnymi ziemi.
Zgodnie z powyzsza definicjg skuteczne rozwigzanie tych probleméw wymaga inteligencji,
czyli inteligentnego przetwarzania informacji. Jednakze zgromadzone zbiory danych czesto-
kro€ przekraczajg mozliwosci percepcji cztowieka. Pomoca do sprawnego wykorzystywania
tej wiedzy moga by¢ systemy komputerowe inteligentnie przetwarzajace informacje.

Na przestrzeni wielu lat podejmowano liczne préby skonstruowania maszyny umozliwia-
jacej inteligentne przetwarzanie informacji. Sztuczna inteligencja, bo tak mozna okreslic ca-
toksztatt tych zjawisk, jest dzisiaj doS¢ dobrze rozwinigta dziedzing wiedzy, w ktdrej mozna
wyroznic takie dziaty jak maszynowe uczenie sig, systemy decyzyjne, rozpoznawanie wzor-
cow, systemy wieloagentowe, odkrywanie wiedzy, przetwarzanie jezyka naturalnego i wiele
innych. Pomimo licznych osiagnig¢ cztowiek pozostat jednak niedoscignionym wzorem in-
teligencji.
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1.2 Logika

Podstawowym narzedziem inteligentnego przetwarzania informacji jest logika. Za pomocg
logiki staramy sie opisac i naSladowac sposdb rozumowania cztowieka. Na przestrzeni dzie-
jow podejmowano rdzne proby sformalizowania tego typu rozumowan. Pierwszg i najbar-
dziej znang jest tzw. logika klasyczna, wprowadzona przez greckich filozoféw juz w staro-
zytnosci i opierajgca sie na wnioskowaniu dedukcyjnym. Pomimo jej szerokich zastosowan
na potrzeby informatyki i matematyki, posiada liczne ograniczenia, jak monotonicznos¢ i
niepetnos¢ systeméw dedukcyjnych, uniemozliwiajace jej uzycie do wiernego naSladowa-
nia tzw. rozumowan zdroworozsadkowych. W celu uniknigcia trudnoéci z formalizowaniem
rozumowah przeprowadzanych przez cztowieka wprowadzono liczne odmiany logik, ktore
mozna podzieli¢ na dwie grupy ze wzgledu na sposéb podejécia do problemu. Sg to tzw.
metody symboliczne i numeryczne. W5rdd podejs¢ symbolicznych nalezy wymieni¢ gtow-
nie logiki niemonotoniczne i modalne. Metody numeryczne reprezentowane sg przez takie
logiki jak logika posybilistyczna, czy logika rozmyta. Jednakze gtéwna niedogodnoécia za-
stosowania logiki do analizy i inteligentnego przetwarzania danych jest sam proces wnio-
skowania dedukcyjnego, czyli rozumowania przeprowadzonego od przestanek do wnioskow
za pomoca dowodu formalnego w rozpatrywanym systemie dedukcyjnym.

1.3 Whnioskowanie indukcyjne

Rozumowania przeprowadzane przez cztowieka cechuje duza fatwos¢ konstrukcji skompli-
kowanych wnioskow. O tym, ze sposob wnioskowania cztowieka charakteryzuje sie wielka
sprawnoscia i skutecznoscia, nie trzeba nikogo przekonywac. Jednakze wnioski formuto-
wane przez ludzi nie zawsze okazujg sie prawdziwe. Poprawno$¢ procesu wnioskowania
jest ceng, jaka trzeba zaptaci¢ za mozliwos¢ szybkiej i skutecznej analizy skomplikowanych
sytuacji.

Rozumowania takie mozemy przyblizy¢ za pomoca wnioskowania indukcyjnego. We
whnioskowaniu indukcyjnym jako prawdziwe uznajemy zdanie stwierdzajace jaka$ ogoina
prawidtowos¢, przy czym czynimy to na podstawie uznania zdah stwierdzajacych poszcze-
golne przypadki tej prawidtowosci. Bazujac na doSwiadczeniu i obserwacjach staramy sig
sformutowat wnioski dotyczace nowych sytuacji. Oczywiscie wnioskowanie takie nie jest
niezawodne, gdyz wnioskujac na podstawie prawdziwych przestanek mozemy dojs¢ do fat-
szywego wniosku. Jesli bowiem istnieja przypadki spetniajace pewna prawidtowos¢, nie
oznacza to wcale, ze prawidtowoS¢ ta bedzie zawsze spetniona. Niemniej jednak wniosko-
wanie takie jest najbardziej adekwatng metoda przeprowadzania rozumowah w procesie in-
teligentnego przetwarzania informacji.

W teorii uczenia sie maszyn wnioskowanie indukcyjne pojawia sig przy okazji problemu
uczenia sie pojec w oparciu o przyktady. Problem ten polega na utworzeniu opisu pojecia,
rozumianego jako podzbior zbioru obiektéw nalezacych do rozpatrywanego Srodowiska, na
podstawie przyktadow badanego pojecia. Przez utworzenie opisu pojecia rozumiemy wy-
krycie takich wtasnosci przyktadéw obiektéw, ktore umozliwia pozniejsze badanie nowych
przyktaddw pod katem ich przynaleznosci do tego pojecia. Naturalnym podejsciem do roz-
wigzania problemu uczenia sie poje€ na podstawie przyktadéw jest wnioskowanie induk-
cyjne, polegajace na tym, ze otrzymujac kolejne przyktady obiektow nalezacych i nie nale-
zacych do pojecia, probuje sig znalez¢ taki jego opis, ktory bedzie pasowat do wszystkich lub
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prawie wszystkich przyktadéw badanego pojecia. Opis pojecia formutowany jest w jezyku
logiki i stanowi wtaSnie wyuczong og6lng prawidtowos¢ decydujacag o nalezeniu przyktadow
do badanego pojecia.

Gtéwnym problemem zwigzanym z uczeniem sie poje¢ w oparciu o przykiady jest py-
tanie w jaki sposob konstruowac algorytmy, ktére potrafig wyuczy¢ sie badanego pojecia w
oparciu o dostarczone dane. Przy czym algorytmy te maja osiagna¢ jak najwieksza popraw-
nos¢ formutowanych wnioskdw.

1.4 NiedoskonatosS¢ danych

Dane pochodzace ze Swiata rzeczywistego opisuja nieraz bardzo skomplikowane procesy
zachodzace w badanym Srodowisku. Podczas analizy takich danych napotykamy na liczne
trudnosci spowodowane szumem informacyjnym, niedoktadnoscia i btedami pomiaru, czy
wreszcie brakiem niektorych informacji. Wiele teoretycznie dopracowanych podejs¢ okazato
sig nieskutecznymi w konfrontacji z rzeczywistoscia. NiedoskonatoS¢ informacji wprowadza
wiele utrudnieh do procesu wnioskowania w oparciu o dane. Jednakze te niedoskonatosci nie
powinny uniemozliwia¢ skutecznego formutowania wnioskéw, czego najlepszym przykia-
dem jest cztowiek, potrafigcy zachowac zdolnoS¢ do przeprowadzania rozumowah nawet w
obliczu niedoskonatych i nieprecyzyjnych danych. Niektére z mechanizmoéw niedokfadno-
Sci informac;ji zostaty gruntownie zbadane i sformutowano liczne, zadowalajgce rozwigzania
tych problemow.

Analiza gtéwnych sktadowych i wykrywanie cech znaczacych to Srodki umozliwiajace
zmierzenie sig z problemem szumu informacyjnego. Pozwalajg one na wybor interesujacej
informacji i odrzucenie niepotrzebnej. Metody selekcji istotnej informacji rozwijane byty na
gruncie statystyki, przetwarzania sygnatow oraz analizy danych i odkrywania wiedzy.

Na potrzeby rozwigzania problemu nieprecyzyjnosci danych wymyslono wiele podejsc,
wsrdd ktérych dominuja podejscia logiczno-numeryczne, ale nie tylko. Znakomitym przy-
ktadem jest tutaj teoria zbioréw przyblizonych, ktéra umozliwia w sposob formalny ujac
nieprecyzyjnoS¢ danych w postaci poje¢ teoriomnogoSciowych.

Na tym tle osiggnigecia, majgce na celu rozwigzanie problemu braku informacji, wydaja
sie by€ niewielkie. Nalezy zauwazy¢, ze wsréd mozliwych rodzajow braku informacji nie-
ktore sg z nich sg naturalne i nie do uniknigecia, a wrecz korzystne. Badajac konkretne zja-
wisko nie wymagana jest informacja dotyczaca nieistotnych parametréw badanego Srodowi-
ska, co wigze sig z problemem szumu informacyjnego i ograniczonych fizycznie mozliwoéci
percepcji. Dotkliwym brakiem informacji jest natomiast niedostepnos¢ istotnych cech dla
rozpatrywanego problemu. Niniejsza praca poSwiecona jest szczeg6lnemu rodzajowi braku
informacji, mianowicie niekompletnemu opisowi obiektow.

Najbardziej istotnym brakiem informacji, pozostajgcym w zakresie zainteresowan inte-
ligentnego przetwarzania informacji jest niekompletny opis obiektdéw. Sytuacja taka wyste-
puje, gdy obiekty pochodzace z badanego Srodowiska cechuje zréznicowany poziom dostep-
nej informacji o tych obiektach.
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1.5 Brakujace wartosci atrybutéw

Wszystkie dane przetwarzane w systemach komputerowych opisane sa za pomoca zbioru
wartosci z pewnych dziedzin, czyli tzw. atrybutéw. Ustalajac badane Srodowisko i obiekty
z niego pochodzace ustala sig zbidr cech — atrybutdw, ktdre opisuja wtasno Sci badanych
obiektow. Gromadzone dane to zbidr opisanych w ten sposéb obiektdéw. Przez obiekt rozumie
sie wtedy zbi6r wartosci wybranych uprzednio atrybutéw. Problem brakujacych wartosci
atrybutéw wystepuje wtedy, gdy niektdre obiekty nie sg opisane na catym zbiorze cech. W
zgromadzonych danych brakuje niektérych wartoSci atrybutow.

Jest to istotny problem podczas procesu wnioskowania. Stosowane zazwyczaj podejscia
nie uwzgledniajg zréznicowania w opisie obiektdéw i zaktadajg, ze wszystkie obiekty musza
by€ opisane na wszystkich wybranych atrybutach. W rzeczywistosci jednak zbiory danych
posiadajg obiekty o niekompletnym opisie, co jest czesto spotykanym zjawiskiem.

Brakujgce wartoSci atrybutéw to naturalna cecha przetwarzanych informacji. Przyczyn
powstawania brakujacych wartosci moze by¢ wiele. Oto krétkie zestawienie niektdrych z
mozliwych przyczyn wystepowania niekompletnego opisu obiektow:

e zaniedbania,
e zmiana zestawu atrybutdéw podczas procesu gromadzenia danych,
e dane pochodza z roznych zrodet, postugujacych sie roznym zestawem atrybutow,

e brak danej wihasnosci spowodowany brakiem fizycznym, np. nie mozna rozpatrywac
koloru samochodu klienta, gdy klient nie ma w ogéle zadnego samochodu,

e rzeczywisty brak danej wiasnosci, np. prezes nie ma zwierzchnika,

e warto§¢ niemozliwa do uzyskania, np. pacjent nie moze mie¢ wykonanego pewnego
badania z powodu np. alergii,

e wartoS¢ wychodzi poza uprzednio zdefiniowang dziedzine lub zakres pomiarowy urza-
dzenia, np. ,,kolor” podczerwony,

e pomiar niemozliwy do przeprowadzenia z powodu np. ograniczonej wspotbieznosci
urzadzenia,

e blad aparatury pomiarowej,
e ograniczenia fizyczne spowodowane np. zasadg Heisenberga.

Nalezy zauwazy€, ze zaniedbania, zmiana zestawu atrybutdéw i niejednorodne zrédto po-
chodzenia danych to najczestsze przyczyny powstawania danych o niekompletnym opisie
obiektow.

Kolejna cecha charakteryzujaca brakujace wartoSci atrybutdéw jest kwestia ich istnienia.
Niektdre brakujace wartoSci atrybutéw mogty by zosta¢ poznane lub nawet zostaty poznane i
pOzniej zagubione. Warto$ci takie istniejg, lecz sa przed nami ukryte. Inne brakujgce wartoSci
moga faktycznie nie istniec i wtedy charakteryzujg sie¢ zupetnie innymi wiasnoSciami. Nie
ma sensu np. mowic o uzupetnianiu takich wartosci.
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Brakujgce wartosci ponadto moga by¢ zwigzane pewnymi wiezami zaleznoSci. Mecha-
nizm ich powstawania moze by¢ kompletnie losowy, lub moga nim rzadzi¢ pewne, najcze-
Sciej ukryte, prawidtowosci. W terminologii statystycznej uzywa sie sformutowan zupetnie
losowo brakujacych wartoSci oraz wartosci brakujacych losowo, ale wedtug pewnego roz-
ktadu prawdopodobiehnstwa.

Z problemem brakujacych wartoSci doskonale poradzono sobie w przypadku relacyj-
nych baz danych. Tam, gdzie nie interesuje nas inteligentne przetwarzanie informaciji, a je-
dynie jej gromadzenie i mozliwoS¢ przeprowadzania prostych operacji na danych, problem
ten rozwigzano stosujac tréjwartoSciowa logike tukasiewicza. Jest to mechanizm gwaran-
tujacy poprawne wykonywanie standardowych operacji na bazach danych. Niemniej jednak
zapotrzebowanie inteligentnej analizy informacji jest daleko wigksze, niz rozwigzania zasto-
sowane w relacyjnych bazach danych. Jak do tej pory nie wprowadzono tak powszechnie
akceptowanych i gruntownie przebadanych rozwigzah dla problemu brakujacych wartoéci,
jak ma to miejsce np. wobec problemu informacji niepewnej i niedoktadnej.

Zainteresowanie brakujacymi wartosciami atrybutéw nie ogranicza sie jednak tylko do
praktycznych aspektéw budowy skutecznych systemow decyzyjnych. Réwniez na gruncie
teorii maszynowego uczenia si¢ podejmowano proby scharakteryzowania problemu braku-
jacych wartosci (patrz np. [4, 6, 17]). Jednym z najwazniejszych na tym polu wynikow jest
pokazanie w pracy [6], ze w 0og6le mozna stosowac uczenie sig poje¢ w oparciu o przyktady
w stosunku do danych z niekompletnym opisem obiektow. Co prawda zaproponowany tam
algorytm nie jest efektywny i posiada ponadwielomianowa ztozonoS¢ obliczeniows, jednak
dzigki takim podstawom mozemy miec nadzieje, ze mozna opracowac skuteczny algorytm
uczacy sie pojec w oparciu o obiekty z brakujacymi wartosciami atrybutow.

1.6 Metody postepowania wobec brakujgcych wartosci

Problemem brakujacych wartosci atrybutow w zakresie inteligentnego przetwarzania infor-
macji zaczeto si¢ powaznie interesowa¢ dopiero w drugiej potowie lat osiemdziesigtych.
Wczesniej analogiczne problemy byty badane na gruncie statystyki, algebry uniwersalnej i
logiki, co stanowi inspiracje dla wigkszosci uzywanych obecnie rozwigzah. Na tej podsta-
wie wprowadzono wiele metodologii postepowania wobec brakujacych wartoSci atrybutdw,
ktore mozna zaklasyfikowac do czterech grup:

1. ignorowanie,

2. eliminacja obiektow lub atrybut6w,

3. uzupetnianie brakujacych wartosci,

4. wnioskowanie bezposrednio w oparciu o dane z niekompletnym opisem obiektow.

Najprostszymi i jednoczesnie najbardziej zaburzajgcymi jakoS¢ wnioskowania metodami
sg ignorowanie i eliminacja. Pomimo ich oczywistych wad, metody te sa niekiedy stosowane
ze wzgledu na ograniczenia juz istniejgcych rozwigzan wnioskowania na podstawie danych.

Ignorowanie brakujacych wartosci to préba analizy danych z niekompletnym opisem
obiektow w taki sposéb, jakby byty to normalne, dopuszczalne wartosci. Jest to metoda cze-
Sciowo stosowana do dzisiaj, gdyz wiele istniejacych systemow analizy danych nie uwzgled-
nia mozliwosci wystepowania brakujacych wartosci.
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Alternatywna metoda do ignorowania jest eliminacja. Eliminowac mozna obiekty o nie-
kompletnym opisie lub atrybuty, dla ktérych obiekty posiadajg brakujace wartosci. Usuwa-
nie obiektow i/lub atrybutdw niesie ze soba niebezpieczehstwo utraty mozliwosci wykrycia
0gdlnej prawidtowosci za pomoca wnioskowania indukcyjnego. Jednakze eliminacja doko-
nana przez specjaliste i poprzedzona doktadng analizag mechanizmow powstawania brakuja-
cych wartosci i zaleznoSci pomiedzy atrybutami dla niektdrych, szczegdlnych danych moze
przynieS¢ zadowalajacy rezultat. Nie jest to jednak metoda uniwersalna, a w szczego6lnosci
nie mozna jej uja€ w sposob algorytmiczny, gdyz nieodzownym elementem sukcesu jest tutaj
cztowiek — do Swiadczony specjalista w zakresie analizy danych.

Uzupetnianie brakujacych wartoSci to pierwsza z metodologii prébujacych w sposéb in-
teligentny poradzi€ sobie z problemem brakujacych warto$ci, dajaca sie ujac algorytmicznie.
Jej korzenie siggaja statystyki. Brakujgce wartosci usituje sie uzupetniat za pomoca wartosci
Z dziedziny atrybutow na podstawie mniej lub bardziej wyrafinowanego kryterium. Metoda
ta moze wprowadzac zaburzenia do danych, dlatego zakres jej zastosowanh jest nieco ograni-
czony. Zaletg tej metody jest to, ze dane uzupetniane sa przed wiasciwym procesem wnio-
skowania i nie trzeba modyfikowac istniejacych algorytmow, ktére nie potrafig wnioskowac
w oparciu o dane z niekompletnym opisem obiektdw.

Whnioskowanie bezposrednio w oparciu o dane z niekompletnym opisem obiektow jest
najbardziej uniwersalng metodologia postepowania wobec brakujacych wartosci. W odroz-
nieniu od wszystkich poprzednich metod, metoda ta umozliwia osiggniecie najlepszych wy-
nikdéw. Uwarunkowane jest to jednak od powstania algorytmow, ktore bedg mozliwie w jak
najbardziej efektywny sposob wykorzystywaty zawartg w danych informacje. Pewna wada
tej metodologii jest to, ze jej adaptacja do juz istniejacych systemow wnioskowania w opar-
ciu o dane wymaga modyfikacji istniejgcych algorytmaow.

Zaprezentowana w rozdziale 7. metoda podziatu usituje znalez¢ kompromis pomiedzy
eliminacja, uzupetnianiem i wnioskowaniem bezposrednio w oparciu o dane z niekomplet-
nym opisem obiektéw w taki sposob, aby wyeliminowac¢ wyzej wspomniane wady tych roz-
wigzan.
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Rozdziat 2

Wstep do teorii zbiorow przybli zonych

Przez wiedze czesto rozumiemy zdolnos¢ do klasyfikacji, czyli umiejetnosci rozrdzniania
obiektow z otaczajacej nas rzeczywistosci. Mozna stwierdzi€, ze jednym z najwazniejszych
elementéw wiedzy jest zdolnoS¢ do klasyfikacji obiektow, przy czym przez obiekt rozu-
miemy wszystko, co tylko mozna sobie wyobrazi¢, np: przedmioty, zwierzeta, osoby, poje-
cia abstrakcyjne, momenty czasu itd. Zatem chcac zdefiniowac wiedze niezbedna do procesu
wnioskowania, musimy najpierw zdecydowac, jakimi obiektami jesteSmy zainteresowani.
Zbior takich obiektéw nazwiemy uniwersum. Majgc ustalone uniwersum mozemy zdefinio-
wac na nim rodziny podziatéw, ktére dzielag nam uniwersum, zbidr wszystkich obiektow, na
podzbiory. Podzbiory takie mozemy nazywac pojeciami. Na przyktad, jesli za uniwersum
przyjmiemy zbior wszystkich jabtek, to mozemy okreSlic pojecie jabtka zielonego. Pewne
obiekty (jabtka) z uniwersum sa reprezentantami pojecia jabtka zielonego, czyli, co rowno-
wazne, naleza do zbioru zielonych jabtek. Natomiast jesli pewne jabtko nie jest zielone, na-
lezy do uzupeknienia zbioru zielonych jabtek. Z punktu widzenia danej wiasnosci obiektow
(koloru jabtka), w oparciu o ktorg budujemy pojecie, nie jesteSmy w stanie odréznic mie-
dzy soba obiektow nalezacych do pojecia, jak rowniez obiektéw do pojecia nienalezacych.
Z punktu widzenia koloru dany owoc albo jest zielony, albo taki nie jest i dalsze rozgra-
niczenie na podstawie takiej informacji pomigedzy reprezentantéw zbioru zielonych jabtek
nie jest mozliwe. Ze wzgledow praktycznych wygodnie jest rowniez okreslac takie podziaty
nie tylko binarnie (jabtko zielone vs. pozostate jabtka), ale na wigksza liczbe podzbiorow
uniwersum. Na przyktad ze wzgledu na kolor jabtka mozna podzieli¢ na zbiory jabtek zielo-
nych, zottych i czerwonych.

2.1 Reprezentacja wiedzy

Na poczatku lat 80-tych Profesor Zdzistaw Pawlak zaproponowat nowe podejscie do pro-
blemu formalnego opisu wiedzy niepetnej i niedoktadnej — teorig zbioréw przyblizonych
(patrz [37]). Zaproponowane podejscie stanowi dobra podstawe teoretyczng do rozwiazy-
wania problemow dotyczacych inteligentnych systeméw informacyjnych. Jak okaze sige w
nastepnym rozdziale, zbiory przyblizone okazaly sie uzyteczne w szczeg6lnosci przy anali-
zie danych o brakujacych wartosciach atrybutdw.

Teoria zbiorow przyblizonych jest doskonatg metoda starajgca sie naSladowac naszki-
cowany powyzej model przetwarzania wiedzy. Jej gtéwng zaletg jest formalne, logiczno-
teoriomnogosciowe ujecie catoksztattu zjawisk zwigzanych z przetwarzaniem wiedzy i wnio-
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skowaniem o obiektach. Roéwniez takie pojecia jak nieprecyzyjnos¢ i niepewnoSc danych,
czestokro€ reprezentowane numerycznie, przez co wymykaja sie stricte formalnemu podej-
Sciu, tutaj wyrazone sa w postaci prostych do przyswojenia i analizy pojec¢ teoriomnogoécio-
wych.

Zdefiniujmy zatem formalnie nasz zbi6r obiektéw — uniwersum, wraz z pojeciami, ktére
klasyfikuja obiekty z uniwersum.

Definicja 2.1 System informacyjny. (patrz [2, 38])
System informacyjny to para A = (U, A), gdzie:

e U jest skohczonym, niepustym zbiorem, zwanym uniwersum. Elementy zbioru U nazy-
wamy obiektami.

e A jest skohczonym, niepustym zbiorem atrybutow, gdzie kazdy atrybut a € A inter-
pretowany jest jako funkcja a : U — V¢ przyporzadkowujaca obiektom z U wartoSci
atrybutu a, przy czym V¢ jest zbiorem wartosci atrybutu a zwanym dziedzing atrybutu

1
a—.

Zwyczajowo systemy informacyjne prezentuje sig¢ graficznie w postaci tabel informa-
cyjnych. Postac tabeli jest tutaj szczego6lnie wygodna, gdyz stanowi podstawowa strukture
danych uzywang do implementacji systeméw informacyjnych.

Przykiad 2.1 Jabtka.

Niech A = (U, A), gdzie U to zbidr jabtek, a zbior atrybutéw A jest zdefiniowany jako
A = {kolor, wielkos¢, dojrzate}. Pojecie jabtko zielone jest wyznaczone przez zbiér Z C U,
taki, ze Z = {x; € U : kolor(z;) = zielone}. Mozemy zobrazowat przyktadowy system in-
formacyjny A, gdzie U = {z1, ..., xg}, w postaci tabeli informacyjnej. Kolumny tabeli ozna-
czajg atrybuty (cechy) badanego obiektu, a wiersze zawieraja opis poszczegdlnych obiektow.
Kazda komorka tabeli w wierszu i i kolumnie a zawiera wartos¢ a(x;), czyli klasyfikacje o
przynaleznosci x; do pewnego pojecia, ze wzgledu na atrybut (ceche) a.

| kolor | wielkos¢ | dojrzate |

T1 | czerwone duze tak
To Z6tte Srednie tak
x5 | zielone mate nie
x4 | zielone duze tak
Ts z0ke Srednie nie
zg | czerwone | Srednie tak
T7 z0ke duze tak
xg | czerwone | Srednie tak
T Z6ke mate nie
Z10 z0ke mate tak
11 | czerwone mate tak
T12 | zielone Srednie nie

1Gdy jasno wynika z kontekstu, jaki system informacyjny jest rozpatrywany, wtedy przyjmuje si¢ réwnie z oznaczenie
Va.
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Rysunek 2.1: Tak mo zna wyobra Z&a sobie graficznie przestrzei uniwersum U dla przykdadu 1.1.
Zbior X reprezentuje pojecie jabdka dojrzakego, a zbioér X — pojecie przeciwne, jabdka niedojrzatego.

Pojecie zielonego jabtka jest wyznaczane przez zbiér 7 = {z3, x4, xg, 212 }. Ponadto opis
(klasyfikacja) pewnych obiektow wzgledem atrybutéw (wkasnosci) ze zbioru A jest iden-
tyczny, co zazwyczaj nie o0znacza jeszcze, ze sg to dwa takie same jabtka, gdyz zestaw cech A
jest dosy€ ubogi.

2.2 Relacja nierozro znialngci

W powyzszym przyktadzie poruszyliSmy wazng wiasnosci cechujaca systemy informacyjne.
Ze wzgledu na ograniczony charakter reprezentacji wiedzy w postaci praktycznie realizowal-
nych systemoéw informacyjnych nalezy wzig€ pod uwage, ze wiedza w ten sposéb zgroma-
dzona bedzie nieprecyzyjna. W teorii zbiorow przyblizonych modelowane jest to w sposob
bezposredni za pomoca relacji nierozrdznialnosci. Dwa obiekty (jak w powyzszym przykta-
dzie x4 i 23) moga miec taki sam opis cechami A, jednakze cztowiek nie wyciaga z tego od
razu wniosku, ze sg to dwa identyczne jabtka (lub wrecz, ze jest to jedno i to samo jabtko),
ale zakfada, ze na obecnym stanie wiedzy nie jest w stanie ich od siebie rozroznic.

Definicja 2.2 Relacja nierozroznialnosci
Niech A = (U, A) bedzie systemem informacyjnym i niech B C A. Relacje nierozroz-
nialnosci IND,(B) C U x U generowana przez zbior B definiujemy w nastepujacy sposob:

INDy(B) ={(z,y) € U x U :Va € B : a(z) = a(y)}. (2.2)

Relacja nierozréznialnosci dzielni nam zbiér wszystkich obiektow na najmniejsze pod-
zbiory, ktérymi mozemy operowac przy wykorzystaniu wiedzy B. Jezeli nawet pewne dwa
obiekty r6znig sig od siebie, ale przyjmuja te same wartoSci na atrybutach z B, nie jesteSmy
w stanie stwierdzic, czy sg to dwa rézne, czy jeden i ten sam obiekt, gdy opieramy sie tylko
na wiedzy o atrybutach (cechach obiektéw) ze zbioru B.

Fakt 2.1 Relacja nierozroznialnosci spetnia nastepujace wtasnosci

1. IN D, (B) jest relacja rownowaznosci,
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Rysunek 2.2: Klasy abstrakcji relacji nierozré znialngci /N Dy (B), gdzie B = {kolor, wielko's’c}. W
ka zdym kwadracie wszystkie obiekty sg nierozro znialne ze wzgledu na opis B.

2. By C By = IND,(B,) C IND(By)

3. IND, (B, UBy) = INDy(B;) N IND4(By)

4. INDy(B) = Naep INDs({a}).

Powyzsze wiasnosci wynikaja z definicji relacji nierozr6znialnosci oraz z podstawowych
faktow logiki i teorii mnogosci. Fakt pierwszy mowi o tym, ze relacja nierozréznialnosci jest
relacjg rbwnowaznosci, a co za tym idzie, dzieli cate uniwersum na klasy abstrakcji, ktore
sg roztgczne i niepuste. Fakt drugi ilustruje, ze wiedza oparta na wigkszej liczbie atrybu-
tow daje nam wieksze mozliwosci rozrézniania obiektéw miedzy soba. Fakt trzeci méwi o
tym, ze jesli rozpatrzymy relacje nierozrdznialnosci opartg na sumie dwoch podzbiorow A,
to obiekty nie sg przez nig rozrozniane tylko wtedy, gdy nie sg rozrzniane przez zaden z
tych podzbioréw. Wreszcie fakt czwarty, bedacy uogolnieniem poprzedniego faktu mowi o
tym, ze wszystkie klasy abstrakcji relacji nierozréznialnoSci powstaja jako przecigcie klas
nierozroznialnych przez poszczegolne atrybuty.

Pojedyncza klasa abstrakcji relacji nierozr6znialnosci jest najmniejsza jednostka, jaka
mozemy operowac. Klasg abstrakcji nazywa sig czesto pojeciem elementarnym lub pojeciem
atomowym, gdyz jest najmniejszym podzbiorem uniwersum, jaki mozemy sklasyfikowa¢ —
odrozni¢ od pozostatych elementéw za pomocg cech — atrybutdéw klasyfikujacych obiekty
do poszczeg6lnych pojet podstawowych.

Dane pochodzace z otaczajgcej nas rzeczywistosci czasami nie pozwalaja nam na jedno-
znaczne okre$lenie, czy wartoS¢ atrybutu dwoch podanych obiektow jest sobie rowna, czy
tez nie. Zjawisko takie moze mie€ miejsce przy badaniu identycznosci kolorow, ksztattow,
gtosow itd. Dlatego w niektorych zastosowaniach rozpatruje sie nie system informacyjny,
ale tak zwanym system tolerancyjny. W takim systemie relacje nierozr6znialnosci, opartg na
relacji rbwnosci, zastepuje sie relacjg tolerancji, rozumiang jako podobienstwo obiektow z
uniwersum. Systemy tolerancyjne byty rozpatrywane na przyktad w pracy [39].
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Rysunek 2.3: Gérna i dolna aproksymacja zbioru.

2.3 Zbiory przybli zone

Celem wnioskowania na podstawie systemow informacyjnych jest proba klasyfikacji obie-
ktow do pewnego pojecia. Proces wnioskowania opiera si¢ na opisie tego obiektu, wyrazo-
nego w postaci innych poje¢ — atrybutéw zawartych w systemie informacyjnym. W naszym
przypadku oznacza to, ze prébujemy na podstawie przynaleznoSci obiektéw do pewnych klas
nierozréznialnoci wnioskowac o ich zaklasyfikowaniu jako nalezacych do pewnego pojecia
lub nienalezacych.

Klasyczne podejscie do systemdw informacyjnych, stosujace standardowa definicje teo-
riomnogosciowa zbioru (nazywang tez zbiorem ,,0strym”), posiada duzo wad uniemozli-
wiajgcych efektywne wnioskowanie na podstawie danych empirycznych. W ujeciu klasycz-
nym pojecie jest definiowalne w systemie informacyjnym (patrz [2, 38]), gdy za pomoca
dostepnych pojec mozemy catkowicie wyznaczy¢ zbiér obiektéw nalezacych do tego poje-
cia. Oznacza to, ze pojecia definiowalne, to tylko takie pojecia, ktére mozemy przedstawic
jako suma pojet atomowych w danym systemie informacyjnym. Wystarczy spojrzec na ry-
sunek 2.2, aby sie przekona¢, ze zgodnie z ta definicjg wiekszoS¢ pojec wystepujacych w
rzeczywistosci nie jest definiowalna. Jest to spowodowane niedoktadnoscig danych, co jest
zjawiskiem nieuniknionym.

Teoria zbioréw przyblizonych oferuje nam mechanizm teoriomnogo$ciowy pozwalajacy
wyrazi¢ w sposob Scisty i formalny rozumowania operujace na takich nieprecyzyjnych da-
nych. Pomocne okaza sie tutaj pojecia aproksymacji (czyli przyblizenia) gornej i dolnej
zbioru.

Definicja 2.3 Aproksymacja zbioru.

Niech A = (U, A) bedzie systemem informacyjnym, B C A bedzie zbiorem atrybutow
oraz X C U bedzie pewnym pojeciem, ktore chcemy aproksymowac. Dla kazdego obiektu
x € U, przez [z];np,(p) 0znaczmy klasg abstrakcji relacji IN D (B) do ktorej nalezy obiekt
x.

1. Dolna B-aproksymacja pojecia X w systemie informacyjnym A nazywamy zbiér:

BINDAX = {33 eU: [I]INDA(B) g X} (22)
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2. Goérna B-aproksymacja pojecia X zbior:

B'NPABX ={z € U : [z]rnpym N X # 0}. (2.3)

3. B-brzegiem pojecia X w systemie informacyjnym A nazywamy zbior:

BNp(X) = B""PAX — Biyp, X (2.4)

Za pomoca dolnej i gérnej aproksymacji jesteSmy w stanie okresli¢ nieostre pojecie X
w Scisty sposéb. Dolna aproksymacija pojecia, to wszystkie te obiekty, ktore nalezg bez wat-
pienia do pojecia. Naleza one bowiem do takich klas abstrakcji, ktére w catoSci zawierajg
cie w pojeciu X . Gbrna aproksymacja pojecia, to zbidr takich obiektow, co do ktérych nie
mozemy wykluczyé€, ze naleza do pojecia. Jest to spowodowane tym, ze naleza do klas abs-
trakcji majacych niepuste przeciecie z pojeciem X, a co za tym idzie, sg nierozroznialne z
pewnym obiektem nalezgcym do pojecia X.

Fakt 2.2
Dolna i gérna aproksymacja pojecia spetnia nastepujaca nierOwnosc:

0 C Arnp, X C X CANPAC UL (2.5)

2.4 DefiniowalnoS¢ pojeC

Podstawowym zadaniem wnioskowania indukcyjnego jest wykrycie ogoélnych prawidtowo-
Sci pozwalajgcych na klasyfikowanie obiektow do badanego pojecia. Teoria zbioréw przy-
blizonych umozliwia analize danych niepewnych i niedoktadnych za pomoca poje¢ aprok-
symacji dolnej i gornej. Rozszerza to istotnie klase pojec definiowalnych, czyli takich, co do
ktorych mozemy oczekiwac, ze wnioskowanie indukcyjne przyniesie oczekiwany rezultat.

Definicja 2.4 Definiowalnos¢ pojec.

e Pojecie X jest catkowicie B-definiowalne, gdy B;yp, X = B!¥PaX. Odpowiada to
klasycznemu ujeciu definiowalnosci poje¢ w systemach informacyjnych.

e Pojecie X jest w przyblizeniu B-definiowalne, gdy Bryp, X # 0 i BINPaX #£ U.
e Pojecie X jest wewnetrznie B-niedefiniowalne, gdy Byyp, X = 0 i BI/NPAX #£ U.
e Pojecie X jest zewnetrznie B-niedefiniowalne, gdy B;yp, X # 0 i BI/NPaX = U.

e Pojecie X jest catkowicie B-niedefiniowalne, gdy B;yp, X = 0 i BI¥NPAX = U.

Sita zbioréw przyblizonych przejawia sig w tym, ze, przy umiejetnym doborze rozpatry-
wanych atrybutdw, praktycznie wszystkie interesujace nas pojecia sg w przyblizeniu definio-
walne. Pozwala to na skuteczne wnioskowanie i formutowanie hipotez dotyczacych aprok-
symowanych pojec. Aby oceni¢ skutecznos¢ aproksymaciji wprowadza sie wspétczynnik do-
ktadnosci (ostrosci) pojecia.
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Definicja 2.5 Wspotczynnik doktadnosci pojecia (patrz [2, 38]).
Jesli A = (U, A) jest systemem informacyjnym, B C A oraz X C U taki, ze X # (),

to miare ag(X) = % bedziemy nazywac wspotczynnikiem doktadnoSci (ostrosci)

pojecia X w systemie informacyjnym A, wzgledem zbioru atrybutéw B.

Wspdtczynnik doktadnosci pojecia ma nastepujace wasnosci:
e 0 <ap(X) <1,

e jesliap(X) = 1, to pojecie X jest catkowicie definiowalne, czyli ostre i jego whasnosci
moga by¢ w petni wyrazone za pomoca zbioru atrybutéw B,

e jesli ap(X) = 0, to pojecie X jest catkowicie niedefiniowalne (lub wewnetrznie nie-
definiowalne) i jego wiasnosci nie moga by¢ wyrazone za pomoca zbioru atrybutéw
Bl

e jesli 0 < ap(X) < 1, to pojecie jest w przyblizeniu definiowalne (lub zewnetrznie
niedefiniowalne) i jego whasnosci moga by¢ czeSciowo wyrazone, z ,,mocg” wspot-
czynnika doktadnosci, przy pomocy atrybutéw ze zbiory B.

Rodzaj definiowalnosci i wspotczynnik doktadnosci pojecia pozwalajg na charakteryza-
cje dostepnych danych. Umozliwiaja rowniez wykrycie niecelowosci stosowania pewnych
danych do analizy. Jest to przydatne podczas fazy projektowania systeméw gromadzenia
danych i pozwala na sprawdzenie, czy w tabelach informacyjnych ujeto wszystkie atrybuty
niezbedne do procesu wnioskowania.

2.5 Redukcja wiedzy

W podrozdziale 1.4 zaznaczono istnienie roznych problemow zwigzanych z niedoskonato-
Sciami dostepnych danych. Jedna z nich jest tzw. szum informacyjny, czyli zbyt duza liczba
nieistotnych informacji zawartych w opisach obiektéw. Na gruncie teorii zbiorow przybli-
zonych réwniez ten problem moze zosta¢ w naturalny sposéb rozwigzany za pomoca tzw.
reduktow.

Zdefiniujmy formalnie zbidr atrybutow, ktory sktada sie wytacznie z istotnych atrybutow,
wnoszacych nowa wiedze na podstawie zawartej w nich informacji.

Definicja 2.6 Niezalezny zbidr atrybutow.
Niech A = (U, A) bedzie systemem informacyjnym. Zbior atrybutéw B C A nazywamy
niezaleznym, gdy dla kazdego atrybutu a € B zachodzi nastgpujacy warunek:

INDy(B) # INDy(B ~ {a}) (2.6)

Niezalezny zbiér atrybutéw to taki zbidr, z ktdérego nie mozna usung¢ zadnego atrybutu
bez utraty cennych informacji, czyli zmniejszenia dokfadnoSci aproksymacji pojecia. Dla
kazdego zbioru atrybutéw mozemy okresli¢ rodzing zbioréw atrybutdéw, za pomoca ktérych
mozemy uzyskac taka sama doktadnoS¢ aproksymacji, oraz bedgcych minimalnymi, w sen-
sie relacji inkluzji, zbiorami atrybutéw posiadajacych te wtasnosc.
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Definicja 2.7 Redukt zbioru atrybutéw (patrz [2, 38]).
JeSli A = (U, A) jest systemem informacyjnym, oraz P, ) C A, to zbior atrybutow P jest
reduktem zbioru atrybutow @ w systemie A, gdy spetnione sg nastepujace warunki:

e IND,(P)=INDA(Q),
e zbidr atrybutow P jest niezalezny.
Zbidr wszystkich reduktow zbioru atrybutéw @ bedziemy oznaczali przez RED,(Q).

Dzigeki relacji nierozréznialnosci mozemy w czytelny i formalny sposéb wprowadzi¢ po-
jecie reduktu, pozwalajace wyznaczy¢ istotny podzbioér informacji. W4asnosci i metody ge-
nerowania reduktow byty szczegétowo badane np. w pracach [2, 50].

Eliminacja niepotrzebnej informacji spetnia kluczowa rolge we wnioskowaniu indukcyj-
nym. Poniewaz wnioski formutowane sg w oparciu o przyktady obiektow istnieje zagroze-
nie, ze wnioski takie moga by¢ nadmiernie dopasowane do przyktadéw uczacych i nie opi-
suja w poprawny sposob ogolnych prawidtowosci wystepujacych w danych. Ograniczenie
informacji tylko do podzbioru istotnych atrybutow umozliwia skuteczng walke z tym tzw.
problemem nadmiernego dopasowania. Istnieja rowniez przestanki statystyczne, jak zasada
minimalnego opisu (ang. minimal description length, MDL), ktére wskazujga na celowos¢
postugiwania sie reduktami, a nie petnym zbiorem atrybutow. Stad redukt to podstawowe
narzedzie uzywane podczas procesu wnioskowania w oparciu o dane.

2.6  Wnioskowanie na podstawie danych

Celem uczenia sig poje¢ w oparciu o przyktady jest stworzenie opisu pojecia, pozwalajacego
na klasyfikacje obiektéw z uniwersum pod wzgledem przynaleznoSci do badanego pojecia.
Opis taki wyrazany jest w postaci formut logicznych.

Definicja 2.8 Formuta atomowa.
Niech A = (U, A) bedzie systemem informacyjnym. Formuta atomowa nazwiemy kazdy
napis postaci (a, v), gdzie a € A oraz v € V,. Powiemy, ze obiekt = spetnia formute (a, v),

gdy a(z) = v.

Definicja 2.9 Formuta.
Niech A = (U, A) bedzie systemem informacyjnym. Do zbioru formut F'(A) naleza

e wszystkie formuty atomowe,

e jeSli ¢ oraz ¢ naleza do zbioru formut, to rowniez -y, (¢ V), (¢ A ) oraz (¢ — 1)
naleza do zbioru formut.

Symbole logiczne —, Vv, A oraz — nalezy traktowac jako odpowiedniki znanych klasycz-
nych funktoréw.

Formuty F'(A) umozliwiaja nam formalne ujecie prawidtowosci zachodzacych w danych
i wyrazenie ich w Scisty sposob. Opisy pojec wyrazone sg w postaci formut szczego6lnego
rodzaju, tzw. regut decyzyjnych.
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Definicja 2.10 Reguta decyzyjna.
Niech A = (U, A) bedzie systemem informacyjnym. Reguta decyzyjng nazwiemy kazda
formute postaci ¢ — .

Do rozpoczecia procesu wnioskowania indukcyjnego niezbedne jest wyznaczenie ba-
danego pojecia. Poniewaz, dla konkretnego systemu informacyjnego, badane pojecie jest
najczesciej trwale wyznaczone, wydziela sig je ze zbioru atrybutéw i nazywa atrybutem de-
cyzyjnym. System informacyjny z wyznaczonym atrybutem decyzyjnym oznacza si¢ A =
(U, AU d), gdzie A nazywamy zbiorem atrybutéw warunkowych, a d nazywamy atrybutem
decyzyjnym.

Proste reguty decyzyjne, to formuly postaci ¢ — 1, ktére w czeSci warunkowej (¢)
zawierajg formuty atomowe zbudowane w oparciu o atrybuty warunkowe, natomiast wniosek
(v)) jest formuta atomowa postaci (d,v). Tak okreSlone reguty decyzyjne znajduja sie w
centrum zainteresowania uczenia sig poje¢ w oparciu o przyktady.

Przykiad 2.2
Niech A bedzie systemem informacyjnym z przyktadu 2.1. Mozemy sformutowac naste-
pujace reguty decyzyjne:

1. (kolor, czerwone) A (wielkosé, duze) — (dojzate, tak)
2. (kolor, czerwone) A (wielkos¢, duze) — (dojzate, nie)
3. (kolor, zétte) A (wielko$é, rednie) — (dojzate, tak)
4. (kolor, zielone) A (wielko$é, mate) — (dojzate, nie)

Reguta 1. jest reguta prawdziwg w systemie A, podczas gdy reguta 2. jest reguta fatszywa.
Reguta 3. jest regutg aproksymacyjna, gdyz dotyczy klasy abstrakcji relacji nierozréznialno-
Sci nalezacej do gbrnej aproksymacji pojecia X, ale nie nalezacej do dolnej aproksymacji
tego pojecia. Reguta 4. jest regutg doktadng, gdyz dotyczy klasy abstrakcji nalezacej do dol-
nej aproksymacji pojecia X.

2.7 Systemy decyzyjne

System potrafigcy klasyfikowac obiekty pod wzgledem ich przynaleznosci do poje¢ na-
zwiemy systemem decyzyjnym. Zadaniem dla systemu decyzyjnego jest indukcja regut de-
cyzyjnych, czyli wnioskowanie indukcyjne w oparciu o dane, ktérego celem jest wygenero-
wanie opisu umozliwiajacego klasyfikacje obiektdéw. Stad system decyzyjny nazywany jest
rowniez klasyfikatorem.

Najprostszy system decyzyjny jaki mozna sobie wyobrazi€, to generator regut decyzyj-
nych bedacych w istocie opisem wszystkich obiektow zawartych w tabeli informacyjnej.
Zastosowanie teorii zbiorow przyblizonych umozliwia charakterystyke tych regut jako praw-
dziwych lub nie, oraz aproksymacyjnych lub doktadnych. Istotnym ulepszeniem takiego al-
gorytmu jest np. zastosowanie zredukowanych opiséw obiektdw, czyli zastosowania reduk-
tow, jako podstawy do generowania regut decyzyjnych. Metody konstruowania systemow
decyzyjnych w ramach teorii zbioréw przyblizonych opisane sg w pracach [2, 26, 32, 34, 35,
38, 48].
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Reguty decyzyjne, czyli opis pojecia, moga by¢ reprezentowane w rézny sposéb. Dwa
najpopularniejsze sposoby, to reprezentacja regut w naturalnej, formutowej postaci oraz re-
prezentacja w postaci drzew decyzyjnych. Drzewa decyzyjne zostaty opisane na podstawie
algorytmu C4.5 opisywanego w podrozdziale 4.1.
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Rozdziat 3

Rozszerzenia teorii zbioréw
przybli zonych

3.1 Woprowadzenie

Teoria zbiorow przyblizonych oferuje skuteczny i efektywny mechanizm do przetwarzania
wiedzy niepewnej i nieprecyzyjnej. Jednak usitujac przetwarzac konkretne dane czestokroc
napotykamy na kolejny rodzaj niedoskonatosci informacji, jakim sg brakujace wartoSci atry-
butéw. Brak poszczegd6lnych wartoSci w systemie informacyjnym stanowi przeszkode w sto-
sowaniu tradycyjnej teorii zbiorow przyblizonych. W ostatnich latach powstaty jednak mo-
dyfikacje teorii zbiorow przyblizonych, ktére umozliwiajg w naturalny i intuicyjny sposob
przetwarzanie danych z brakujagcymi warto$ciami (patrz [21, 22, 27, 29, 49, 51, 53, 54, 56]).

W niniejszym rozdziale prezentowane beda modyfikacje relacji nierozr6znialnoéci, ktére
pozwalajg na analize danych z brakujacymi wartoSciami. Ze wzgledu na to, ze prezentowane
relacje czestokro€ nie beda relacjami réwnowaznosci, pewnych drobnych modyfikacji wy-
magata bedzie definicja gérnej i dolnej aproksymacji pojecia. Niemniej jednak zmiany te
beda trywialne i beda stuzyty jedynie w celu ominigcia braku mozliwosci konstrukcji klas
abstrakcji.

3.2 Tolerancja - Podobienstwo symetryczne

Problem nieokreSlonych wartoSci nie jest w matematyce czym$ nowym. Na gruncie alge-
bry uniwersalnej (patrz np. [7, 18]) wyksztatcone zostato pojecie algebry czeSciowej, gdzie
operacje nie musza by¢ okreSlone na catej dziedzinie, a tylko na jej czesci.

3.2.1 Podstawy algebraiczne

Algebra czeSciowa to pewne uogdlnienie pojecia algebry, nazywanej takze algebra totalng
dla rozréznienia tych dwaoch pojec. Pojecie czeSciowosci jest bardzo podobne do problemu
brakujacych wartosci atrybutdw [46]. Niektore proste fakty z algebry uniwersalnej moga by¢
wprost przeniesione na grunt analizy danych z niekompletnym opisem obiektow.

Definicja 3.1 Sygnatura (patrz [3]).

23
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Pare (F, n) nazywamy sygnatura, jeli F" jest dowolnym zbioremin : F — N jest funkcja.
JeSli para (F,n) jest sygnatura to elementy zbioru F' nazywamy symbolami operacji, a n
funkcja arnosci. Jezeli n(f) = 0,1,2,n méwimy odpowiednio, ze f jest symbolem statej,
operacji unarnej, binarnej lub n-argumentowej.

Definicja 3.2 Algebra czesciowa (patrz [3]).

Pare A = (A, (f4)ser) nazywamy algebra czeSciowa typu (F,n), jesli A jest niepu-
stym zbiorem zwanym noénikiem algebry i dla kazdego f € F f4 jest n(f)-arna opera-
cja czesciowg w zbiorze A. Tzn. f4 : dom(f4) — A, gdzie dom(f4) C A9, Gdy
dom(f4) = A7) wtedy f nazywamy operacja totalna.

Pojecie algebry czesciowej w bardzo naturalny sposéb opisuje wiele zjawisk zachodza-
cych w matematyce i w informatyce. Struktury czesciowe pojawiajg si¢ zarowno przy pro-
blemach zwigzanych z odejmowaniem w zbiorze liczb naturalnych, jak i operacjach na abs-
trakcyjnych typach danych, czy w abstrakcyjnej teorii algorytmaow.

Podstawowym pojeciem tgczacym algebre uniwersalng z analizg danych o niekomplet-
nym opisie obiektow jest pojecie rownosci stabej.

Definicja 3.3 Staba rownoS¢ (patrz [46]).
Niech v : X — A bedzie dowolnym wartoSciowaniem, gdzie X to zbidr zmiennych.
Niech 7 : dom(7) — A bedzie naturalnym rozszerzeniem v nazywanym wartoSciowaniem

terméw. Algebra A spetnia staba réwnosé p = ¢, gdy zachodzi ponizszy warunek.
p,q € dom(v) = v(p) = ¥(q) (3.1)

Staba réwnost p = g jest spetniona, gdy zachodzi réwnos¢ funkcji indukowanych w A
przez p i g okreSlonych tylko na wspdlnej dziedzinie p i g. Gdy p lub ¢ jest nieokreslone,
wtedy nie istotna jest wartoS¢ drugiego termu (odp. ¢ lub p) i w szczeg6lnoSci moze ona by¢
rowniez nieokreslona.

Dla odmiany aby zachodzita tzw. rownos¢ silna p &~ ¢ wymagane jest réwniez, aby dzie-
dziny okreslonosci p i ¢ byty sobie rdwne. Koncepcja rdwnosci stabej jest istotnie roznym
pojeciem od stosowanych do tej pory réwnosci, odpowiadajacych raczej pojeciu rownosci
silnej. Adaptacja unikalnego pomystu, aby réwnos¢ sprawdzac tylko na wspdlnej poddzie-
dzinie okreSlonosci, na grunt teorii zbioréw przyblizonych umozliwia wnioskowanie w opar-
ciu o dane z niekompletnym opisem obiektow.

3.2.2 Relacja tolerancji

Relacja tolerancji — podobie hstwa symetrycznego jest bardzo naturalnym rozszerzeniem
relacji nierozroznialnosci i byta opisywana przez wielu badaczy zaréwno na gruncie teo-
rii zbiorow przyblizonych, jak i innych metod (patrz np. [25, 29, 39, 56]). Odpowiada ona
pojeciu stabej rownosci z algebry uniwersalnej, jednak tutaj zyskuje ona dodatkowa interpre-
tacje. W przypadku analizy danych mozna bowiem zaktadac, ze brakujgca warto$¢ danego
atrybutu potencjalnie moze by¢ w rzeczywistosci dowolnym elementem dziedziny tego atry-
butu. Inaczej méwiac, tabela ktérg dysponujemy jest niekompletnym, czeSciowym obrazem
istniejacej tabeli z kompletnym opisem obiektow, ktora jest przed nami ukryta. GdybySmy
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poznali w petni uzupetniona tabele, to w miejscu brakujacych wartosci mogtyby stac do-
wolne wartosci z dziedziny atrybutéw. Poniewaz jednak nie znamy kompletnej tabeli w ca-
tosci, to nie mozemy stwierdzic, ktdra z takich tabel w petni uzupetnionych jest prawdziwym
rozszerzeniem naszej wybrakowanej tabeli.

Definicja 3.4 Relacja tolerancji

Niech A = (U, A) bedzie systemem informacyjnym i niech B C A. Relacje tolerancji
(podobienstwa symetrycznego) TOL,(B) C U x U generowana przez zbior B definiujemy
W nastepujacy sposob:

TOLA(B)= {(z,y) eU xU:

Va € B a(x) = a(y) Va(z) = *V a(y) = *}. (3.2)

Nalezy zauwazy¢, ze metoda uzupetniania wszystkimi mozliwymi wartoSciami, badana
nie tylko na gruncie zbiorow przyblizonych (np. [25]), jest rownowazna zastosowaniu wy-
zej zdefiniowanej relacji tolerancji. Mozemy wyobrazac sobie, ze zastosowanie takiej relacji
pozwala nam jednoczesnie przetwarzat wszystkie mozliwe rozszerzenia tabeli z brakujg-
cymi wartoSciami do tabeli w petni uzupetnionej. Warto zauwazy¢, ze liczba takich tabel
jest wyktadnicza ze wzgledu na liczbe brakujacych wartosci. Oznacza to, ze dla typowych
tabel liczba takich rozszerzen jest zazwyczaj wigksza od 2%, czyli wigksza od 300 cyfro-
wej liczby dziesietnej. Widac tutaj wyraznie przewage teorii zbioréw przyblizonych, gdyz
nie potrzebujemy tworzy¢ zadnych rozszerzenh fizycznie. Wystarczy zastosowac tak zdefi-
niowana relacje tolerancji, aby uzyska¢ metode réwnowazna do uzupetniania wszystkimi
mozliwymi wartoSciami.

Fakt 3.1 Wiasnosci relacji tolerancji.
1. Relacja tolerancji jest zwrotna.

Ve € U TOLy(B)(z,x)

2. Relacja tolerancji jest symetryczna.

Ve,y € U TOLy(B)(z,y) < TOLA(B)(y, x)

3. Relacja tolerancji na ogot nie jest przechodnia.

Va,y,z € U TOLy(B)(z,y) NTOLL(B)(y, 2) # TOLA(B)(z, 2)

Warunek przechodniosci zachodzi wtedy i tylko wtedy, gdy obiekt y jest uzupetniony na
wszystkich miejscach, gdzie zaden z obiektow z i z nie posiada brakujacej wartoSci atrybutu
(patrz [46]).

Relacja tolerancji nie jest relacja rownowaznosci, nie pozwala nam zatem na konstrukcje
klas abstrakcji. Definicja gérnej i dolnej aproksymacji zbioru w oparciu o relacje nierozrdz-
nialnoSci operowata na klasach abstrakcji, niemniej jednak zostaty one uzyte gtdwnie dla
ilustracji koncepcji pojecia elementarnego i zwieztoSci zapisu. Istotg aproksymacji dolnej
jest to, ze obiekt = nalezy z catg pewnoscig do pojecia, gdy wszystkie obiekty z nim nieroz-
roznialne, czyli do niego podobne rowniez naleza do aproksymowanego pojecia. Natomiast
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obiekt z nalezy do aproksymacji gornej, gdy nie mozemy wykluczy¢, ze ktorys z obiektow
z nim nierozréznialnych (podobnych do niego) nalezy do badanego pojecia. Zatem dolng i
gorng aproksymacje zbioru — pojecia mozemy wyrazi ¢ bez potrzeby odwotywania sig¢ do
klas abstrakcji.

Definicja 3.5 Dolna i gérna aproksymacja zbioru.
Niech A = (U, A) bedzie systemem informacyjnym, B C A bedzie zbiorem atrybutéw
oraz X C U bedzie pewnym pojeciem, ktore chcemy aproksymowac.

1. Dolng B-aproksymacja pojecia X w systemie informacyjnym A nazywamy zbidr:
BTOLAX = {.7) eU: {y eU: TOLA(B)(.T,:U)} g X}

— (e eU:VyelU TOL,(B)(z,y) > ye x}. &3
2. Gérna B-aproksymacja pojecia X zbior:
BTOL X = {ze€U:{yeU:TOLy\(B)(x,y)}NX # 0} (3.4)

{reU:3yeU TOL\A(B)(z,y) Ny € X}.

Przykiad 3.1

Dana jest nastgpujaca tabela decyzyjna A = (U, AU {d}), gdzie U = {x1, z2, 3,24}
oraz A = {a1,as}. Dodatkowy atrybut decyzyjny, okreSlajacy do ktdrego pojecia nalezy
dany obiekt, oznaczymy przez d. W naszym przypadku U rozbija sig¢ na dwa pojecia X i Y,
dlatego tez dziedzina atrybutu decyzyjnego d jest okreSlona V; = {X, Y}.

ay | Qo d
T 1 2 X
zo | * | 2 || X
z3 | 1 | x| Y
X4 1 1 Y

Mozemy wypisac zbiory elementéw podobnych w sensie relacji TOL,: do z; podobne
Sg x9 Oraz x3, do x5 podobne sg x; oraz z3, do x3 podobne sg xq, x3 | x4, Wreszcie do x4

podobny jest x5.
Aproksymacje poje¢ X i Y stanowig zbiory:
e Aror, X =1

L] ATOLAX = {$1’$27$37$4}
[ ATOLAY = {.Z'4}
L ATOLAY = {$1,$2,$3,$4}

Powyzszy przyktad ilustruje, ze relacja tolerancji jest ,,ostrozna” w okreslaniu aproksy-
macji pojec. Warto tutaj przypomnie¢ nieréwnos¢ 2.5 opisujacg wiasnosci gornej i dolnej
aproksymacji dla relacji nierozréznialnosci w kompletnych tabelach informacyjnych.

0 C Anp, X CX CANPLCU (3.5)

Rozszerzajac sens standardowej relacji nierozréznialnoSci na dane z niekompletnym opisem
obiektow, w taki sposob, ze brakujgca wartos¢ traktowana jest jak dopuszczalna wartoSc z
dziedziny atrybutu, prawdziwy jest nastgpujacy fakt (patrz np. [56]).
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Fakt 3.2
0 C Aror, X C Ainp, X C X C ATNPrX C ATOIX C U (3.6)

Oznacza to, ze aproksymacje pojecia generowane przez relacje tolerancji sa bardziej ogolne
od aproksymacji generowanych przez relacje nierozrdznialnosci.

Warto tutaj zauwazyc¢, ze aproksymacje generowane przez relacje nierozréznialnosci naj-
bardziej przyblizaja X w sensie powyzszej nierownosci. Wynika to wprost z wykorzystania
wszystkich mozliwych rozréznieh kombinacji wartosci zapisanych w tabeli informacyjne;j.
Niestety takie aproksymacje w obliczu danych o niekompletnym opisie obiektow czesto pro-
wadzg do nieprawdziwych wnioskdw.

Z drugiej strony relacja tolerancji jest najbardziej ogdlna relacja, jest relacja ,,najbez-
pieczniejszg”. Generowane przez nig aproksymacje sa odpowiednio najmniejsze (najwigk-
sze) dla aproksymacji dolnych (gérnych) wykorzystujacych wiedze B. Wszystkie inne re-
lacje wprowadzane w niniejszym rozdziale zawsze ograniczone sg przez relacje nierozrdz-
nialno&ci i tolerancji, a ich aproksymacje mieszcza sig pomigedzy tymi dwoma relacjami w
sensie powyzszej nierdwnosci.

3.3 Podobienstwo niesymetryczne

W zastosowaniach praktycznych relacja podobiehstwa symetrycznego — tolerancji najcze-
Sciej nie spetnia poktadanych w niej oczekiwah dobrego odpowiednika relacji nierozréznial-
noSci. Generowane przez nig aproksymacije sg zbyt ogdlne, a liczba i sposéb utozenia bra-
kujacych wartoSci nie ma duzego wptywu na podobienstwo obiektéw. Mozna powiedziec,
ze relacja podobiehstwa symetrycznego jest nazbyt ,,0strozna”, nawet w przypadkach, gdy
mozna z catg pewnoscig wykluczy¢ przynaleznoS¢ poszczegdlinych przyktadéw do dolnej
aproksymacji pojecia.

Poszukiwania wielu badaczy lepszego zamiennika relacji nierozréznialnoéci, ktory po-
zwalat by na budowe efektywniejszych klasyfikatorow, zaowocowaty alternatywnym roz-
wigzaniem w postaci relacji podobiehstwa niesymetrycznego (patrz [20, 22, 52, 54, 55, 56]).

Definicja 3.6 Relacja podobiehstwa niesymetrycznego

Niech A = (U, A) bedzie systemem informacyjnym i niech B C A. Relacje podobiefstwa
niesymetrycznego SIMy(B) C U x U generowang przez zbior B definiujemy w nastgpujacy
sposob:

SIMy(B) = {(z,y) e UxU: (37)

Va € B a(z) = a(y) V a(z) = *}. '

Relacja ta rézni sie w istotny sposéb od relacji tolerancji. Pomyst wprowadzenia relacji
podobienstwa niesymetrycznego moze sie wydawac nienaturalny, jednakze mozna go cze-
Sciowo argumentowac przyktadem z [54]. Cztowiek — ekspert w zakresie malarstwa nie
uzywa sformutowania, ze oryginat obrazu jest podobny do jego kopii. Tylko kopia moze by¢
podobna do oryginatu, a nie na odwrotnie. W innych dziedzinach wiedzy réwniez wystepuja
przypadki, gdy podobienstwo jest okreslane w spos6b niesymetryczny.

Aby obiekt z byt podobny do obiektu y musi zachodzi¢ standardowy warunek réwnosci
wartosci okreSlonych atrybutéw. Oprocz tego obiekt y musi by¢ ,,oryginatem” dla obiektu
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x, musi by€ okreSlony na co najmniej tych samych atrybutach co obiekt z. W druga strong
taki warunek nie jest konieczny i ,kopia” x moze posiadatc wiecej brakujgcych wartosci
atrybutéw niz y. Tak zdefiniowana relacja w oczywisty sposob nie jest symetryczna. £atwo
jednak pokazac, ze jest zwrotna i przechodnia.

Fakt 3.3 Wiasnosci relacji podobienstwa niesymetrycznego.

1. Relacja podobiehstwa niesymetrycznego jest zwrotna.

Ve e U SIMy(B)(x,x)

2. Relacja podobienstwa niesymetrycznego nie jest symetryczna.

Ve,y € U SIMy(B)(x,y) < SIMy(B)(y,x)

3. Relacja podobienstwa niesymetrycznego jest przechodnia.

Ve, y,z € U SIMy(B)(z,y) N SIMy(B)(y, z) = SIMy(B)(z, 2)

Relacja podobiehstwa niesymetrycznego nie jest oczywiscie relacjg réwnowaznosci, co
uniemozliwia konstrukcje klas abstrakcji. Nie mozemy zatem postugiwac si¢ klasami abs-
trakcji w celu zdefiniowania gornej i dolnej aproksymacji pojecia. Jako zamiennik klas abs-
trakcji mozemy tutaj zastosowac dwa zbiory obiektow podobnych, zbidr oryginatow do kto-
rych obiekt z jest podobny, oraz zbiér kopii podobnych do obiektu z.

Definicja 3.7 Zbiory obiektow podobnych.

Kazdemu obiektowi z przypiszemy dwa zbiory obiektéw podobnych. Przez R(x) ozna-
czymy zbior obiektéw podobnych do z, a przez R~ (x) oznaczymy zbiér obiektéw do ktérych
x jest podobny i zdefiniujemy jak nastepuje:

R(z)={y e U: (z,y) € SIMy(B)}, (3.8)
R Y z)={yeU: (y,x) € SIMy(B)}. (3.9)

Zbiory obiektow podobnych umozliwig nam czytelng interpretacje aproksymacji gornej i
dolnej. Aproksymacja dolna pojecia to zbior obiektéw na pewno do pojecia nalezacych. Aby
to zagwarantowac trzeba przyjac, ze obiekt x nalezy do dolnej aproksymacji tylko wtedy,
gdy wszystkie obiekty do niego podobne (a zatem i on sam) naleza do pojecia. Do gérnej
aproksymacji pojecia nalezg natomiast te obiekty, ktore sg podobne do pewnego obiektu z ba-
danego pojecia. Wtedy nie mozemy wykluczy¢, ze gdy poznamy wiecej wartoSci badanego
obiektu nie stanie sig on identyczny z pewnym obiektem nalezgcym do aproksymowanego
zbioru.

Definicja 3.8 Dolna i gérna aproksymacja zbioru.
Niech A = (U, A) bedzie systemem informacyjnym, B C A bedzie zbiorem atrybutéw
oraz X C U bedzie pewnym pojeciem, ktore chcemy aproksymowac.
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1. Dolna B-aproksymacja pojecia X w systemie informacyjnym A nazywamy zbiér:
BSIMAX = {.Z' eU: R_l(.T) g X}
= {zeU:{yeU:SIMyB)(y,z)} C X}
2. Gorna B-aproksymacja pojecia X zbior:

BMAX = U{R(y):y € X}
= {ze€U:JyeX yeR(x)} (3.11)
= {zeU:{yeU:SIMy\(B)(z,y)} N X #0}.

Tak zdefiniowana gorna i dolna aproksymacja pojecia rézni sie zdecydowanie od po-
przednich aproksymacji wzgledem relacji nierozréznialnosci i tolerancji. Aproksymacje ge-
nerowane przez relacje podobiehstwa niesymetrycznego najczesciej roznia sie zdecydowanie
od pozostatych.

Przykiad 3.2

Kontynuujac przyktad 3.1 mozemy wyznaczy¢ odpowiednie aproksymacje wzgledem re-
lacji podobiehstwa niesymetrycznego. Na poczatek potrzebne beda nam zbiory elementéw
podobnych (zbi6r oryginatéw i kopii).

o R(z1) ={x:1}, R (x1) = {x1, 22, 23}

o R(z2) = {21,732}, R (32) = {22}

o R(x3) = {x1, 23,74}, R (x3) = {23}

o R(xy) = {x4}, R (zq) = {m3, 24}

Mozemy teraz tatwo wyznaczy¢ aproksymacje poje¢ X oraz Y.
o Aror, X = {z}

[ ] ATOLAX = {(L'l,.’EQ,.’Eg}

(3.10)

L4 ATOLAY = {$3,$4}
o ATOLAY = {z3, 1,4}

Wiasnoéci aproksymacji wzgledem relacji podobienstwa niesymetrycznego mozna scha-
rakteryzowac w sposob podobny do faktu 3.2. Zgodnie z oczekiwaniami, relacja podobien-
stwa niesymetrycznego miesci sie pomiedzy relacja nierozréznialnosci i relacja tolerancji.

Fakt 3.4

Aror, X C Asim, X € Arnp, X C X C AINPAX C ASTMA Y C ATOIA X (3.12)

Aproksymacje, a co za tym idzie rowniez i klasyfikacja oparta na tej relacji jest odmienna
od pozostatych. Definiowalno$¢ pojecia jest nieco bardziej szczeg6towa niz dla relacji to-
lerancji oraz bardziej og6lna niz dla relacji nierozrdznialnoSci zaadaptowanej do danych z
niekompletnym opisem obiektéw. Mozna powiedziec€, ze tutaj wykorzystuje sie wiecej infor-
macji ze zbioru danych (systemu informacyjnego), niemniej jednak moze si¢ to niekorzyst-
nie odbi¢ na poprawnosci rezultatow. To, czy wnioskowanie oparte o relacje podobienstwa
niesymetrycznego charakteryzujg lepsze wyniki empiryczne zalezy od przyjetej tabeli infor-
macyjnej i musi by€ rozpatrywane indywidualnie.
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3.4 Relacje parametryzowane

Relacje tolerancji i podobienstwa niesymetrycznego w ustalony sposob rozstrzygaja o po-
dobienstwie obiektéw i definiuja jednoznacznie aproksymacje gérna i dolng obiektow. Jed-
nakze dla szczegdlnych danych kazda z tych relacji moze sig¢ okazac niewtaSciwa, czy to z
powodu nazbyt ogdélnej, czy tez nieprawidtowej klasyfikacji. Wasciwym zatem podejsciem
byto by dopasowanie zamiennika relacji nierozr6znialnoéci do konkretnych danych tak, aby
klasyfikacja byta poprawna i jednoczesnie wystarczajgco szczeg6towa. Zaproponowane w
pracach [19, 21, 53, 54, 55]. rozwigzanie tego zagadnienia opiera si¢ na zastosowaniu roz-
mytych relacji podobiehnstwa.

Zbiory i relacje rozmyte

Zbiory rozmyte to pewne uogdlnienie standardowego, teoriomnogo$ciowego zbioru, gdzie
zaktadamy, ze elementy moga albo do zbioru naleze¢, albo nie naleze€. Funkcja charaktery-
styczna takiego ,,0strego” zbioru przyjmuje tylko wartosci 0 lub 1.

xz: X — {0,1} (3.13)

Zbiory rozmyte dopuszczajg duzo wigksza swobode w okreSlaniu przynaleznosci elementow
do zbioru, gdyz elementy moga naleze¢ do zbioru rozmytego w réznym stopniu. Funkcja
charakterystyczna opisujaca zbior rozmyty moze przybierat wszystkie wartoSci z przedziatu
[0,1].
pz X —[0,1] (3.14)
Relacje w standardowym, teoriomnogoSciowym podejsciu definiuje sie jako podzbidr
iloczynu kartezjanskiego dziedzin argumentdéw. W przypadku relacji binarnej na U oznacza
to, ze relacja r to podzbidr U x U. Utozsamiajac relacje z jej funkcja charakterystyczng,
mozna powiedziet, ze
r:UxU—{0,1}. (3.15)

Relacja rozmyta, to uogolnienie standardowego pojecia relacji. Tak jak standardowa rela-
cja jest ,,ostrym” zbiorem elementdw, tak relacja rozmyta jest zbiorem rozmytym. W naszym
przypadku relacji binarnej na U oznacza to, ze funkcja charakterystyczna relacji rozmytej
jest okreSlona nastgpujaco:

r:UxU —[0,1]. (3.16)

Dzigki rozmytej relacji podobienstwa obiekty z uniwersum U moga by¢ podobne do
siebie w pewnym stopniu, w przedziale [0, 1]. Daje to wigksza site wyrazu niz tylko rozgra-
niczenie na obiekty podobne i niepodobne.

Poniewaz zbiory rozmyte operuja na wartosciach liczbowych stopnia przynaleznosci ele-
mentow, definiowane sg za pomoca funkcji charakterystycznych. W istocie pojecie zbioru
rozmytego jest utozsamiane z rozmyta funkcja charakterystyczng i ilekro¢ operujemy zbio-
rach rozmytych, uzywamy do tego rozmytej funkcji charakterystycznej (patrz np. [11, 28]).

Relacje podobienstwa

Dotychczas rozpatrywane relacje podobienstwa, stuzace do wyznaczania gornej i dolnej
aproksymacji poje¢, nie uwzgledniaty waznego aspektu jakim jest stopieh podobienstwa
obiektow pomiedzy soba.
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Przykiad 3.3
Dana jest nastepujaca tabela decyzyjna A = (U, AU {d}), gdzie U = {x1, z, x3} Oraz
A= {U,l, ag, CL3}.

ap | Qg | Qg d
i) 3 X
z3 | x| * | 3 ||Y

Intuicyjnie obiekt x4 jest bardziej podobny do z1, niz obiekt x5 do z;. Niemniej jednak
zarowno relacja tolerancji, jak i podobienstwa niesymetrycznego, okresla podobiefstwo tych
obiektoéw w taki sam sposéb, nie pozwalajacy na zrdznicowanie stopnia podobienstwa.

TOLy(A)(x9,21), TOLA(A)(x3,21), SIMu(A)(x2,21), SIMy(A)(x3,21)

Dysponujac pojeciem relacji rozmytej w tatwy sposéb mozemy dobrac taka relacje po-
dobiehstwa, ktora zr6znicuje nam stopieh podobiehstwa obiektéw zgodnie z intuicja.

Przyktad 3.4 Rozmyta relacja podobiehstwa.

NajczeSciej stosowana relacja podobienstwa rozmytego opiera si¢ na interpretacji pro-
babilistycznej brakujacych wartosci. Brakujgce wartoSci moga przybiera¢ jedna z istniejg-
cych wartoSci atrybutu z jednakowym prawdopodobiehstwem. Podobiefstwo obiektow wzgl.
jednego atrybutu mozna zatem zapisa¢ wzorem:

1 a(z) =aly) #*
0 a(z) #a(y) A a(ﬂf)#*/\a(y)#*

Ro@y) =1 = a(e) =+Aaly) #+Va(@) #xnaly) =+ - G
T al@) = Aay) ==

Teraz mozemy tatwo zapisac rozmytg relacje podobienstwa, okreS§long na podzbiorze atry-
butow B, Ry (B) : U x U — [0, 1]:

Ro(B)(z,y) = ]I Ral(z,y). (3.18)

acB

Tak zdefiniowana relacja podobienstwa odpowiada probabilistycznej interpretacji bra-
kujacych wartosci, jako zdarzeh niezaleznych ze schematu klasycznego. Ponadto ze wzgledu
na zaburzenia, jakie mogto by to wprowadzi¢ do procesu wnioskowania, w literaturze przyj-
mowane jest niejawnie zatozenie, ze R(z,z) = 1.

Wezmy tabele informacyjna z poprzedniego przyktadu (3.3). Przypustmy, ze dla kazdego
a 'V, = {1,2,3}. Mozemy zapisat rozmyta relacje podobiefnstwa R, (A) w postaci tablicy
stopni przynaleznosci.

1 | To | T3
T 1 % %
22| 5| 1%
i) % % 1

Uniwersytet Warszawski — Wydziat Matematyki, Informatyki i Mechaniki



32 3.4. RELACJE PARAMETRYZOWANE

Rozmyte aproksymacje pojec

Majac zadang rozmyta relacje podobienstwa mozemy przystgpi¢ do definiowania aproksy-
macji gornej i dolnej, ktéra w tym przypadku rowniez bedzie pojeciem rozmytym, okre§lo-
nym na rodzinie podzbioréw U.

Przektadajac standardowa definicje aproksymacji gérnej i dolnej na jezyk logiki rozmytej
(patrz np. [53, 56]) uzyskujemy funkcje, ktora kazdemu podzbiorowi U przypisuje stopieh
przynalezno&ci do aproksymacii.

Definicja 3.9 Rozmyta aproksymacja dolna i gérna!
e Rozmyta aproksymacja dolna pojecia X to funkcja pip,, x : P(U) — [0, 1] taka, ze
118g, x(Z) = Toez(Tuev (I(Ra(z, %), px (2))))- (3.19)
e Rozmyta aproksymacja gdrna pojecia X to funkcja pgr, x : P(U) — [0, 1] taka, ze
tprax(Z) = Toez(Seev (T (Ra(2, 2), px (2))))- (3.20)

Gdzie ux (x) jest stopniem w jakim obiekt « nalezy do pojecia X (w przypadku niesprzecznej
tabeli decyzyjnej funkcja ta przyjmuje wartosci ze zbioru {0,1}), a T, S oraz I jest odpo-
wiednio koniunkcja (T-normg), alternatywa (T-konorma,S-norma) oraz implikacja rozmyta
(patrz np. [11, 28]).

Przyktad 3.5
Kontynuujac przyktad 3.4 mozemy uzy€ ,,probabilistycznych’” operatoréw rozmytych:

e T'(a,b)=a-b
e S(a,b)=a+b—a-b
e [(a,b)=1—a+a-b

Aproksymacja dolna i gérna zdefiniowana jest wtedy nastepujaco:

b, x(Z) = I1 T1 (1~ Bu(z.2) + Ra(z7) - ux(2), (3:21)
ponax() = I10 = 10~ Ra(es2) (o), (3.22)

Stopien, w jakim pojedynczy obiekt z € U moze stanowi¢ dolne lub gorne przyblizenie
pojecia X jest zdefiniowane nastepujaco:

pag,x(2) = [ (1 = Ru(z,2) + Ra(z,7) - ux(2)), (3.23)
pprax(2) =1= [ (1 = Ra(z, 2) - px(2)). (3.24)

Dzigki wykorzystaniu whasndgci operatorow rozmytych w niniejszej definicji wyeliminowane zostato nie zawsze do-
brze okreSlone pojecie klasy relacji (poréwnaj [53, 56]).
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Rozmyte aproksymacije dolna i gérna moga by¢ bezpoSrednio uzyte do indukcji regut
decyzyjnych (patrz [53, 56]). Regutom takim przypisuje sie wtedy stopieh zaufania bedacy
w istocie stopniem, w jakim obiekty pasujgce do reguty stanowig aproksymacije dolng lub
gorna badanego pojecia. Podczas procesu indukcji regut moga by¢ generowane tylko reguty
posiadajace wigkszy stopieh zaufania niz pewna zadana warto$¢. Decydujac si¢ na zmniej-
szenie stopnia zaufania regut mozemy uzyskac wiecej regut, ktére doktadniej opisuja badane
pojecie. Jednakze reguty o zbyt niskim stopniu zaufania moga prowadzi¢ do fatszywych
wnioskow.

3.5 Podsumowanie

Teoria zbioréw przyblizonych okazata sig by¢ bardzo uzyteczna do analizy danych o nie-
kompletnym opisie obiektow. Pojecia aproksymacji zbioréw daja sig tatwo zaadaptowac do
systemow informacyjnych z brakujgcymi wartoSciami atrybutdéw. System decyzyjny skon-
struowany w oparciu o teorig zbiorow przyblizonych z powodzeniem mozna zastosowac do
takich danych.

Celem systemdw decyzyjnych jest uzyskanie jak najlepszej klasyfikacji badanych obie-
ktow. Przedstawione tutaj rozwigzania co prawda umozliwiaja dokonanie analizy danych o
niekompletnym opisie obiektow, jednakze posiadajg rowniez kilka stabych punktow.

Zaprezentowane relacje tolerancji i podobiehstwa niesymetrycznego zaktadaja ustalona
semantyke brakujacych wartoSci. Relacje te w staty sposéb rozstrzygaja, czy obiekty sa do
siebie podobne, czy tez nie. Jednakze, wérod danych pochodzacych z rzeczywistosci, czesto
mozna natrafi¢ na takie, w ktérych mechanizmy rzgdzgce powstawaniem i znaczeniem bra-
kujacych wartosci sg skomplikowane i nie przystaja do ustalonego schematu ich poréwny-
wania. Co prawda relacja tolerancji gwarantuje nam maksymalng poprawno$¢ wycigganych
wnioskdéw, jednak moze sie okaza¢, ze dysponujac dodatkowg wiedza mozna w sposob bez-
pieczny uzyskac doktadniejsze aproksymacije pojec. Klasyfikatory oparte o relacje tolerancji
i podobienstwa niesymetrycznego moga by¢ nieelastyczne i uzyskiwac nie najlepsze wyniki.

Pewnym rozwigzaniem jest tutaj parametryzowana relacja podobiehstwa. Za pomoca
funkcji okreSlajacej stopieh podobiehstwa obiektéw pomiedzy soba mozna podjac probe
uwzglednienia nawet skomplikowanych mechanizmoéw rzadzacych brakujagcymi wartoSciami.
Jednakze proces doboru takiej funkcji jest bardzo skomplikowany. Usitujac wyznaczy¢ opty-
malng funkcje a priori musimy dysponowac¢ duzg wiedza na temat przetwarzanych danych
oraz musimy réwniez umiec zawrze¢ te wiedze w postaci funkcji podobienstwa obiektow.
Gdy podejmujemy prébe automatycznego wyznaczenia optymalnej funkcji podobienstwa
sposrdd pewnej klasy funkcji stajemy przed problemem bardzo czasochtonnego problemu
optymalizacyjnego. Wszystko to sprawia, ze chociaz teoretycznie dysponujemy mozliwoscia
wyznaczenia relacji podobienstwa dopasowanej do przetwarzanych danych, to rozwigzanie
takie jest niepraktyczne. Nalezy jednak zauwazyc€, ze dla pewnych obszar6w zastosowah
moze byt to rozwigzanie w petni akceptowalne i bardzo skuteczne.

Idealnym rozwiazaniem byto by opracowanie takiej relacji podobiehstwa, ktéra mogta by
zostat wyznaczona na podstawie danych. Podobnie jak uczymy sie poje¢ w oparciu o przy-
ktady, mogli bySmy réwniez podjac probe wyuczenia sie relacji podobienstwa obiektdw,
ktora uchwyci wszystkie zawitosci zwigzane z brakujgcymi wartosciami obiektéw. Niestety,
jak do tej pory nie znaleziono rozwigzania dla tego problemu. Wiele przestanek wskazuje, ze
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rozwigzanie takie nie moze opierac sie na humerycznym wyznaczaniu podobiefnstwa obie-
ktow, jak ma to miejsce w przypadku parametryzowanych relacji podobiehstwa, a powinno
operowac jedynie pojeciami teoriomnogosciowymi, podobnie jak sama teoria zbioréw przy-
blizonych. Takie ,,symboliczne” (w przeciwiehstwie do numerycznego) rozwigzanie byto by
wielkim zwyciestwem teorii zbioréw przyblizonych nad danymi o niekompletnym opisie
obiektdéw. Pytanie w jaki sposob konstruowac relacje podobiefstwa na podstawie danych
pozostaje jednak otwarte.
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Rozdziat 4

Metody wnioskowania bezpoSredniego

Zadaniem tego rozdziatu jest opisanie metod nie wywodzacych sig z nurtu teorii zbioréw
przyblizonych, ktére potrafig wnioskowac w oparciu o dane z niekompletnym opisem obie-
ktow bez potrzeby modyfikowania danych wejSciowych. W odréznieniu od metod leniwych
opisywanych w nastepnym rozdziale, tutaj celem kazdej metody jest konstrukcja pewnej
hipotezy opisujacej pojecie.

Istnieje wiele metod wnioskowania indukcyjnego, ktére maja niewiele wspdlnego z teorig
zbioréw przyblizonych. Ze wzgledu na zapotrzebowanie na metody potrafigce radzi¢ sobie z
brakujacymi wartoSciami réwniez na tym gruncie dopracowano si¢ metod, ktére nie modyfi-
kuja danych z niekompletnym opisem obiektéw, a wnioskuja na nich w sposéb bezposredni.
Poréwnanie w jaki sposob udaje im sie uniknac problemu niekompletnego opisu obiektéw
moze by¢ bardzo ksztatcgce. W szczegdlnosci zaprezentowane w rozdziale 7 wyniki eks-
perymentalne stanowig poréwnanie metody podziatu z algorytmem C4.5 opisywanego w
niniejszym rozdziale.

41 C45

Metoda C4.5 wymyslona przez Quinlana to chyba jedna z najbardziej popularnych metod
wnioskowania indukcyjnego. Jej gtéwna idea opiera si¢ na schemacie zstepujacej indukcji
drzewa decyzyjnego na podstawie danych treningowych. Za pomoca zbudowanego drzewa
decyzyjnego mozemy klasyfikowac obiekty ze zbioru testowego. Metoda cechuje sie wysoka
jakoscig klasyfikacji oraz duzg sprawnoScig w radzeniu sobie z brakujacymi warto$ciami.

Metody klasyfikacji w oparciu o indukcje drzew decyzyjnych swoimi korzeniami siegaja
lat szeSCdziesigtych i pierwotnie rozpatrywane byty w ujeciu statystycznym. Na grunt maszy-
nowego uczenia si¢ we wspotczesnej postaci drzewa decyzyjne wprowadzit Quinlan, ktory
przyjat odmienna od statystykdw perspektywe i terminologig, a takze wprowadzit teorioin-
formacyjne kryteria oceny testdw oraz techniki przycinania. Rozwijany przez niego system,
nazywany w kolejnych wersjach 1D3, C4 i C4.5, stanowi punkt odniesienia dla sporej czesci
badan nie tylko nad algorytmami konstruowania drzew decyzyjnych, lecz uczenia sig poje¢
w 0g6Inosci.

W tym podrozdziale ograniczymy sie do og6lnego opisu metod bazujgcych na drzewach
decyzyjnych, bez wdawania sig w szczeg6ty implementacyjne metody C4.5. Pierwotny sche-
mat zstepujacej konstrukcji drzewa przewija sig¢ praktycznie bez modyfikacji w kazdej meto-
dzie bazujacej na drzewach decyzyjnych. Jedynie rozwigzanie problemu brakujacych warto-
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Sci jest na tyle szczeg6lne dla metody C4.5, ze poSwiecimy mu wiecej uwagi. Metoda C4.5
obfituje w r6znorakie ulepszenia prostego schematu budowy drzewa, ktére zostaty szczegoé-
towo opisane w ksiazce [42], a jej kod zrodtowy jest ogoIno dostepny w internecie.

4.1.1 Drzewa decyzyjne

Drzewo decyzyjne, to struktura umozliwiajaca klasyfikacje obiektéw. Sktada si¢ ona z wierz-
chotkdw potaczonych etykietowanymi krawedziami. Kazdy obiekt podlegajacy klasyfikacji
rozpoczyna swoja Sciezke klasyfikacji w korzeniu drzewa, a kohczy jg w lisciu drzewa. Kra-
wedzie drzewa s3 etykietowane testami, czyli prostymi formutami logicznymi, ktore decy-
duja do ktorego z syndw zostanie przestany obiekt w celu dalszej klasyfikacji. Testy te sg
roztgczne i petne w taki sposéb, ze dla kazdego obiektu istnieje jedna, jednoznacznie wy-
znaczona Sciezka klasyfikacjil. LiScie natomiast, maja przypisang klase decyzyjna, do ktorej
naleza, lub powinny naleze¢ wszystkie obiekty, ktorych Sciezki klasyfikacji kohczg w tym
lisciu. Gdy obiekt kohczy swoja Sciezke klasyfikacji w danym liciu, méwi sig réwniez, ze
obiekt zostat zaklasyfikowany do tego liscia.

Drzewo decyzyjne konstruowane jest w oparciu o dwie podstawowe zasady. Pierwsza
z nich, jest zatozenie, aby klasyfikacja uzyskana za pomocg drzewa decyzyjnego posiadata
jak najmniejszy btad (liczbe ztych odpowiedzi) na danych treningowych. Poniewaz jednak
takie dziatanie moze prowadzi¢ do zjawiska przeuczenia nalezy uzyskac pewien kompromis
pomiedzy wspotczynnikiem bledu a stopniem skomplikowania hipotezy, czyli wielkoscig
drzewa. Ma to swoje uzasadnienie w zasadzie minimalnego opisu (ang. minimal description
length, MDL) (patrz np. [44, 42]). Zasada ta jest rowniez przestankg do stosowania metod
minimalizacji ztozonosci informacyjnej podzbioréw obiektow, rozdzielanych za pomoca te-
stow na krawedziach drzewa.

Jesli obiekty ze zbioru treningowego zaklasyfikowane do pewnego liscia nalezg do roz-
nych klas decyzyjnych, wtedy zbi6r zaklasyfikowanych do niego obiektow jest niejedno-
rodny, a lis¢ taki nazywamy niejednorodnym. Gdy wszystkie obiekty treningowe zaklasy-
fikowane do danego liscia naleza do tej samej klasy decyzyjnej, lisC taki jest jednorodny
lub inaczej ,,czysty”. Poniewaz w dane pochodzace z rzeczywistosci moga by¢, i czesto sg
sprzeczne (a takze ze wzgledu na stosowanie metod przycinania), lisciom nie koniecznie
musza odpowiadac obiekty z jednej klasy decyzyjnej. Klasyfikowanym obiektom testowym,
ktore trafiajg do niejednorodnego (,,brudnego”) liscia przypisuje sie najczesciej pojedyncza
decyzje wybrang przez gtosowanie wigkszoSciowe sposréd obiektow treningowych zakla-
syfikowanych do tego liscia. Inng koncepcja jest przypisywanie wszystkich decyzji, razem
z ich prawdopodobienstwem empirycznym, wyznaczonym na podstawie zaklasyfikowanych
do tego liscia obiektéw treningowych.

Proces konstrukcji drzewa decyzyjnego przebiega iteracyjnie. Poczatkowo wszystkie obie-
kty przypisane sa do jednego wierzchotka bedacego zarazem korzeniem i lisciem. Okresla
sie rowniez warunek stopu, ustanawiajacy kompromis pomigdzy wspétczynnikiem btedu a
wielkoscia drzewa. W petli powtarzany jest proces wyboru liscia. Najczesciej jest to ko-
lejny niejednorodny lis¢ lub lis€ o najbardziej niejednorodnym zbiorze zaklasyfikowanych
obiektow. Zbidr ten usituje sie rozdzielic za pomoca testu na podzbiory obiektow o jak
najmniejszej ztozonosci informacyjnej. Idealna sytuacja byto by rozdzieli¢ zbior obiektéw

Przynajmniej dla danych o kompletnym opisie obiekt6w.
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Rysunek 4.1: Proste drzewo decyzyjne

zaklasyfikowanych do takiego wierzchotka na podzbiory jednorodne. Wybor testow mini-
malizujacych ztozonos¢ informacyjng, lub inaczej, maksymalizujacych zysk informacyjny,
to heurystyczna strategia postepowania, majaca zagwarantowac jak najmniejszg ztozonos¢
drzewa (liczbe testéw i wierzchotkdw). Postepowanie takie jest motywowane checig wyge-
nerowania minimalnego opis hipotezy, zgodnie z zasadg MDL. Jako miare ztozonosci in-
formacyjnej zbioréw stosuje sig takie funkcje jak entropia, rozr6znialnos¢, Gini index czy
test x2. Po wyborze optymalnego testu tworzy sie nowe wierzchotki (najczesciej dwa), be-
dace synami rozbijanego liscia. Krawedzie prowadzace do nowo utworzonych wierzchotkéw
etykietuje sie wybranym testem i jego negacja (lub wybranymi testami, gdy dopuszczamy
rozbicia na wigcej niz dwa podzbiory). Proces zostaje zakohczony, gdy wszystkie liscie sg
wystarczajgco jednorodne aby umozliwi¢ skuteczna klasyfikacje.

Testy obiektow ktdrymi etykietowane sg krawedzie drzewa decyzyjnego rozdzielaja obie-
kty do syndw wierzchotka na podstawie wartosci atrybutow obiektu. Najprostsze testy, sto-
sowane w metodzie C4.5, opieraja sie na badaniu wartosci jednego atrybutu. Dla atrybutow
symbolicznych sprawdza sig, czy atrybut na danym obiekcie przyjmuje pewna warto$¢. Testy
tej postaci mozemy zapisac jako a;(x) = v, gdzie v € V,,, oraz z odpowiada testowanemu
atrybutowi. Dla atrybutéw numerycznych mozemy korzystac z liniowego uporzadkowania
dziedziny atrybutu. Testy dla takich atrybutow moga mie¢ postac a;(z) < v. W przypadku
gdy obiekt spetnia dany test, przechodzi do odpowiadajgcego mu syna tego wierzchotka.

PrzejScie przez obiekt Sciezki klasyfikacji od korzenia do liscia jednoznacznie wyznacza
spetnione przez niego testy. Mozemy to zapisaC w postaci formalnej za pomocg koniunk-
cji testow, uzyskujemy wtedy w naturalny sposob reguty decyzyjne, opisywane rowniez w
podrozdziale 2.6°.

Przykiad 4.1
Reguty decyzyjne dla drzewa z rysunku 4.1 wygladaja nastepujgco:

¢ (a1(z) = 5) A (az(z) > 1.7) = (d(z) = 1)
o (a1(z) = 5) A (az(z) < 1.7) = (d(z) = 0)
o (a1(2) #5) A(ai(2) = 3) = (d(z) = 1)
¢ (a1(z) # 5) A (au(2) # 3) = (d(z) = 0)

2Tutaj stosujemy nieco bogatszy jezyk do zapisu formut atmomowych.

Uniwersytet Warszawski — Wydziat Matematyki, Informatyki i Mechaniki



38 41. C4.5

Krawedzie moga by¢ rowniez etykietowane bardziej skomplikowanymi testami. W wierz-
chotku mozna sprawdzac jednocze$nie wartosci wielu atrybutow. W przypadku atrybutow
numerycznych oznacza to cigcie przestrzeni obiektow za pomoca hiperptaszczyzn (patrz np.
[32]). Ponadto mozna konstruowac nie tylko dwa wykluczajace sig testy, ale ich wigksza
liczbe. Na przyktad, mozna skonstruowac po jednym teScie dla kazdej wartosci atrybutu
(symbolicznego). Podejscie takie stosowane poczawszy od algorytmu ID3 opisanego w [40].

Raz utworzone drzewo decyzyjne moze by¢ wielokrotnie wykorzystywane do klasyfika-
cji obiektow testowych, inaczej niz ma to miejsce w metodzie LazyDT opisywanej w pod-

......

drzewie, ze obiekt spetnia testy wszystkich krawedzi tej Sciezki.

4.1.2 Brakujgce wartosci

Gdy usitujemy przetwarza¢ dane o niekompletnym opisie obiektéw za pomoca metod opar-
tych na drzewach decyzyjnych napotykamy na kilka trudnosci.

e Wyhor testu, za pomocg ktdrego dzielimy obiekty, jest dokonywany na podstawie heu-
rystycznego kryterium jakim jest zysk informacyjny. Jeli dwa testy uzywaja roznej
liczby obiektéw o brakujacej wartosci atrybutu, jak powinno by¢ to uwzgledniane pod-
czas poréwnywania ich przydatnosci?

e Gdy test zostanie juz wybrany, obiekty z brakujaca wartoscig testowanego atrybutu nie
moga byt zaklasyfikowane do zadnego z potomkow. Jak powinny by¢ traktowane takie
obiekty podczas rozdzielania?

e Kiedy drzewo decyzyjne uzywane jest do klasyfikacji nowych, testowych obiektow,
jak powinno sige postgpic, gdy obiekt posiada brakujaca wartoS¢ testowanego atrybutu?

Na podstawie badah opisanych w pracy [41] wybrana zostata strategia postepowania,
ktora co prawda nie uzyskuje najlepszych wynikow dla wszystkich danych eksperymental-
nych, ale srednio przewyzsza swoja skutecznoScig inne podejScia. Metoda ta zostata szcze-
gotowo opisana w ksiazce [42]. Ponadto w pracach [30, 36, 58] rozwazano stusznoS¢ przy-
jetego przez Quinlana podejscia i proponowano pewne ulepszenia zaréwno procesu indukcji
drzewa, jak i np. przycinania drzew decyzyjnych.

Podejscie zastosowane w algorytmie C4.5 opiera sie na empirycznym rozktadzie prawdo-
podobienstwa z jakim obiekty o znanych wartosciach atrybutdéw spetniajg rozwazane testy.
Modyfikacja kryterium wyboru testu zostata wyprowadzona z interpretacji znaczenia infor-
macji. Zysk informacyjny, jako funkcja podlegajaca maksymalizacji przez wybor optymal-
nego testu, powinien zostac tak przeliczony, aby uwzgledniat obiekty z brakujacymi warto-
Sciami atrybutéw. Poniewaz informacja pozwalajaca zaklasyfikowac te obiekty do ktorego$
z podzbioréw nie jest znana, dlatego na tych obiektach zysk informacyjny powinien wyno-
si¢ zero. Oznacza to, ze zysk informacyjny powinien zosta¢ zmodyfikowany o wspotczynnik
czestosci wystepowania obiektow bez brakujacych wartosci obiektow. Odbywa sig to wedtug
wzoru:

gain(X)' := F - gain(X), 4.2)

H __ liczba obiektéw bez brakujacych wartosci
gdZIe F= liczba obiektéw )
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Po wyborze testu musimy rozdzieli¢ obiekty do podzbioréw, tak aby spetniaty ustalone
testy. Jednakze obiekty o nieznanej wartoSci testowanego atrybutu nie moga by¢ zaklasyfi-
kowane do zadnego z podzbiorow. Metoda zaproponowana przez Quinlana polega na zasto-
sowaniu obiektéw wazonych i dystrybucji obiektéw z brakujagcymi wartoSciami atrybutéw
do wszystkich podzbioréw jednocze$nie. Przypustmy, ze zbiér obiektéw O za pomoca n
testow dzielimy na podzbiory Oy, ..., O,. Obiekty, ktdre maja brakujaca warto5¢ testowa-
nego atrybutu przypisywane sg do zbioru O; z waga rowng “Ooi“ . Oznacza to, ze obiekty takie
sg rozdzielane do wszystkich podzbioréw zgodnie z empirycznym prawdopodobiefnstwem
takiego zdarzenia. Komplikacji musi ulec algorytm, gdyz teraz musimy operowac nie ,,ca-
tymi” obiektami, ale réwniez ,,czeSciami” obiektow. Uzyskuje sig to przez zastosowanie wag
z zakresu [0, 1].

Podobne podejscie zastosowane zostato podczas klasyfikacji obiektdw testowych. Tutaj
rowniez obiekty o nieznanej wartoSci atrybutu rozdzielane sa po wszystkich krawedziach
drzewa decyzyjnego z wagami z zakresu [0, 1]. Nie mozemy zatem mowic o pojedynczej
Sciezce klasyfikacji, gdyz obiekt moze teraz posiadac wiele sciezek klasyfikacji. Wszystkie
odpowiedzi (tzn. decyzje pochodzace z lisci) sumowane sg z wagami, z jakimi obiekt zostat
zaklasyfikowany do danego liscia. W ten sposob uzyskuje sie nie pojedyncza klasyfikacje
do klasy decyzyjnej, ale klasyfikacje do wielu klas decyzyjnych wraz z prawdopodobien-
stwami przynaleznosci do danej klasy decyzyjnej. Na tej podstawie dokonuje si¢ ostatecznej
klasyfikacji za pomoca gtosowania.

4.2 LRI

Zaproponowana w przez Weissa i Indurkhya metoda LRI (Lightweight Rule Induction) pre-
zentuje nieco odmienne podejscie do indukcji regut decyzyjnych. W odréznieniu od metod
takich jak C4.5, gdzie reguty budowane sg na podstawie wyindukowanego drzewa decyzyj-
nego, tutaj reguty decyzyjne indukowane sg z danych bezposrednio. Réznic pomigdzy takimi
podejsciami jest wiele. Chyba najwazniejsza z nich jest to, ze reguty powstate z drzewa de-
cyzyjnego sa wzajemnie wykluczajace sig, podczas gdy reguty wyindukowane w sposob
bezposredni nie musza spetniac takiego wymagania. Metody bezpoSredniej indukcji regut
stanowig druga, najbardziej popularng po drzewach decyzyjnych grupe algorytméw uczenia
sie pojec.

4.2.1 Indukcja regut decyzyjnych

Reguta to najczesciej koniunkcja prostych testow, podobnie jak miato to miejsce w przykia-
dzie 4.1. Méwimy, ze reguta pokrywa obiekt, gdy obiekt spetnia warunkowa czgs¢ reguty.
Standardowa metoda indukowania regut decyzyjnych opiera si¢ na konstrukcji zbioru
regut pokrywajacego dane treningowe. Zazwyczaj proces indukcji przebiega iteracyjnie. In-
dukowana jest reguta, pokrywajaca mozliwie wiele obiektow i poprawiajaca jakos¢ klasyfi-
kacji, a nastepnie obiekty pokryte przez regute sa usuwane ze zbioru treningowego i proces
jest powtarzany, dopoki zbidr obiektow treningowych nie zostat wyczerpany. Proces gene-
rowania pojedynczej reguty polega na iteracyjnym dodawaniu testow (formut atomowych)
maksymalizujacych jakos¢ klasyfikacji. Warunkiem stopu jest tutaj osiggnigcie okreSlonej
dtugosci reguty. Gdy reguta sktada si¢ z zadanej liczby formut atomowych algorytm prze-
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chodzi do konstruowania nastepnej reguty, az do momentu, w ktérym wszystkie obiekty ze
zbioru treningowego sa prawidtowo klasyfikowane przez wygenerowany zbior regut.

W metodzie LRI rozszerza sig¢ nieznacznie standardowy model reguty decyzyjnej, umoz-
liwiajac potaczenie kilku regut w postaci koniunkcyjnej w jedna regute w postaci DNF, o ile
tylko reguty dotyczylty tej samej klasy decyzyjnej. Rozwigzanie zadania klasyfikacji sktada
sie ze zbioru rownej liczby niewazonych regut dla kazdej klasy decyzyjnej. Nowy przyktad
jest klasyfikowany do pewnej klasy decyzyjnej przez gtosowanie proste, czyli do klasy wska-
zanej przez najwieksza liczbe aktywnych? regut.

Kolejna modyfikacjg zastosowang w metodzie LRI jest adaptacyjny system wazenia obie-
ktow. Ma to na celu wygenerowanie zbioru regut jak najlepiej okre$lajacych badane pojecie.
System ten jest szczegdtowo opisany w pracach [59, 60]. Podobny system prébowano za-
stosowac do procesu generowania wzorcOw w metodzie podziatu, jednakze wyniki ekspery-
mentalne nie potwierdzity jego skutecznosci przy rozwigzywaniu tego problemu.

4.2.2 Brakujace wartosci

W celu przetwarzania danych z niekompletnym opisem obiektéw w metodzie LRI stosuje
sie podobny mechanizm do wykorzystywanego w metodzie C4.5.

Podczas wyboru optymalnego testu napotyka sie na trudnosci w poréwnywaniu jakosci
testow bazujacych na atrybutach o r6znej liczbie brakujacych wartoSci. JakoS¢ testow jest
mierzona za pomocg liczby popetnianych przez regute bteddw, inaczej niz ma to miejsce
w metodzie C4.5, gdzie jakoSC testdw mierzona jest zyskiem informacyjnym uzyskanych
podziatdw obiektow. Liczba bteddw, w przypadku danych o niekompletnym opisie obie-
ktow, jest normalizowana przez iloraz sumy wag wszystkich obiektow przez sume wag obie-
ktow posiadajacych wypetnione wartosci rozpatrywanych atrybutéw, co stanowi odwrotnos¢
wspotczynnika F' stosowanego w metodzie C4.5. Gtéwna réznica w stosunku do metody
C4.5 polega tutaj na tym, ze test nie sa oceniane niezaleznie. Oceniana jest reguta powstajgca
przez dodanie kolejnego testu do juz wybranych. Oznacza to, ze uwzgledniana jest liczba
brakujacych wartosci dla ktéregokolwiek z atrybutéw wchodzacych w sktad reguty.

Klasyfikacja obiektow testowych przez wyindukowany zbior regut nie przewiduje moz-
liwosci uzywania brakujacych wartoSci. Przyjmuje sig, ze wygenerowane reguty sg na tyle
krotkie i jest ich na tyle duzo, ze dla kazdego obiektu, nawet o niekompletnym opisie, znaj-
dzie sig pokrywajgca go regufa. Nie jest to jednak rozwigzanie satysfakcjonujace. Znacznie
bardziej adekwatng metoda postepowania byta by tutaj na przyktad proba czeSciowego do-
pasowania obiektéw do regut. Jesli obiekt spetnia czes¢ warunkowa reguty na obecnych
wartoSciach atrybutdéw mozna przyjac, ze spetnia czeS¢ warunkowa reguty, analogicznie do
rownosci stabych w algebrach czeSciowych (patrz podrozdziat 3.2.1). Liczbe brakujacych
wartosci atrybutow, ktére wchodzg w sktad warunkowej czesci reguty mozna potraktowac
wtedy jako podstawe do obliczenia tzw. wspotczynnika kary, stuzacego do zmniejszenia
waznoSci udziatu danej reguty w ostatecznym gtosowaniu. Jest to rozwigzanie analogiczne
do obiektow ,,utamkowych” wprowadzonych w metodzie C4.5. Tutaj jednak zmniejsza sig
nie wage obiektu, ale wage reguly (w zakresie [0, 1]), aby modelowat niedoktadne dopaso-
wanie obiektu do jej czeSci warunkowej. Mechanizm gtosowania prostego, podczas wyboru
ostatecznej klasyfikacji nalezy wtedy zastgpi¢ gtosowaniem z wazong waznoscig gtosow.

3Reguta jest aktywna dla danego obiektu, gdy obiekt spetnia jej cz6¢ warunkowa.
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4.3 Podsumowanie

Zaprezentowane tutaj metody oczywiscie nie sg jedynymi, ktére umozliwiaja przetwarzanie
danych z niekompletnym opisem obiektéw w sposéb bezposredni. Jednakze opisane tutaj
rozwigzania problemu brakujacych wartosci uznawane sg za skuteczne. Co wigcej, praktycz-
nie kazda metoda wnioskowania bezposrednio w oparciu o dane z niekompletnym opisem
obiektow i nie wywodzaca sig z teorii zbiorow przyblizonych dziata w oparciu o zblizone,
jesli nie identyczne, mechanizmy. Nalezy rdwniez zauwazy¢, ze cho€ istnieja inne metody,
umozliwiajace przetwarzanie danych z niekompletnym opisem obiektow, nie jest ich znowu
az tak wiele i wigkszoS¢ istniejacych rozwigzah nie potrafi poradzi¢ sobie z tym problemem.
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Rozdziat 5

L_eniwe metody uczenia maszynowego

W dotychczas zaprezentowanych metodach uczenia maszynowego podejmowalismy probe
skonstruowania pewnego pojecia (klasyfikatora) na podstawie innych poje¢ — atrybutow
warunkowych obiektéw z dostepnego nam podzbioru uniwersum. Zbiér, na ktérym prébu-
jemy tego dokona¢, nazywa sie zbiorem obiektoéw treningowych. Klasyfikacja przynalezno-
Sci innych obiektow (zwanych testowymi) dokonywana jest na podstawie indukcyjnie wy-
uczonego pojecia i jest relatywnie szybsza (o0 znacznie mniejszym nakfadzie obliczeniowym)
niz sam proces uczenia, ktory ze swej natury jest zazwyczaj aproksymacja NP-trudnego pro-
blemu optymalizacyjnego. Algorytmy z grupy tych metod majg za zadanie jawne sformuto-
wanie pewnej hipotezy, ktora klasyfikuje wszystkie obiekty, przypisujac je do okreSlonego
pojecia (klasy decyzyjnej).

Paradygmat leniwego uczenia maszynowego opiera sie na kazdorazowej klasyfikacji no-
wego obiektu — obiektu testowego — na podstawie uprzednio zgromadzonych danych tre-
ningowych, a nie wyuczonego opisu pojecia. Dane treningowe w takim przypadku nie pod-
legaja uprzedniemu specjalnemu przygotowaniu, badz to przygotowanie jest relatywnie nie-
skomplikowane i szybkie. Caty ciezar wnioskowania indukcyjnego przerzucony jest tutaj
na proces klasyfikacji obiektu testowego i wiaze sig¢ z analizg wszystkich zgromadzonych
przyktadow treningowych.

5.1 Metoda najbli zszych sgsiadow

Najprostsza i najbardziej intuicyjna metoda leniwego uczenia maszynowego jest metoda
najblizszych sgsiadow (Nearest Neighbours). Jej gtdwng ideg jest selekcja pewnej liczby
obiektow treningowych ,,najbardziej podobnych” do aktualnie klasyfikowanego przykfadu.
Nastepnie, na podstawie przynaleznosci tak wyselekcjonowanych obiektéw do poszczeg6l-
nych klas decyzyjnych, dokonuje sig gtosowania i klasyfikuje sie obiekt testowy do tej klasy
decyzyjnej, do ktdrej przynalezato najwigecej sposrdd wyznaczonych najblizszych sgsiadow.
Oczekujemy, ze obiekty o podobnym opisie bedzie cechowata rowniez podobna klasyfikacja.

Metoda ta daje dobre wyniki wszedzie tam, gdzie zmiany Kklasyfikacji maja charakter
,»ciagly” ze wzgledu na opis obiektow i niewielka zmiana opisu najczesSciej nie powoduje
zmiany przynaleznoéci do danego pojecia. Do zastosowania tej metody potrzebne nam sg
pojecie podobienstwa obiektow pomiedzy sobg oraz sposob wyboru zbioru najblizszych sg-
siadow i decyzji na podstawie takiego zbioru.
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5.1.1 Podobienstwo obiektéw

Niech A = (U, A U d) bedzie systemem informacyjnym. Dotychczas zbidr atrybutow wa-
runkowych A = {ay,...,a,} definiowaliSmy jako funkcje a; : U — V,,. Kazdy z atry-
butéw postrzegaliSmy jako pojecie (proste lub ztozone) opisujace cechy danego obiektu.
Mozna jednak obiekty z uniwersum U interpretowac jako uporzadkowane n-tki U > z =
(Vayy - - -, Va, ). Wtedy na zbior U mozemy patrze€ jak na podzbior przestrzeni n-wymiarowej
UCU=V, X ... xV,,.

W przypadku, gdy przetwarzamy dane o kompletnym opisie obiektéw, na przestrzeni
U definiujemy metryke u, ktora okresla odlegtosci pomiedzy obiektami. Tak zdefiniowana
metryka decyduje o podobienstwie obiektéw miedzy soba. Jesli obiekty sg bliskie sobie, w
sensie metryki . moéwimy, ze obiekty sg do siebie podobne.

Przyktad 5.1 Metryka na przestrzeni U.

Niech A = (U, A) bedzie systemem informacyjnym. Zbior atrybutow A rozktada sie na
dwa roztgczne podzbiory, zbior atrybutow symbolicznych A, oraz zbior atrybutow numerycz-
nych A,. Metryke 1, na przestrzeni U zdefiniujemy jako funkcje p1 : U x U —» R :

0 : a € A; Na(z) = a(y)
plz,y) =3 3 1 : a€ A Na(z) # aly) (5.1)
e | fa(z) —a(y)| a€ Ay

Metryke unormowana u» na przestrzeni U zdefiniujemy jako funkcje 1 : U x U — [0, 1] :

1 0 : a € A; N a(x) = aly)
pa(z,y) = = > { 1 t o a€A;Na(z) # aly) (5.2)

Dla obiektéw o kompletnym opisie definiowanie podobiefstwa za pomoca metryki jest
intuicyjne i wygodne. Warto tutaj przypomniec, ze w teorii zbioréw przyblizonych dla kom-
pletnych danych definiowalismy relacje nierozréznialnosci, ktora bardzo dobrze odpowia-
data intuicyjnemu podobiehstwu obiektow miedzy soba i posiadata te¢ wazng wiasnosc, ze
byta relacja rownowaznosci. Jednakze dla danych z brakujgcymi warto$ciami definiowane
byty inne relacje, ktére nie koniecznie spetniaty warunek przechodnioéci lub symetrii. Po-
dobnie rzecz ma sig i tutaj. W przypadku, gdy tabela informacyjna skfada si¢ rowniez z
obiektéw o niekompletnym opisie moze okazac sig przydatne zdefiniowanie funkcji p, ktéra
nie spetnia warunku nieréwnosci trojkata lub przemiennosci. Jednakze caty czas w mocy
pozostaje zatozenie, ze funkcja . odpowiada podobienstwu obiektow pomigedzy sobg i w
dalszej czeSci bedzie nazywana funkcja podobienstwa.

Przyktad 5.2 Funkcja podobiehstwa dla danych o niekompletnym opisie obiektow.

Niech A = (U, A) bedzie systemem informacyjnym oraz wszystkie atrybuty ze zbioru
A beda symboliczne. Funkcje podobienstwa 3 na przestrzeni U zdefiniujemy jako funkcje
ps :UxU—[0,n]:

0 : a(z)=aly)
pa(z,y) = ¢ 1+ a(z) #aly) Aa(z) # = (5.3)
a€A | 0 : a(x) # a(y) Aa(z) = *
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Funkcja podobiehstwa p3 nie spetnia ani nierbwnosci trojkata, ani nie jest przemienna.
Niemniej jednak spetniona jest zaleznoS¢ u(z,xz) = 0. Jest to pozadana cecha do procesu
klasyfikacji obiektow. Poniewaz nie wiemy, czy dwa identyczne obiekty to jeden i ten sam
obiekt, czy tez nie, bezpiecznie jest przyjac zerowa ,,odlegtosc” pomiedzy nimi. *

Przy ocenie podobienstwa obiektéw mozna zastosowac tzw. wazong funkcje podobieh-
stwa. Kazdemu z atrybutow przypisujemy wage w,, > 0, ktora decyduje o stopniu istotnosci
roznicy obiektdw na danym atrybucie. Znajduje to zastosowanie w przypadku, gdy zmienno-
Sci opisow obiektdw na atrybutach w réznym stopniu wptywaja na decyzje do ktorej obiekt
jest zaklasyfikowany.

Przyktad 5.3 Wazona funkcja podobiehstwa.
Niech A = (U, A) bedzie systemem informacyjnym z poprzedniego przyktadu. Przykia-
dem wazonej funkcji podobienstwa na przestrzeni U jest funkcja 4 :

0 : a(z)=a(y)
pa(m,y) =Y 4 wa ¢ a(x) #aly) Aa(z) # (5.4)
acA | 0 : a(z) #aly) Na(z) =%

Wagi atrybutéw moga by¢ arbitralnie dobrana na podstawie wstepnej analizy danych.
Jest to rowniez wdzieczne zadanie optymalizacyjne dla algorytmow ewolucyjnych, gdzie
w naturalny sposéb mozemy przyjac < w,, ..., w,, > zardbwno za genotyp jak i fenotyp
osobnika.

n

5.1.2 Wybor zbioru najblizszych sgsiadow

Majac zdefiniowana funkcje podobienstwa mozemy przystepowac do wyboru zbioru naj-
blizszych sgsiaddw. Zbidr najblizszych sasiaddéw dla obiektu x bedziemy oznacza¢ przez S,.
Zbidr S, powinien spetniat nastepujaca wtasnosc :

VyeU p(z,y) < I%%Xu(x,z) = y€S,. (5.5)

Proces wyboru zbioru najblizszych sgsiadow ma zazwyczaj ustalony parametr &, ktory
decyduje o licznosci zbioru S,. Przez T C U oznaczymy zbidr obiektéw treningowych.
Obiekt x zazwyczaj nie nalezy do zbioru T', a w szczegdlnosci nie nalezy do zbioru S,. Jest
to nowy obiekt, ktorego klasyfikacji nie znamy i chcemy ja wiadnie wyznaczy¢.

Algorytm 5.1 Wyznaczanie zbioru S,
1. 5,:=0

2. wyznacz y takie, ze u(z,y) = é%ir}s w(z, z)
z Nog

3.8 =S U{y}

4. jesli |S,| = k zakohcz, w p.p. przejdz do 2.

Hnaczej, ni 'z bedzie miato to miejsce w uzupednianiu brakujacych wartoi za pomocg metody najbli ‘zszych sasiadow.
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Stosujgc metode najblizszych sgsiadéw najczeSciej wyznacza sie zbior S, zawierajacy
doktadnie & obiektow, tak jak zostato to zilustrowane powyzszym algorytmem. Niemniej jed-
nak mozna sobie réwniez wyobrazi¢ inng metode postepowania. W przypadku, gdy funkcja
odlegtosci przyjmuje niewiele wartoSci, wtedy wiele obiektdéw zostaje ,,sklejonych” w klasy
obiektéw réwno odlegtych od . Mozemy wtedy zastosowac inny sposob doboru zbioru S,.
Mianowicie wybieramy co najmniej k£ obiektdéw, dodajac klasy rowno odlegtych obiektow
w catosci. Gdy okaze sig, ze liczebnoS¢ zbioru S, réwna sie lub przekracza k& kohczymy
dodawanie, jednakze moze si¢ okazac, ze zbior S,, jest istotnie wigkszy niz k obiektow.

5.1.3 Kilasyfikacja obiektu

Bedac w posiadaniu zbioru najblizszych sgsiadow. Mozemy przystepowac do klasyfikacji
obiektu z.

Najprostsza metoda klasyfikacji jest gtosowanie. Polega to na ustaleniu najczesciej po-
wtarzajgcej sie decyzji w zbiorze S,. Innymi stowy obiektowi x przypisujemy wartoS¢ atry-
butu decyzyjnego d(z) = d.. taka, ze

{y € 8o+ d(y) = duas}| = max [{y € S, : d(y) = va). (5.6)

W przypadku, gdy wartos¢ d,,.,, nie moze by¢ wyznaczona jednoznacznie mozemy po-
niechac klasyfikacji (odpowiadajac ,,nie wiem”) lub przyja¢ ktérakolwiek z wartoSci arbitral-
nie (np. taka, ktéra czesciej wystepuje w catym zbiorze T). Z tego tez powodu dobrze jest
dobiera€ nieparzystg wartos¢ k. W przypadku, gdy atrybut decyzyjny przyjmuje tylko dwie
wartoSci (czesty przypadek), wtedy zawsze uzyskamy jednoznaczny wynik gtosowania.

Oprdcz prostego gtosowania mozna stosowac rowniez bardziej skomplikowane metody
wyboru decyzji. Na przyktad mozna wazy¢ gtosy obiektéw za pomoca wartosci funkcji po-
dobienstwa lub stosowac kryterium absolutnej wigkszosci gtosow.

WartoS¢ k nalezy dobiera¢ eksperymentalnie. Zbyt maty rozmiar zbioru najblizszych sa-
siadow prowadzi do czestych bteddw przy klasyfikacji obiektdw na granicy pojec. Zbyt duza
wartos¢ k& prowadzi natomiast do utraty lokalnoSci algorytmu. Wtedy do gtosowania brane
sg réwniez mato lub wcale podobne obiekty i przypomina to bardziej wyznaczanie decy-
zji dominujacej w catym zbiorze treningowym. Zjawisko to jest szczeg6lnie wyrazne, gdy
dysponujemy danymi w ktérych pewne wartosci atrybutu decyzyjnego sg wyraznie liczniej
reprezentowane niz inne.

5.1.4 Brakujgce wartosci

Metoda najblizszych sasiadéw potrafi wnioskowac réwniez na podstawie danych o niekom-
pletnym opisie obiektow. Dzieje sig to dzigki abstrakcji jakg naktada sig na zbior obiektow.
Podejmujac decyzje nie rozpatruje sig tutaj poszczegdlnych wartosci atrybutéw, tylko operu-
jemy na podobienstwie obiektéw pomiedzy soba. Jest to podejscie naturalne dla cztowieka,
ktory czesto przedstawia dane za pomoca réznego rodzaju diagraméw. Szczeg6lnie w przy-
padku, gdy funkcja podobienstwa jest metryka mozna wyobrazi¢ sobie, ze usitujemy wyzna-
czy¢ kulg zawierajacg k najblizszych obiektéw w stosunku do badanego i na tej podstawie
podjac decyzje. JakoS¢ klasyfikacji zalezy oczywiScie od dobranej funkcji podobiehstwa,
ktora jest tutaj parametrem.
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Niemniej jednak niezaleznie od przyjetej funkcji podobienstwa nie dla wszystkich da-
nych mozemy uzyskac tutaj zadowalajace rezultaty. Ponadto wybdr dobrej funkcji podo-
biehstwa jest sam w sobie trudny i czesto czasochtonny. Rdwniez nie bez znaczenia pozo-
staje fakt, ze dla klasyfikacji pojedynczego obiektu musimy wykonac | 7’| obliczeh funkcji
podobienstwa. Oznacza to, ze metoda ta jest duzo wolniejsza od innych, nie leniwych metod
wnioskowania.

5.2 Leniwe drzewa decyzyjne

Standardowy schemat budowania drzew decyzyjnych opiera si¢ na probie konstrukcji po-
jecia na podstawie danych treningowych. W szczeg6lnosci, jesli jest to klasyczna metoda
nie adaptacyjna (tzw. off-line), drzewo decyzyjne, raz zbudowane dla danych treningowych,
nie ulega zadnym modyfikacjom podczas wyznaczania przynaleznoéci do pojecia poszcze-
golnych obiektéw ze zbioru danych treningowych. Jednak, podobnie jak ma to miejsce w
metodzie najblizszych sasiaddw, mozna sobie wyobrazi¢, ze dokonujemy budowy drzewa
decyzyjnego nie raz, dla wszystkich obiektow treningowych, ale dla kazdego z obiektdw te-
stowych z osobna. Poniewaz takie postepowanie niesie ze sobg ryzyko duzej ztozonosci ob-
liczeniowej, zwigzanej z wielokrotna konstrukcja drzewa decyzyjnego, nieodzownym staje
sie odpowiedni mechanizm buforowania wspdlnych wynikow (testéw, poddrzew itp.).

Friedman, Kohavi i Yun w pracy [13] zaproponowali metode LazyDT realizujaca pa-
radygmat leniwego uczenia sie przy konstrukcji drzew decyzyjnych. Zaprezentowany tam
algorytm potrafi w naturalny sposob analizowac¢ réwniez dane o niekompletnym opisie obie-
ktéw. Charakteryzuje go rowniez kilka innych interesujacych wiasnosci, ktére nie sg moz-
liwe do uzyskania w modelu tradycyjnych drzew decyzyjnych. Dzigki zastosowaniu mecha-
nizmow buforowania wspolnych wynikéw czeSciowych algorytm cechuje sie akceptowal-
nym czasem wykonania.

Metody budowania drzew decyzyjnych borykaja sig z problemami takimi jak replikacja
i fragmentacja. Przypu$Emy, ze naszym zadaniem jest klasyfikacja pacjentéw jako zdrowy
lub chory. Niezwykle wazna wydaje si¢ by¢ informacja, czy ta osoba jest HIV pozytywna,
czy tez nie, wtedy od razu mozna stwierdzi€, ze pacjent jest chory. Jednak jest to mato praw-
dopodobne, zeby standardowe drzewo decyzyjne posiadato test tego atrybutu w korzeniu,
a to za sprawa matej liczby przyktadéw. Zamiast tego test takiego atrybutu zostanie odsu-
niety w dot drzewa i tam, na kazdej Sciezce, na ktorej wystepuja przyktady pacjentow HIV
pozytywnych, test tego atrybutu bedzie zreplikowany.

Na podstawie takiej obserwacji mozna oczekiwac, ze drzewa, a raczej Sciezki klasyfi-
kacyjne zbudowane dla poszczegblnych przypadkéw moga by¢ znacznie krétsze i dawat
tatwiejsze wyttumaczenie takiej klasyfikacji (decyzji). Test kilku badah krwi lub podobnych
atrybutéw moze by¢ jasnym i zrozumiatym wyttumaczeniem dla klasyfikacji pacjenta jako
zdrowego. Natomiast pacjent tatwo moze by¢ sklasyfikowany jako chory na podstawie wy-
jasnienia, ze jest HIV pozytywny.

5.2.1 Realizacja algorytmiczna

Algorytm klasyfikacji obiektow testowych za pomoca leniwych drzew decyzyjnych jest sto-
sunkowo prosty. Podobnie jak klasyczne algorytmy oparte na drzewach decyzyjnych w swej
podstawowej postaci operuje na atrybutach symbolicznych, zatem w celu zaaplikowania go

Uniwersytet Warszawski — Wydziat Matematyki, Informatyki i Mechaniki



48 5.2. LENIWE DRZEWA DECYZYJNE

do danych zawierajgcych atrybuty numeryczne nalezy proces klasyfikacji poprzedzic dys-
kretyzacjag danych.

Algorytm 5.2 LazyDT.
Wejscie: Zbior obiektow treningowych 7" = {t1, o, ...} oraz obiekt = bedacy przedmiotem
klasyfikacji.

1. Jesli T jest jednorodny, tzn. sktada si¢ z obiektow jednej klasy decyzyjnej d, zwro¢ d
jako decyzje dla obiektu z.

2. Jesli obiekty ze zbioru T posiadaja wartosci wszystkich atrybutéw rowne z zwrd¢ do-
minujaca klase d jako decyzje dla obiektu z.

3. Wybierz atrybut ay.

4. Jako nowy zbior T wybierz zbior tych obiektow treningowych, dla ktorych a(t;) =
ax(z) (dokonaj ciecia na atrybucie a, przypisujac na zbior T obiekty zgodne z = na
atrybucie a;). Przejdz do 1.

Podstawowym pytaniem jest w jaki sposob wybiera€ atrybut a, w trzecim kroku algo-
rytmu. Zazwyczaj stosuje sie w takich przypadkach jedng ze standardowych miar cig¢, mie-
rzacag zysk informacyjny (entropia), réznice rozktadu (Gini index,test x2) i tym podobne.
Jednak nie jest to rozwigzanie satysfakcjonujace. Nalezy zauwazy¢, ze najwiecej proble-
mow powstaje gdy Kklasa d, jest dominujaca w zbiorze 7', ale klasa d, byta by odpowiedzia
prawidtowa. Ze wzgledu na to, ze standardowe miary cie¢ biorg pod uwage jedynie wzgledne
czestoSci wystepowania obiektow z poszczegdblnych klas decyzyjnych, nie byty by w stanie
odgadnac poprawnej decyzji, a zysk informacyjny przyjat by ujemna warto$¢.

Przed przystgpieniem do wyboru najbardziej obiecujgcego atrybutu nalezy znormalizo-
wact liczbe wystapien kazdej klasy decyzyjnej tak, aby byty rownoliczne. Wtedy tatwo jest
wskazat atrybut (czyli zarazem test), ktory daje najwigkszy zysk informacyjny.

Algorytm ten wymaga dla kazdego obiektu testowego budowy drzewa decyzyjnego, ktore
zaklasyfikuje ten obiekt do wtasciwej klasy decyzyjnej. Dla kazdego obiektu dokonywany
jest wielokrotnie wybdr wiasciwego testu i podziat zbioru treningowego. Tak sformutowany
algorytm bytby stosunkowo wolny. Kosztem dodatkowej pamigci na przechowywanie wy-
nikéw czeSciowych mozna zastosowac pewne mechanizmy buforowania, ktére bardzo przy-
spieszg dziatanie catego procesu klasyfikacji.

5.2.2 Brakujace wartosci

Leniwe drzewa decyzyjne ze wzgledu na swojg budowe s3 tatwe w zaadaptowaniu do dzia-
fania na danych z niekompletnym opisem obiektow.

Brakujace wartoSci atrybutéw dla obiektow testowych sg obstugiwane w naturalny spo-
sob. Atrybut obiektu testowego ktory posiada brakujaca warto$¢ nie jest brany pod uwage
podczas wyboru kolejnego ciecia w trzecim kroku algorytmu. Jest to najwieksza réznica w
stosunku do klasycznych drzew decyzyjnych, tam nie mozna zawczasu wybrac ktére sposréd
atrybutéw moga by¢ wziete do klasyfikacji danego obiektu.

Obiekty treningowe moga posiadac brakujace wartosci na atrybutach nie wchodzacych w
skfad biezacej Sciezki decyzyjnej dla klasyfikowanego obiektu. Jesli natomiast dokonywane
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jest ciecie na atrybucie, gdzie pewna liczba obiektow treningowych posiada brakujgce war-
toSci takie obiekty sa eliminowane (tzn. nie wchodza w sktad zadnego z dwdch podzbioréow
powstajacych po cieciu na danym atrybucie). Oczywiscie mozna sobie wyobraza¢ bardziej
wyrafinowane metody filtrowania obiektow treningowych posiadajacych brakujacych war-
tosci podobnie jak ma to miejsce np. w algorytmie C4.5 (patrz podrozdziat 4.1).
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Rozdziat 6

Uzupetnianie

W przypadku napotkania na dane z niekompletnym opisem obiektéw naturalnym postepowa-
niem wydaje si¢ by¢ proba rekonstrukcji petnych danych. Przy takiej rekonstrukcji wykorzy-
stujemy dostepnag wiedzg o obiektach i na tej podstawie staramy sie w miejsce brakujgcych
wartosci wstawic takie, ktére wydaja sie by€ najbardziej odpowiednie. Jako odpowiednio$t
mozna stosowac tutaj wiele kryteriow: niesprzecznos¢, podobienstwo, zachowanie zgodne
empirycznym rozktadem prawdopodobienstwa itp. Nalezy jednak przypomniet rozgrani-
czenie na wartoSci brakujace z powodu braku pomiaru lub zaniedbania oraz na takie, ktore
nie sg stosowalne w danym przypadku. Dobrym przyktadem na warto$¢ brakujaca pierw-
szego rodzaju jest brak danych co do wzrostu pacjenta. Kazdy pacjent cechuje sie pewnym
wzrostem i w pewnych okolicznoSciach mozna podjac prébe uzupetnienia tej wartosci na
podstawie innych, znanych informacji. Czasami jednak brak wartosci sam w sobie posiada
duze znaczenie. Przyktadem braku z powodu niestosowalnoSci moga by¢ tutaj informacje o
posiadanym samochodzie takie jak kolor, model, wielko&¢ itp. Wszystkie one nie znajduja
zastosowania w przypadku, gdy osoba nie jest posiadaczem zadnego samochodu. Widac od
razu, ze uzupetnianie takich brakujacych wartoSci nie niesie ze sobg zadnej wartoSci mery-
torycznej i pogarsza zdecydowanie jako$¢ danych wejSciowych.

6.1 Motywacje i podstawowe problemy

Ze wzgledow zarowno implementacyjnych jak i teoretycznych bardzo pozadane byto by,
gdyby istniata uniwersalna metoda pozwalajaca na rekonstrukcje danych z niekompletnym
opisem obiektow do postaci w petni wypetnionej tabeli informacyjnej. Wszystkie metody
pracujace doskonale w przypadku danych z kompletnym opisem obiektéw znajdowaty by
wtedy zastosowanie rowniez w przypadku danych z brakujacymi wartoSciami atrybutow.
Réwniez rozwazania teoretyczne, dopasowane do przypadku petnych tabel informacyjnych,
mogty by by¢ bez ktopotliwego rozpatrywania brakujgcych wartosci atrybutdw przeniesione
na grunt tabel niekompletnych. Naturalne wydaje sie¢ zatem, ze problem ten byt i jest wni-
kliwie badany. Powstato wiele prac na temat uzupetniania brakujgcych wartosci, jednakze
metody te uzyskuja dobra skutecznos¢ jedynie w doS¢ waskim obszarze zastosowan (patrz
np. [14, 23, 24, 25, 41, 45]).

Pierwszg, najprostsza metoda radzenia sobie z niekompletnym opisem obiektéw, byto
ignorowanie specjalnego znaczenia brakujgcej wartosci i traktowanie jej jak normalnej, do-
puszczalnej wartosci z dziedziny atrybutu. Wynikato to w