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Streszczenie

Praca stanowi przegląd metod umożliwiających wnioskowanie w oparciu o dane z niekom-
pletnym opisem obiektów. Przedstawione są tutaj zarówno metody mające na celu uzupeł-
nianie brakujących wartości jak i takie, które starają się wnioskować bezpośrednio w oparciu
o dane z niekompletnym opisem obiektów. Zamierzeniem autora było możliwie najbardziej
kompletne zestawienie metod stosowanych analizie danych i odkrywaniu wiedzy wraz ze
wskazaniem, z której dziedziny matematyki się wywodzą. Rozdział pierwszy wprowadza
czytelnika w problematykę analizy danych i obiektów o niekompletnym opisie. Rozdział
drugi stanowi wstęp do teorii zbiorów przybliżonych i na tej podstawie porusza podsta-
wowe zagadnienia związane z wnioskowaniem na podstawie danych. W trzecim rozdziale
zaprezentowane są rozszerzenia teorii zbiorów przybliżonych, umożliwiające wnioskowanie
w obliczu brakujących wartości atrybutów. Rozdział czwarty prezentuje metody wniosko-
wania w oparciu o dane z niekompletnym opisem obiektów, nie wywodzące się z nurtu
zbiorów przybliżonych. W rozdziale piątym opisane zostały metody realizujące paradygmat
leniwego uczenia się pojęć. Rozdział szósty prezentuje rozwiązania eliminujące brakujące
wartości podczas wstępnego przetwarzania danych za pomocą uzupełniania. Na zakończe-
nie prezentowana jest nowa metoda, umożliwiająca zaadaptowanie istniejących algorytmów
uczenia się pojęć do danych z brakującymi wartościami obiektów. Zamieszczone wyniki
eksperymentalne wskazują na dużą skuteczność tej metody.

Słowa kluczowe

systemy decyzyjne, wnioskowanie indukcyjne, zbiory przybliżone, brakujące wartości atry-
butów

Klasyfikacja tematyczna
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1.4 Niedoskonałość danych . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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4.1.2 Brakujące wartości . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 LRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 Indukcja reguł decyzyjnych . . . . . . . . . . . . . . . . . . . . . 39

3



4 SPIS TREŚCI
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Rozdział 1

Wprowadzenie

Od momentu powstania maszyn umożliwiających przetwarzanie informacji — komputerów,
myślą zaprzątającą umysły wielu ludzi, czy to badaczy, czy też reżyserów filmów S-F, jest
możliwość skonstruowania maszyny inteligentnej. Bardzo trudno jest jednak zdefiniować,
czym dokładnie jest owa inteligentna maszyna. Jak czytamy w encyklopedii [1], inteligencja
to zespół zdolności umysłowych, umożliwiających jednostce sprawne korzystanie z nabytej
wiedzy, oraz skuteczne zachowanie się wobec nowych zadań i sytuacji.

1.1 Inteligentne przetwarzanie informacji

W dzisiejszych czasach, na początku XXI wieku, rozwijane od dziesięcioleci systemy kom-
puterowe umożliwiają składowanie gigantycznych wręcz ilości informacji. Mogą to być dane
dotyczące badań medycznych, zdjęcia satelitarne ziemi, informacje o sterowaniu urządzeń,
transakcje dokonywane w sklepach czy też dane dotyczące wypadków. Wszystkie te infor-
macje, wykorzystane w należyty sposób, mogą posłużyć do coraz skuteczniejszego zacho-
wania się wobec nowo powstałych sytuacji i zadań. Przy diagnozowaniu pacjenta nieoce-
nioną pomocą jest wiedza uzyskana na podstawie analizy danych medycznych, tak jak przy
poszukiwaniu złóż surowców mineralnych posługiwanie się zdjęciami satelitarnymi ziemi.
Zgodnie z powyższą definicją skuteczne rozwiązanie tych problemów wymaga inteligencji,
czyli inteligentnego przetwarzania informacji. Jednakże zgromadzone zbiory danych często-
kroć przekraczają możliwości percepcji człowieka. Pomocą do sprawnego wykorzystywania
tej wiedzy mogą być systemy komputerowe inteligentnie przetwarzające informacje.

Na przestrzeni wielu lat podejmowano liczne próby skonstruowania maszyny umożliwia-
jącej inteligentne przetwarzanie informacji. Sztuczna inteligencja, bo tak można określić ca-
łokształt tych zjawisk, jest dzisiaj dość dobrze rozwiniętą dziedziną wiedzy, w której można
wyróżnić takie działy jak maszynowe uczenie się, systemy decyzyjne, rozpoznawanie wzor-
ców, systemy wieloagentowe, odkrywanie wiedzy, przetwarzanie języka naturalnego i wiele
innych. Pomimo licznych osiągnięć człowiek pozostał jednak niedoścignionym wzorem in-
teligencji.
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8 1.2. LOGIKA

1.2 Logika

Podstawowym narzędziem inteligentnego przetwarzania informacji jest logika. Za pomocą
logiki staramy się opisać i naśladować sposób rozumowania człowieka. Na przestrzeni dzie-
jów podejmowano różne próby sformalizowania tego typu rozumowań. Pierwszą i najbar-
dziej znaną jest tzw. logika klasyczna, wprowadzona przez greckich filozofów już w staro-
żytności i opierająca się na wnioskowaniu dedukcyjnym. Pomimo jej szerokich zastosowań
na potrzeby informatyki i matematyki, posiada liczne ograniczenia, jak monotoniczność i
niepełność systemów dedukcyjnych, uniemożliwiające jej użycie do wiernego naśladowa-
nia tzw. rozumowań zdroworozsądkowych. W celu uniknięcia trudności z formalizowaniem
rozumowań przeprowadzanych przez człowieka wprowadzono liczne odmiany logik, które
można podzielić na dwie grupy ze względu na sposób podejścia do problemu. Są to tzw.
metody symboliczne i numeryczne. Wśród podejść symbolicznych należy wymienić głów-
nie logiki niemonotoniczne i modalne. Metody numeryczne reprezentowane są przez takie
logiki jak logika posybilistyczna, czy logika rozmyta. Jednakże główną niedogodnością za-
stosowania logiki do analizy i inteligentnego przetwarzania danych jest sam proces wnio-
skowania dedukcyjnego, czyli rozumowania przeprowadzonego od przesłanek do wniosków
za pomocą dowodu formalnego w rozpatrywanym systemie dedukcyjnym.

1.3 Wnioskowanie indukcyjne

Rozumowania przeprowadzane przez człowieka cechuje duża łatwość konstrukcji skompli-
kowanych wniosków. O tym, że sposób wnioskowania człowieka charakteryzuje się wielką
sprawnością i skutecznością, nie trzeba nikogo przekonywać. Jednakże wnioski formuło-
wane przez ludzi nie zawsze okazują się prawdziwe. Poprawność procesu wnioskowania
jest ceną, jaką trzeba zapłacić za możliwość szybkiej i skutecznej analizy skomplikowanych
sytuacji.

Rozumowania takie możemy przybliżyć za pomocą wnioskowania indukcyjnego. We
wnioskowaniu indukcyjnym jako prawdziwe uznajemy zdanie stwierdzające jakąś ogólną
prawidłowość, przy czym czynimy to na podstawie uznania zdań stwierdzających poszcze-
gólne przypadki tej prawidłowości. Bazując na doświadczeniu i obserwacjach staramy się
sformułować wnioski dotyczące nowych sytuacji. Oczywiście wnioskowanie takie nie jest
niezawodne, gdyż wnioskując na podstawie prawdziwych przesłanek możemy dojść do fał-
szywego wniosku. Jeśli bowiem istnieją przypadki spełniające pewną prawidłowość, nie
oznacza to wcale, że prawidłowość ta będzie zawsze spełniona. Niemniej jednak wniosko-
wanie takie jest najbardziej adekwatną metodą przeprowadzania rozumowań w procesie in-
teligentnego przetwarzania informacji.

W teorii uczenia się maszyn wnioskowanie indukcyjne pojawia się przy okazji problemu
uczenia się pojęć w oparciu o przykłady. Problem ten polega na utworzeniu opisu pojęcia,
rozumianego jako podzbiór zbioru obiektów należących do rozpatrywanego środowiska, na
podstawie przykładów badanego pojęcia. Przez utworzenie opisu pojęcia rozumiemy wy-
krycie takich własności przykładów obiektów, które umożliwią późniejsze badanie nowych
przykładów pod kątem ich przynależności do tego pojęcia. Naturalnym podejściem do roz-
wiązania problemu uczenia się pojęć na podstawie przykładów jest wnioskowanie induk-
cyjne, polegające na tym, że otrzymując kolejne przykłady obiektów należących i nie nale-
żących do pojęcia, próbuje się znaleźć taki jego opis, który będzie pasował do wszystkich lub
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prawie wszystkich przykładów badanego pojęcia. Opis pojęcia formułowany jest w języku
logiki i stanowi właśnie wyuczoną ogólną prawidłowość decydującą o należeniu przykładów
do badanego pojęcia.

Głównym problemem związanym z uczeniem się pojęć w oparciu o przykłady jest py-
tanie w jaki sposób konstruować algorytmy, które potrafią wyuczyć się badanego pojęcia w
oparciu o dostarczone dane. Przy czym algorytmy te mają osiągnąć jak największą popraw-
ność formułowanych wniosków.

1.4 Niedoskonałość danych

Dane pochodzące ze świata rzeczywistego opisują nieraz bardzo skomplikowane procesy
zachodzące w badanym środowisku. Podczas analizy takich danych napotykamy na liczne
trudności spowodowane szumem informacyjnym, niedokładnością i błędami pomiaru, czy
wreszcie brakiem niektórych informacji. Wiele teoretycznie dopracowanych podejść okazało
się nieskutecznymi w konfrontacji z rzeczywistością. Niedoskonałość informacji wprowadza
wiele utrudnień do procesu wnioskowania w oparciu o dane. Jednakże te niedoskonałości nie
powinny uniemożliwiać skutecznego formułowania wniosków, czego najlepszym przykła-
dem jest człowiek, potrafiący zachować zdolność do przeprowadzania rozumowań nawet w
obliczu niedoskonałych i nieprecyzyjnych danych. Niektóre z mechanizmów niedokładno-
ści informacji zostały gruntownie zbadane i sformułowano liczne, zadowalające rozwiązania
tych problemów.

Analiza głównych składowych i wykrywanie cech znaczących to środki umożliwiające
zmierzenie się z problemem szumu informacyjnego. Pozwalają one na wybór interesującej
informacji i odrzucenie niepotrzebnej. Metody selekcji istotnej informacji rozwijane były na
gruncie statystyki, przetwarzania sygnałów oraz analizy danych i odkrywania wiedzy.

Na potrzeby rozwiązania problemu nieprecyzyjności danych wymyślono wiele podejść,
wśród których dominują podejścia logiczno-numeryczne, ale nie tylko. Znakomitym przy-
kładem jest tutaj teoria zbiorów przybliżonych, która umożliwia w sposób formalny ująć
nieprecyzyjność danych w postaci pojęć teoriomnogościowych.

Na tym tle osiągnięcia, mające na celu rozwiązanie problemu braku informacji, wydają
się być niewielkie. Należy zauważyć, że wśród możliwych rodzajów braku informacji nie-
które są z nich są naturalne i nie do uniknięcia, a wręcz korzystne. Badając konkretne zja-
wisko nie wymagana jest informacja dotycząca nieistotnych parametrów badanego środowi-
ska, co wiąże się z problemem szumu informacyjnego i ograniczonych fizycznie możliwości
percepcji. Dotkliwym brakiem informacji jest natomiast niedostępność istotnych cech dla
rozpatrywanego problemu. Niniejsza praca poświęcona jest szczególnemu rodzajowi braku
informacji, mianowicie niekompletnemu opisowi obiektów.

Najbardziej istotnym brakiem informacji, pozostającym w zakresie zainteresowań inte-
ligentnego przetwarzania informacji jest niekompletny opis obiektów. Sytuacja taka wystę-
puje, gdy obiekty pochodzące z badanego środowiska cechuje zróżnicowany poziom dostęp-
nej informacji o tych obiektach.
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1.5 Brakujące wartości atrybutów

Wszystkie dane przetwarzane w systemach komputerowych opisane są za pomocą zbioru
wartości z pewnych dziedzin, czyli tzw. atrybutów. Ustalając badane środowisko i obiekty
z niego pochodzące ustala się zbiór cech — atrybutów, które opisują własno ści badanych
obiektów. Gromadzone dane to zbiór opisanych w ten sposób obiektów. Przez obiekt rozumie
się wtedy zbiór wartości wybranych uprzednio atrybutów. Problem brakujących wartości
atrybutów występuje wtedy, gdy niektóre obiekty nie są opisane na całym zbiorze cech. W
zgromadzonych danych brakuje niektórych wartości atrybutów.

Jest to istotny problem podczas procesu wnioskowania. Stosowane zazwyczaj podejścia
nie uwzględniają zróżnicowania w opisie obiektów i zakładają, że wszystkie obiekty muszą
być opisane na wszystkich wybranych atrybutach. W rzeczywistości jednak zbiory danych
posiadają obiekty o niekompletnym opisie, co jest często spotykanym zjawiskiem.

Brakujące wartości atrybutów to naturalna cecha przetwarzanych informacji. Przyczyn
powstawania brakujących wartości może być wiele. Oto krótkie zestawienie niektórych z
możliwych przyczyn występowania niekompletnego opisu obiektów:

� zaniedbania,

� zmiana zestawu atrybutów podczas procesu gromadzenia danych,

� dane pochodzą z różnych źródeł, posługujących się różnym zestawem atrybutów,

� brak danej własności spowodowany brakiem fizycznym, np. nie można rozpatrywać
koloru samochodu klienta, gdy klient nie ma w ogóle żadnego samochodu,

� rzeczywisty brak danej własności, np. prezes nie ma zwierzchnika,

� wartość niemożliwa do uzyskania, np. pacjent nie może mieć wykonanego pewnego
badania z powodu np. alergii,

� wartość wychodzi poza uprzednio zdefiniowaną dziedzinę lub zakres pomiarowy urzą-
dzenia, np. „kolor” podczerwony,

� pomiar niemożliwy do przeprowadzenia z powodu np. ograniczonej współbieżności
urządzenia,

� błąd aparatury pomiarowej,

� ograniczenia fizyczne spowodowane np. zasadą Heisenberga.

Należy zauważyć, że zaniedbania, zmiana zestawu atrybutów i niejednorodne źródło po-
chodzenia danych to najczęstsze przyczyny powstawania danych o niekompletnym opisie
obiektów.

Kolejną cechą charakteryzującą brakujące wartości atrybutów jest kwestia ich istnienia.
Niektóre brakujące wartości atrybutów mogły by zostać poznane lub nawet zostały poznane i
później zagubione. Wartości takie istnieją, lecz są przed nami ukryte. Inne brakujące wartości
mogą faktycznie nie istnieć i wtedy charakteryzują się zupełnie innymi własnościami. Nie
ma sensu np. mówić o uzupełnianiu takich wartości.
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Brakujące wartości ponadto mogą być związane pewnymi więzami zależności. Mecha-
nizm ich powstawania może być kompletnie losowy, lub mogą nim rządzić pewne, najczę-
ściej ukryte, prawidłowości. W terminologii statystycznej używa się sformułowań zupełnie
losowo brakujących wartości oraz wartości brakujących losowo, ale według pewnego roz-
kładu prawdopodobieństwa.

Z problemem brakujących wartości doskonale poradzono sobie w przypadku relacyj-
nych baz danych. Tam, gdzie nie interesuje nas inteligentne przetwarzanie informacji, a je-
dynie jej gromadzenie i możliwość przeprowadzania prostych operacji na danych, problem
ten rozwiązano stosując trójwartościową logikę Łukasiewicza. Jest to mechanizm gwaran-
tujący poprawne wykonywanie standardowych operacji na bazach danych. Niemniej jednak
zapotrzebowanie inteligentnej analizy informacji jest daleko większe, niż rozwiązania zasto-
sowane w relacyjnych bazach danych. Jak do tej pory nie wprowadzono tak powszechnie
akceptowanych i gruntownie przebadanych rozwiązań dla problemu brakujących wartości,
jak ma to miejsce np. wobec problemu informacji niepewnej i niedokładnej.

Zainteresowanie brakującymi wartościami atrybutów nie ogranicza się jednak tylko do
praktycznych aspektów budowy skutecznych systemów decyzyjnych. Również na gruncie
teorii maszynowego uczenia się podejmowano próby scharakteryzowania problemu braku-
jących wartości (patrz np. [4, 6, 17]). Jednym z najważniejszych na tym polu wyników jest
pokazanie w pracy [6], że w ogóle można stosować uczenie się pojęć w oparciu o przykłady
w stosunku do danych z niekompletnym opisem obiektów. Co prawda zaproponowany tam
algorytm nie jest efektywny i posiada ponadwielomianową złożoność obliczeniową, jednak
dzięki takim podstawom możemy mieć nadzieję, że można opracować skuteczny algorytm
uczący się pojęć w oparciu o obiekty z brakującymi wartościami atrybutów.

1.6 Metody postępowania wobec brakujących wartości

Problemem brakujących wartości atrybutów w zakresie inteligentnego przetwarzania infor-
macji zaczęto się poważnie interesować dopiero w drugiej połowie lat osiemdziesiątych.
Wcześniej analogiczne problemy były badane na gruncie statystyki, algebry uniwersalnej i
logiki, co stanowi inspirację dla większości używanych obecnie rozwiązań. Na tej podsta-
wie wprowadzono wiele metodologii postępowania wobec brakujących wartości atrybutów,
które można zaklasyfikować do czterech grup:

1. ignorowanie,

2. eliminacja obiektów lub atrybutów,

3. uzupełnianie brakujących wartości,

4. wnioskowanie bezpośrednio w oparciu o dane z niekompletnym opisem obiektów.

Najprostszymi i jednocześnie najbardziej zaburzającymi jakość wnioskowania metodami
są ignorowanie i eliminacja. Pomimo ich oczywistych wad, metody te są niekiedy stosowane
ze względu na ograniczenia już istniejących rozwiązań wnioskowania na podstawie danych.

Ignorowanie brakujących wartości to próba analizy danych z niekompletnym opisem
obiektów w taki sposób, jakby były to normalne, dopuszczalne wartości. Jest to metoda czę-
ściowo stosowana do dzisiaj, gdyż wiele istniejących systemów analizy danych nie uwzględ-
nia możliwości występowania brakujących wartości.
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Alternatywną metodą do ignorowania jest eliminacja. Eliminować można obiekty o nie-
kompletnym opisie lub atrybuty, dla których obiekty posiadają brakujące wartości. Usuwa-
nie obiektów i/lub atrybutów niesie ze sobą niebezpieczeństwo utraty możliwości wykrycia
ogólnej prawidłowości za pomocą wnioskowania indukcyjnego. Jednakże eliminacja doko-
nana przez specjalistę i poprzedzona dokładną analizą mechanizmów powstawania brakują-
cych wartości i zależności pomiędzy atrybutami dla niektórych, szczególnych danych może
przynieść zadowalający rezultat. Nie jest to jednak metoda uniwersalna, a w szczególności
nie można jej ująć w sposób algorytmiczny, gdyż nieodzownym elementem sukcesu jest tutaj
człowiek — do świadczony specjalista w zakresie analizy danych.

Uzupełnianie brakujących wartości to pierwsza z metodologii próbujących w sposób in-
teligentny poradzić sobie z problemem brakujących wartości, dająca się ująć algorytmicznie.
Jej korzenie sięgają statystyki. Brakujące wartości usiłuje się uzupełniać za pomocą wartości
z dziedziny atrybutów na podstawie mniej lub bardziej wyrafinowanego kryterium. Metoda
ta może wprowadzać zaburzenia do danych, dlatego zakres jej zastosowań jest nieco ograni-
czony. Zaletą tej metody jest to, że dane uzupełniane są przed właściwym procesem wnio-
skowania i nie trzeba modyfikować istniejących algorytmów, które nie potrafią wnioskować
w oparciu o dane z niekompletnym opisem obiektów.

Wnioskowanie bezpośrednio w oparciu o dane z niekompletnym opisem obiektów jest
najbardziej uniwersalną metodologią postępowania wobec brakujących wartości. W odróż-
nieniu od wszystkich poprzednich metod, metoda ta umożliwia osiągnięcie najlepszych wy-
ników. Uwarunkowane jest to jednak od powstania algorytmów, które będą możliwie w jak
najbardziej efektywny sposób wykorzystywały zawartą w danych informację. Pewną wadą
tej metodologii jest to, że jej adaptacja do już istniejących systemów wnioskowania w opar-
ciu o dane wymaga modyfikacji istniejących algorytmów.

Zaprezentowana w rozdziale 7. metoda podziału usiłuje znaleźć kompromis pomiędzy
eliminacją, uzupełnianiem i wnioskowaniem bezpośrednio w oparciu o dane z niekomplet-
nym opisem obiektów w taki sposób, aby wyeliminować wyżej wspomniane wady tych roz-
wiązań.
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Rozdział 2

Wstęp do teorii zbiorów przybli żonych

Przez wiedzę często rozumiemy zdolność do klasyfikacji, czyli umiejętności rozróżniania
obiektów z otaczającej nas rzeczywistości. Można stwierdzić, że jednym z najważniejszych
elementów wiedzy jest zdolność do klasyfikacji obiektów, przy czym przez obiekt rozu-
miemy wszystko, co tylko można sobie wyobrazić, np: przedmioty, zwierzęta, osoby, poję-
cia abstrakcyjne, momenty czasu itd. Zatem chcąc zdefiniować wiedzę niezbędną do procesu
wnioskowania, musimy najpierw zdecydować, jakimi obiektami jesteśmy zainteresowani.
Zbiór takich obiektów nazwiemy uniwersum. Mając ustalone uniwersum możemy zdefinio-
wać na nim rodziny podziałów, które dzielą nam uniwersum, zbiór wszystkich obiektów, na
podzbiory. Podzbiory takie możemy nazywać pojęciami. Na przykład, jeśli za uniwersum
przyjmiemy zbiór wszystkich jabłek, to możemy określić pojęcie jabłka zielonego. Pewne
obiekty (jabłka) z uniwersum są reprezentantami pojęcia jabłka zielonego, czyli, co równo-
ważne, należą do zbioru zielonych jabłek. Natomiast jeśli pewne jabłko nie jest zielone, na-
leży do uzupełnienia zbioru zielonych jabłek. Z punktu widzenia danej własności obiektów
(koloru jabłka), w oparciu o którą budujemy pojęcie, nie jesteśmy w stanie odróżnić mię-
dzy sobą obiektów należących do pojęcia, jak również obiektów do pojęcia nienależących.
Z punktu widzenia koloru dany owoc albo jest zielony, albo taki nie jest i dalsze rozgra-
niczenie na podstawie takiej informacji pomiędzy reprezentantów zbioru zielonych jabłek
nie jest możliwe. Ze względów praktycznych wygodnie jest również określać takie podziały
nie tylko binarnie (jabłko zielone vs. pozostałe jabłka), ale na większą liczbę podzbiorów
uniwersum. Na przykład ze względu na kolor jabłka można podzielić na zbiory jabłek zielo-
nych, żółtych i czerwonych.

2.1 Reprezentacja wiedzy

Na początku lat 80-tych Profesor Zdzisław Pawlak zaproponował nowe podejście do pro-
blemu formalnego opisu wiedzy niepełnej i niedokładnej — teorię zbiorów przybliżonych
(patrz [37]). Zaproponowane podejście stanowi dobrą podstawę teoretyczną do rozwiązy-
wania problemów dotyczących inteligentnych systemów informacyjnych. Jak okaże się w
następnym rozdziale, zbiory przybliżone okazały się użyteczne w szczególności przy anali-
zie danych o brakujących wartościach atrybutów.

Teoria zbiorów przybliżonych jest doskonałą metodą starającą się naśladować naszki-
cowany powyżej model przetwarzania wiedzy. Jej główną zaletą jest formalne, logiczno-
teoriomnogościowe ujęcie całokształtu zjawisk związanych z przetwarzaniem wiedzy i wnio-
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14 2.1. REPREZENTACJA WIEDZY

skowaniem o obiektach. Również takie pojęcia jak nieprecyzyjność i niepewność danych,
częstokroć reprezentowane numerycznie, przez co wymykają się stricte formalnemu podej-
ściu, tutaj wyrażone są w postaci prostych do przyswojenia i analizy pojęć teoriomnogościo-
wych.

Zdefiniujmy zatem formalnie nasz zbiór obiektów — uniwersum, wraz z pojęciami, które
klasyfikują obiekty z uniwersum.

Definicja 2.1 System informacyjny. (patrz [2, 38])
System informacyjny to para

���������
	��
, gdzie:

�
�

jest skończonym, niepustym zbiorem, zwanym uniwersum. Elementy zbioru
�

nazy-
wamy obiektami.

�
	

jest skończonym, niepustym zbiorem atrybutów, gdzie każdy atrybut 
�� 	
inter-

pretowany jest jako funkcja 
�� ��� ���� przyporządkowującą obiektom z
�

wartości
atrybutu 
 , przy czym

���� jest zbiorem wartości atrybutu 
 zwanym dziedziną atrybutu
 1.

Zwyczajowo systemy informacyjne prezentuje się graficznie w postaci tabel informa-
cyjnych. Postać tabeli jest tutaj szczególnie wygodna, gdyż stanowi podstawową strukturę
danych używaną do implementacji systemów informacyjnych.

Przykład 2.1 Jabłka.
Niech

���������
	��
, gdzie

�
to zbiór jabłek, a zbiór atrybutów

	
jest zdefiniowany jako	����

kolor
�
wielkość

�
dojrzałe � . Pojęcie jabłko zielone jest wyznaczone przez zbiór �! �

,
taki, że � ���#"%$ � � �'&'(*)+(*, �+"-$.�/�!02143 )+(65 3 � . Możemy zobrazować przykładowy system in-
formacyjny

�
, gdzie

�����#"879�;:<:<:=�>"%? � , w postaci tabeli informacyjnej. Kolumny tabeli ozna-
czają atrybuty (cechy) badanego obiektu, a wiersze zawierają opis poszczególnych obiektów.
Każda komórka tabeli w wierszu

1
i kolumnie 
 zawiera wartość 
 �+"@$+� , czyli klasyfikację o

przynależności
"%$

do pewnego pojęcia, ze względu na atrybut (cechę) 
 .

kolor wielkość dojrzałe"A7
czerwone duże tak"%B

żółte średnie tak"%C
zielone małe nie"-D
zielone duże tak"%E
żółte średnie nie"%F

czerwone średnie tak"HG
żółte duże tak"%?

czerwone średnie tak"%I
żółte małe nie"A7.J
żółte małe tak"A7�7

czerwone małe tak"A7.B
zielone średnie nie

1Gdy jasno wynika z kontekstu, jaki system informacyjny jest rozpatrywany, wtedy przyjmuje się równie ż oznaczenieKML
.
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ROZDZIAŁ 2. WSTĘP DO TEORII ZBIORÓW PRZYBLIŻONYCH 15

czerwone żółte zielone

du że

średnie

małe

X

X

Rysunek 2.1: Tak mo żna wyobra żác sobie graficznie przestrzén uniwersum � dla przykładu 1.1.
Zbiór � reprezentuje pojęcie jabłka dojrzałego, a zbiór � — pojęcie przeciwne, jabłka niedojrzałego.

Pojęcie zielonego jabłka jest wyznaczane przez zbiór � � �#" C#�>"-D#�>"%?#� "A7.B � . Ponadto opis
(klasyfikacja) pewnych obiektów względem atrybutów (własności) ze zbioru

	
jest iden-

tyczny, co zazwyczaj nie oznacza jeszcze, że są to dwa takie same jabłka, gdyż zestaw cech
	

jest dosyć ubogi.

2.2 Relacja nierozró żnialnósci

W powyższym przykładzie poruszyliśmy ważną własności cechującą systemy informacyjne.
Ze względu na ograniczony charakter reprezentacji wiedzy w postaci praktycznie realizowal-
nych systemów informacyjnych należy wziąć pod uwagę, że wiedza w ten sposób zgroma-
dzona będzie nieprecyzyjna. W teorii zbiorów przybliżonych modelowane jest to w sposób
bezpośredni za pomocą relacji nierozróżnialności. Dwa obiekty (jak w powyższym przykła-
dzie

"%F
i
"%?

) mogą mieć taki sam opis cechami
	

, jednakże człowiek nie wyciąga z tego od
razu wniosku, że są to dwa identyczne jabłka (lub wręcz, że jest to jedno i to samo jabłko),
ale zakłada, że na obecnym stanie wiedzy nie jest w stanie ich od siebie rozróżnić.

Definicja 2.2 Relacja nierozróżnialności
Niech

� � �����
	��
będzie systemem informacyjnym i niech ��� 	

. Relację nierozróż-
nialności ���	� � � � � � ��
 �

generowaną przez zbiór � definiujemy w następujący sposób:

����� � � � � �!� �+" ��
'� � ��
 � ��� 
 ����� 
 � "@�/� 
 ��
'� � : (2.1)

Relacja nierozróżnialności dzielni nam zbiór wszystkich obiektów na najmniejsze pod-
zbiory, którymi możemy operować przy wykorzystaniu wiedzy � . Jeżeli nawet pewne dwa
obiekty różnią się od siebie, ale przyjmują te same wartości na atrybutach z � , nie jesteśmy
w stanie stwierdzić, czy są to dwa różne, czy jeden i ten sam obiekt, gdy opieramy się tylko
na wiedzy o atrybutach (cechach obiektów) ze zbioru � .

Fakt 2.1 Relacja nierozróżnialności spełnia następujące własności

1. ����� � � � � jest relacją równoważności,
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czerwone żółte zielone

du że

średnie

małe

X

X

Rysunek 2.2: Klasy abstrakcji relacji nierozró żnialnósci ����� �����
	 , gdzie ����
 kolor � wielko ś ć � . W
ka żdym kwadracie wszystkie obiekty są nierozró żnialne ze względu na opis � .

2. � 7 � � B�� � �	� � � � B � � � �	� � � � 7>�

3. ����� � � � 7�� � B � � ����� � � � 7 ��� � �	� � � � B �

4. ����� � � � � ��� ����� � �	� � ��� 
-� � .

Powyższe własności wynikają z definicji relacji nierozróżnialności oraz z podstawowych
faktów logiki i teorii mnogości. Fakt pierwszy mówi o tym, że relacja nierozróżnialności jest
relacją równoważności, a co za tym idzie, dzieli całe uniwersum na klasy abstrakcji, które
są rozłączne i niepuste. Fakt drugi ilustruje, że wiedza oparta na większej liczbie atrybu-
tów daje nam większe możliwości rozróżniania obiektów między sobą. Fakt trzeci mówi o
tym, że jeśli rozpatrzymy relację nierozróżnialności opartą na sumie dwóch podzbiorów

	
,

to obiekty nie są przez nią rozróżniane tylko wtedy, gdy nie są rozróżniane przez żaden z
tych podzbiorów. Wreszcie fakt czwarty, będący uogólnieniem poprzedniego faktu mówi o
tym, że wszystkie klasy abstrakcji relacji nierozróżnialności powstają jako przecięcie klas
nierozróżnialnych przez poszczególne atrybuty.

Pojedyncza klasa abstrakcji relacji nierozróżnialności jest najmniejszą jednostką, jaką
możemy operować. Klasę abstrakcji nazywa się często pojęciem elementarnym lub pojęciem
atomowym, gdyż jest najmniejszym podzbiorem uniwersum, jaki możemy sklasyfikować —
odróżnić od pozostałych elementów za pomocą cech — atrybutów klasyfikujących obiekty
do poszczególnych pojęć podstawowych.

Dane pochodzące z otaczającej nas rzeczywistości czasami nie pozwalają nam na jedno-
znaczne określenie, czy wartość atrybutu dwóch podanych obiektów jest sobie równa, czy
też nie. Zjawisko takie może mieć miejsce przy badaniu identyczności kolorów, kształtów,
głosów itd. Dlatego w niektórych zastosowaniach rozpatruje się nie system informacyjny,
ale tak zwanym system tolerancyjny. W takim systemie relację nierozróżnialności, opartą na
relacji równości, zastępuje się relacją tolerancji, rozumianą jako podobieństwo obiektów z
uniwersum. Systemy tolerancyjne były rozpatrywane na przykład w pracy [39].

Uniwersytet Warszawski — Wydział Matematyki, Informatyki i Mechaniki
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Rysunek 2.3: Górna i dolna aproksymacja zbioru.

2.3 Zbiory przybli żone

Celem wnioskowania na podstawie systemów informacyjnych jest próba klasyfikacji obie-
któw do pewnego pojęcia. Proces wnioskowania opiera się na opisie tego obiektu, wyrażo-
nego w postaci innych pojęć — atrybutów zawartych w systemie informacyjnym. W naszym
przypadku oznacza to, że próbujemy na podstawie przynależności obiektów do pewnych klas
nierozróżnialności wnioskować o ich zaklasyfikowaniu jako należących do pewnego pojęcia
lub nienależących.

Klasyczne podejście do systemów informacyjnych, stosujące standardową definicję teo-
riomnogościową zbioru (nazywaną też zbiorem „ostrym”), posiada dużo wad uniemożli-
wiających efektywne wnioskowanie na podstawie danych empirycznych. W ujęciu klasycz-
nym pojęcie jest definiowalne w systemie informacyjnym (patrz [2, 38]), gdy za pomocą
dostępnych pojęć możemy całkowicie wyznaczyć zbiór obiektów należących do tego poję-
cia. Oznacza to, że pojęcia definiowalne, to tylko takie pojęcia, które możemy przedstawić
jako suma pojęć atomowych w danym systemie informacyjnym. Wystarczy spojrzeć na ry-
sunek 2.2, aby się przekonać, że zgodnie z tą definicją większość pojęć występujących w
rzeczywistości nie jest definiowalna. Jest to spowodowane niedokładnością danych, co jest
zjawiskiem nieuniknionym.

Teoria zbiorów przybliżonych oferuje nam mechanizm teoriomnogościowy pozwalający
wyrazić w sposób ścisły i formalny rozumowania operujące na takich nieprecyzyjnych da-
nych. Pomocne okażą się tutaj pojęcia aproksymacji (czyli przybliżenia) górnej i dolnej
zbioru.

Definicja 2.3 Aproksymacja zbioru.
Niech

� � �����
	��
będzie systemem informacyjnym, � � 	

będzie zbiorem atrybutów
oraz � � �

będzie pewnym pojęciem, które chcemy aproksymować. Dla każdego obiektu" � � , przez � "������	��

� ��� oznaczmy klasę abstrakcji relacji ����� � � � � do której należy obiekt"
.

1. Dolną B-aproksymacją pojęcia � w systemie informacyjnym
�

nazywamy zbiór:

� ���	��
 � ���#" � � ��� "�� ���	� 
 � ��� ��� � : (2.2)
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2. Górną B-aproksymacją pojęcia � zbiór:

�
��� ��


� � �!�#" � � ��� "�� ��� ��

� ��� � � ���� � : (2.3)

3. B-brzegiem pojęcia � w systemie informacyjnym
�

nazywamy zbiór:

� � � � � � � �
���	� 


����� ���	��
 � (2.4)

Za pomocą dolnej i górnej aproksymacji jesteśmy w stanie określić nieostre pojęcie �
w ścisły sposób. Dolna aproksymacja pojęcia, to wszystkie te obiekty, które należą bez wąt-
pienia do pojęcia. Należą one bowiem do takich klas abstrakcji, które w całości zawierają
cię w pojęciu � . Górna aproksymacja pojęcia, to zbiór takich obiektów, co do których nie
możemy wykluczyć, że należą do pojęcia. Jest to spowodowane tym, że należą do klas abs-
trakcji mających niepuste przecięcie z pojęciem � , a co za tym idzie, są nierozróżnialne z
pewnym obiektem należącym do pojęcia � .

Fakt 2.2
Dolna i górna aproksymacja pojęcia spełnia następującą nierówność:

� � 	 ��� ��
 ����� � 	 ��� ��
 � ��:
(2.5)

2.4 Definiowalność pojęć

Podstawowym zadaniem wnioskowania indukcyjnego jest wykrycie ogólnych prawidłowo-
ści pozwalających na klasyfikowanie obiektów do badanego pojęcia. Teoria zbiorów przy-
bliżonych umożliwia analizę danych niepewnych i niedokładnych za pomocą pojęć aprok-
symacji dolnej i górnej. Rozszerza to istotnie klasę pojęć definiowalnych, czyli takich, co do
których możemy oczekiwać, że wnioskowanie indukcyjne przyniesie oczekiwany rezultat.

Definicja 2.4 Definiowalność pojęć.

� Pojęcie � jest całkowicie � -definiowalne, gdy � ��� � 
 � � �
���	��


� . Odpowiada to
klasycznemu ujęciu definiowalności pojęć w systemach informacyjnych.

� Pojęcie � jest w przybliżeniu � -definiowalne, gdy � ��� ��
 � ���� i �
��� ��


� �� �
.

� Pojęcie � jest wewnętrznie � -niedefiniowalne, gdy � ��� ��
 � ���
i �

��� ��

� �� �

.

� Pojęcie � jest zewnętrznie � -niedefiniowalne, gdy � ���	��
 � ���� i �
��� � 


� � �
.

� Pojęcie � jest całkowicie � -niedefiniowalne, gdy � ��� ��
 � ���
i �

���	��

� �!�

.

Siła zbiorów przybliżonych przejawia się w tym, że, przy umiejętnym doborze rozpatry-
wanych atrybutów, praktycznie wszystkie interesujące nas pojęcia są w przybliżeniu definio-
walne. Pozwala to na skuteczne wnioskowanie i formułowanie hipotez dotyczących aprok-
symowanych pojęć. Aby ocenić skuteczność aproksymacji wprowadza się współczynnik do-
kładności (ostrości) pojęcia.
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Definicja 2.5 Współczynnik dokładności pojęcia (patrz [2, 38]).
Jeśli

� � �����
	��
jest systemem informacyjnym, � � 	

oraz � � �
taki, że � �� � ,

to miarę � � � � � � � ������� 

	 �
� � �����


 	 � będziemy nazywać współczynnikiem dokładności (ostrości)
pojęcia � w systemie informacyjnym

�
, względem zbioru atrybutów � .

Współczynnik dokładności pojęcia ma następujące własności:

��
���� � � � � ��� ,
� jeśli � � � � �/� � , to pojęcie � jest całkowicie definiowalne, czyli ostre i jego własności

mogą być w pełni wyrażone za pomocą zbioru atrybutów B,

� jeśli � � � � � � 
 , to pojęcie � jest całkowicie niedefiniowalne (lub wewnętrznie nie-
definiowalne) i jego własności nie mogą być wyrażone za pomocą zbioru atrybutów
� ,

� jeśli 
���� � � � � ��� , to pojęcie jest w przybliżeniu definiowalne (lub zewnętrznie
niedefiniowalne) i jego własności mogą być częściowo wyrażone, z „mocą” współ-
czynnika dokładności, przy pomocy atrybutów ze zbiory � .

Rodzaj definiowalności i współczynnik dokładności pojęcia pozwalają na charakteryza-
cję dostępnych danych. Umożliwiają również wykrycie niecelowości stosowania pewnych
danych do analizy. Jest to przydatne podczas fazy projektowania systemów gromadzenia
danych i pozwala na sprawdzenie, czy w tabelach informacyjnych ujęto wszystkie atrybuty
niezbędne do procesu wnioskowania.

2.5 Redukcja wiedzy

W podrozdziale 1.4 zaznaczono istnienie różnych problemów związanych z niedoskonało-
ściami dostępnych danych. Jedną z nich jest tzw. szum informacyjny, czyli zbyt duża liczba
nieistotnych informacji zawartych w opisach obiektów. Na gruncie teorii zbiorów przybli-
żonych również ten problem może zostać w naturalny sposób rozwiązany za pomocą tzw.
reduktów.

Zdefiniujmy formalnie zbiór atrybutów, który składa się wyłącznie z istotnych atrybutów,
wnoszących nową wiedzę na podstawie zawartej w nich informacji.

Definicja 2.6 Niezależny zbiór atrybutów.
Niech

��� �����
	��
będzie systemem informacyjnym. Zbiór atrybutów � � 	

nazywamy
niezależnym, gdy dla każdego atrybutu 
 ��� zachodzi następujący warunek:

����� � � � � �� ����� � � ��� � 
 � � (2.6)

Niezależny zbiór atrybutów to taki zbiór, z którego nie można usunąć żadnego atrybutu
bez utraty cennych informacji, czyli zmniejszenia dokładności aproksymacji pojęcia. Dla
każdego zbioru atrybutów możemy określić rodzinę zbiorów atrybutów, za pomocą których
możemy uzyskać taką samą dokładność aproksymacji, oraz będących minimalnymi, w sen-
sie relacji inkluzji, zbiorami atrybutów posiadających tę własność.
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Definicja 2.7 Redukt zbioru atrybutów (patrz [2, 38]).
Jeśli

���������
	��
jest systemem informacyjnym, oraz � ��� � 	

, to zbiór atrybutów � jest
reduktem zbioru atrybutów

�
w systemie

�
, gdy spełnione są następujące warunki:

� � �	� � � � � � ���	� � ����� ,
� zbiór atrybutów � jest niezależny.

Zbiór wszystkich reduktów zbioru atrybutów
�

będziemy oznaczali przez ��� � � ��� � .
Dzięki relacji nierozróżnialności możemy w czytelny i formalny sposób wprowadzić po-

jęcie reduktu, pozwalające wyznaczyć istotny podzbiór informacji. Własności i metody ge-
nerowania reduktów były szczegółowo badane np. w pracach [2, 50].

Eliminacja niepotrzebnej informacji spełnia kluczową rolę we wnioskowaniu indukcyj-
nym. Ponieważ wnioski formułowane są w oparciu o przykłady obiektów istnieje zagroże-
nie, że wnioski takie mogą być nadmiernie dopasowane do przykładów uczących i nie opi-
sują w poprawny sposób ogólnych prawidłowości występujących w danych. Ograniczenie
informacji tylko do podzbioru istotnych atrybutów umożliwia skuteczną walkę z tym tzw.
problemem nadmiernego dopasowania. Istnieją również przesłanki statystyczne, jak zasada
minimalnego opisu (ang. minimal description length, MDL), które wskazują na celowość
posługiwania się reduktami, a nie pełnym zbiorem atrybutów. Stąd redukt to podstawowe
narzędzie używane podczas procesu wnioskowania w oparciu o dane.

2.6 Wnioskowanie na podstawie danych

Celem uczenia się pojęć w oparciu o przykłady jest stworzenie opisu pojęcia, pozwalającego
na klasyfikację obiektów z uniwersum pod względem przynależności do badanego pojęcia.
Opis taki wyrażany jest w postaci formuł logicznych.

Definicja 2.8 Formuła atomowa.
Niech

� � �����
	��
będzie systemem informacyjnym. Formułą atomową nazwiemy każdy

napis postaci
� 
 �	� � , gdzie 
�� 	 oraz

� � � � . Powiemy, że obiekt
"

spełnia formułę
� 
 �
�'� ,

gdy 
 � "@�/���
.

Definicja 2.9 Formuła.
Niech

� � �4���
	��
będzie systemem informacyjnym. Do zbioru formuł � �+��� należą

� wszystkie formuły atomowe,

� jeśli 
 oraz � należą do zbioru formuł, to również ��
 ,
� 
���� � , � 
���� � oraz

� 
 � � �
należą do zbioru formuł.

Symbole logiczne � , � , � oraz
�

należy traktować jako odpowiedniki znanych klasycz-
nych funktorów.

Formuły � � � � umożliwiają nam formalne ujęcie prawidłowości zachodzących w danych
i wyrażenie ich w ścisły sposób. Opisy pojęć wyrażone są w postaci formuł szczególnego
rodzaju, tzw. reguł decyzyjnych.
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Definicja 2.10 Reguła decyzyjna.
Niech

� � �����
	��
będzie systemem informacyjnym. Regułą decyzyjną nazwiemy każdą

formułę postaci 
 � � .

Do rozpoczęcia procesu wnioskowania indukcyjnego niezbędne jest wyznaczenie ba-
danego pojęcia. Ponieważ, dla konkretnego systemu informacyjnego, badane pojęcie jest
najczęściej trwale wyznaczone, wydziela się je ze zbioru atrybutów i nazywa atrybutem de-
cyzyjnym. System informacyjny z wyznaczonym atrybutem decyzyjnym oznacza się

����4� �>	 ��� �
, gdzie

	
nazywamy zbiorem atrybutów warunkowych, a

�
nazywamy atrybutem

decyzyjnym.
Proste reguły decyzyjne, to formuły postaci 
 � � , które w części warunkowej ( 
 )

zawierają formuły atomowe zbudowane w oparciu o atrybuty warunkowe, natomiast wniosek
( � ) jest formułą atomową postaci

���%�
�'�
. Tak określone reguły decyzyjne znajdują się w

centrum zainteresowania uczenia się pojęć w oparciu o przykłady.

Przykład 2.2
Niech

�
będzie systemem informacyjnym z przykładu 2.1. Możemy sformułować nastę-

pujące reguły decyzyjne:

1.
� &'(*)+(*, ���90 3 ,���(65 36� � � � 1 3 ) & (��	� ����

�;36� � ��� (�� � 
�� 3 ��� 
 & �

2.
� &'(*)+(*, ���90 3 ,���(65 36� � � � 1 3 ) & (��	� ����

�;36� � ��� (�� � 
�� 3 � 5 1 36�

3.
� &'(*)+(*, ����� � � 36� � � � 1 3 ).&'(��	� � � , 3�� 5 1436�/� ��� (�� � 
�� 3 �	� 
 & �

4.
� &'(*)+(*, � 0 143 )+(*5 36� � � � 143 ).&'(���� ��� 
�� 36��� ��� (�� � 
�� 3 � 5 1436�

Reguła 1. jest regułą prawdziwą w systemie
�

, podczas gdy reguła 2. jest regułą fałszywą.
Reguła 3. jest regułą aproksymacyjną, gdyż dotyczy klasy abstrakcji relacji nierozróżnialno-
ści należącej do górnej aproksymacji pojęcia � , ale nie należącej do dolnej aproksymacji
tego pojęcia. Reguła 4. jest regułą dokładną, gdyż dotyczy klasy abstrakcji należącej do dol-
nej aproksymacji pojęcia � .

2.7 Systemy decyzyjne

System potrafiący klasyfikować obiekty pod względem ich przynależności do pojęć na-
zwiemy systemem decyzyjnym. Zadaniem dla systemu decyzyjnego jest indukcja reguł de-
cyzyjnych, czyli wnioskowanie indukcyjne w oparciu o dane, którego celem jest wygenero-
wanie opisu umożliwiającego klasyfikację obiektów. Stąd system decyzyjny nazywany jest
również klasyfikatorem.

Najprostszy system decyzyjny jaki można sobie wyobrazić, to generator reguł decyzyj-
nych będących w istocie opisem wszystkich obiektów zawartych w tabeli informacyjnej.
Zastosowanie teorii zbiorów przybliżonych umożliwia charakterystykę tych reguł jako praw-
dziwych lub nie, oraz aproksymacyjnych lub dokładnych. Istotnym ulepszeniem takiego al-
gorytmu jest np. zastosowanie zredukowanych opisów obiektów, czyli zastosowania reduk-
tów, jako podstawy do generowania reguł decyzyjnych. Metody konstruowania systemów
decyzyjnych w ramach teorii zbiorów przybliżonych opisane są w pracach [2, 26, 32, 34, 35,
38, 48].
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Reguły decyzyjne, czyli opis pojęcia, mogą być reprezentowane w różny sposób. Dwa
najpopularniejsze sposoby, to reprezentacja reguł w naturalnej, formułowej postaci oraz re-
prezentacja w postaci drzew decyzyjnych. Drzewa decyzyjne zostały opisane na podstawie
algorytmu C4.5 opisywanego w podrozdziale 4.1.
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Rozdział 3

Rozszerzenia teorii zbiorów
przybli żonych

3.1 Wprowadzenie

Teoria zbiorów przybliżonych oferuje skuteczny i efektywny mechanizm do przetwarzania
wiedzy niepewnej i nieprecyzyjnej. Jednak usiłując przetwarzać konkretne dane częstokroć
napotykamy na kolejny rodzaj niedoskonałości informacji, jakim są brakujące wartości atry-
butów. Brak poszczególnych wartości w systemie informacyjnym stanowi przeszkodę w sto-
sowaniu tradycyjnej teorii zbiorów przybliżonych. W ostatnich latach powstały jednak mo-
dyfikacje teorii zbiorów przybliżonych, które umożliwiają w naturalny i intuicyjny sposób
przetwarzanie danych z brakującymi wartościami (patrz [21, 22, 27, 29, 49, 51, 53, 54, 56]).

W niniejszym rozdziale prezentowane będą modyfikacje relacji nierozróżnialności, które
pozwalają na analizę danych z brakującymi wartościami. Ze względu na to, że prezentowane
relacje częstokroć nie będą relacjami równoważności, pewnych drobnych modyfikacji wy-
magała będzie definicja górnej i dolnej aproksymacji pojęcia. Niemniej jednak zmiany te
będą trywialne i będą służyły jedynie w celu ominięcia braku możliwości konstrukcji klas
abstrakcji.

3.2 Tolerancja - Podobieństwo symetryczne

Problem nieokreślonych wartości nie jest w matematyce czymś nowym. Na gruncie alge-
bry uniwersalnej (patrz np. [7, 18]) wykształcone zostało pojęcie algebry częściowej, gdzie
operacje nie muszą być określone na całej dziedzinie, a tylko na jej części.

3.2.1 Podstawy algebraiczne

Algebra częściowa to pewne uogólnienie pojęcia algebry, nazywanej także algebrą totalną
dla rozróżnienia tych dwóch pojęć. Pojęcie częściowości jest bardzo podobne do problemu
brakujących wartości atrybutów [46]. Niektóre proste fakty z algebry uniwersalnej mogą być
wprost przeniesione na grunt analizy danych z niekompletnym opisem obiektów.

Definicja 3.1 Sygnatura (patrz [3]).

23
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Parę
� � ���'� nazywamy sygnaturą, jeśli � jest dowolnym zbiorem i

� � � � �
jest funkcją.

Jeśli para
� � ��� � jest sygnaturą to elementy zbioru � nazywamy symbolami operacji, a

�
funkcją arności. Jeżeli

�A���A� � 
 � � ��� � 5 mówimy odpowiednio, że
�

jest symbolem stałej,
operacji unarnej, binarnej lub 5 -argumentowej.

Definicja 3.2 Algebra częsciowa (patrz [3]).
Parę

	 � �.	��6���
	 ��� ��
 � nazywamy algebrą częściową typu
� � ��� � , jeśli

	
jest niepu-

stym zbiorem zwanym nośnikiem algebry i dla każdego
� � � ��	 jest

� ��� �
-arną opera-

cją częściową w zbiorze
	

. Tzn.
��	 � � ( � ����	 � � 	

, gdzie
� ( � ����	 � � 	�� � ��� �

. Gdy� ( � ��� 	 � ��	 � � � � �
, wtedy

�
nazywamy operacją totalną.

Pojęcie algebry częściowej w bardzo naturalny sposób opisuje wiele zjawisk zachodzą-
cych w matematyce i w informatyce. Struktury częściowe pojawiają się zarówno przy pro-
blemach związanych z odejmowaniem w zbiorze liczb naturalnych, jak i operacjach na abs-
trakcyjnych typach danych, czy w abstrakcyjnej teorii algorytmów.

Podstawowym pojęciem łączącym algebrę uniwersalną z analizą danych o niekomplet-
nym opisie obiektów jest pojęcie równości słabej.

Definicja 3.3 Słaba równość (patrz [46]).
Niech ��� � � 	

będzie dowolnym wartościowaniem, gdzie � to zbiór zmiennych.
Niech �� � � ( � � �� � � 	

będzie naturalnym rozszerzeniem � nazywanym wartościowaniem
termów. Algebra

	
spełnia słabą równość ������ , gdy zachodzi poniższy warunek.

� � � � � ( � � �� � � �� � � � � �� � � � (3.1)

Słaba równość ���� � jest spełniona, gdy zachodzi równość funkcji indukowanych w
	

przez � i � określonych tylko na wspólnej dziedzinie � i � . Gdy � lub � jest nieokreślone,
wtedy nie istotna jest wartość drugiego termu (odp. � lub � ) i w szczególności może ona być
również nieokreślona.

Dla odmiany aby zachodziła tzw. równość silna �"!�#� wymagane jest również, aby dzie-
dziny określoności � i � były sobie równe. Koncepcja równości słabej jest istotnie różnym
pojęciem od stosowanych do tej pory równości, odpowiadających raczej pojęciu równości
silnej. Adaptacja unikalnego pomysłu, aby równość sprawdzać tylko na wspólnej poddzie-
dzinie określoności, na grunt teorii zbiorów przybliżonych umożliwia wnioskowanie w opar-
ciu o dane z niekompletnym opisem obiektów.

3.2.2 Relacja tolerancji

Relacja tolerancji — podobie ństwa symetrycznego jest bardzo naturalnym rozszerzeniem
relacji nierozróżnialności i była opisywana przez wielu badaczy zarówno na gruncie teo-
rii zbiorów przybliżonych, jak i innych metod (patrz np. [25, 29, 39, 56]). Odpowiada ona
pojęciu słabej równości z algebry uniwersalnej, jednak tutaj zyskuje ona dodatkową interpre-
tację. W przypadku analizy danych można bowiem zakładać, że brakująca wartość danego
atrybutu potencjalnie może być w rzeczywistości dowolnym elementem dziedziny tego atry-
butu. Inaczej mówiąc, tabela którą dysponujemy jest niekompletnym, częściowym obrazem
istniejącej tabeli z kompletnym opisem obiektów, która jest przed nami ukryta. Gdybyśmy
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poznali w pełni uzupełnioną tabelę, to w miejscu brakujących wartości mogłyby stać do-
wolne wartości z dziedziny atrybutów. Ponieważ jednak nie znamy kompletnej tabeli w ca-
łości, to nie możemy stwierdzić, która z takich tabel w pełni uzupełnionych jest prawdziwym
rozszerzeniem naszej wybrakowanej tabeli.

Definicja 3.4 Relacja tolerancji
Niech

� � �����
	��
będzie systemem informacyjnym i niech � � 	

. Relację tolerancji
(podobieństwa symetrycznego) ����� � � � � � � 
 �

generowaną przez zbiór � definiujemy
w następujący sposób:

����� � � � � � � �+" ��
'� � ��
 � �
� 
 ��� 
 �+"@� � 
 � 
 � � 
 � "@� ��� ��
 ��
'� ��� � : (3.2)

Należy zauważyć, że metoda uzupełniania wszystkimi możliwymi wartościami, badana
nie tylko na gruncie zbiorów przybliżonych (np. [25]), jest równoważna zastosowaniu wy-
żej zdefiniowanej relacji tolerancji. Możemy wyobrażać sobie, że zastosowanie takiej relacji
pozwala nam jednocześnie przetwarzać wszystkie możliwe rozszerzenia tabeli z brakują-
cymi wartościami do tabeli w pełni uzupełnionej. Warto zauważyć, że liczba takich tabel
jest wykładnicza ze względu na liczbę brakujących wartości. Oznacza to, że dla typowych
tabel liczba takich rozszerzeń jest zazwyczaj większa od

� 7.J�J�J
, czyli większa od � 
 
 cyfro-

wej liczby dziesiętnej. Widać tutaj wyraźnie przewagę teorii zbiorów przybliżonych, gdyż
nie potrzebujemy tworzyć żadnych rozszerzeń fizycznie. Wystarczy zastosować tak zdefi-
niowaną relację tolerancji, aby uzyskać metodę równoważną do uzupełniania wszystkimi
możliwymi wartościami.

Fakt 3.1 Własności relacji tolerancji.

1. Relacja tolerancji jest zwrotna.

� " � � ����� � � � � �+" �>"@�

2. Relacja tolerancji jest symetryczna.

� " ��
 � � ����� � � � �M�+" � 
 �
	 ����� � � � � ��
H�>"@�

3. Relacja tolerancji na ogół nie jest przechodnia.

� " ��
@�
0 � � ����� � � � � �+" ��
'� ������� � � � �M� 
@� 0 �
� ����� � � � � �+" � 0 �

Warunek przechodniości zachodzi wtedy i tylko wtedy, gdy obiekt



jest uzupełniony na
wszystkich miejscach, gdzie żaden z obiektów

"
i
0

nie posiada brakującej wartości atrybutu
(patrz [46]).

Relacja tolerancji nie jest relacją równoważności, nie pozwala nam zatem na konstrukcję
klas abstrakcji. Definicja górnej i dolnej aproksymacji zbioru w oparciu o relację nierozróż-
nialności operowała na klasach abstrakcji, niemniej jednak zostały one użyte głównie dla
ilustracji koncepcji pojęcia elementarnego i zwięzłości zapisu. Istotą aproksymacji dolnej
jest to, że obiekt

"
należy z całą pewnością do pojęcia, gdy wszystkie obiekty z nim nieroz-

różnialne, czyli do niego podobne również należą do aproksymowanego pojęcia. Natomiast
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obiekt
"

należy do aproksymacji górnej, gdy nie możemy wykluczyć, że któryś z obiektów
z nim nierozróżnialnych (podobnych do niego) należy do badanego pojęcia. Zatem dolną i
górną aproksymację zbioru — pojęcia możemy wyrazi ć bez potrzeby odwoływania się do
klas abstrakcji.

Definicja 3.5 Dolna i górna aproksymacja zbioru.
Niech

� � �����
	��
będzie systemem informacyjnym, � � 	

będzie zbiorem atrybutów
oraz � � �

będzie pewnym pojęciem, które chcemy aproksymować.

1. Dolną B-aproksymacją pojęcia � w systemie informacyjnym
�

nazywamy zbiór:

������� 
 � � �#" � � � � 
 � � � ����� � � � � �+" ��
'� � ��� �� �#" � � � � 
 � � ����� � � � �M�+" � 
 � � 
 � � � : (3.3)

2. Górną B-aproksymacją pojęcia � zbiór:

� �����


� � �#" � � � � 
 � � � ����� � � � �M�+" � 
 � � � � �� � �� �#" � � � � 
 � � � ��� � � � �M� " ��
'� � 
 � � � : (3.4)

Przykład 3.1
Dana jest następująca tabela decyzyjna

� � �����
	�� ��� � � , gdzie
�����#" 79�>"%B;�>"%C#� "-D �

oraz
	 � � 
 7 � 
 B � . Dodatkowy atrybut decyzyjny, określający do którego pojęcia należy

dany obiekt, oznaczymy przez
�
. W naszym przypadku

�
rozbija się na dwa pojęcia � i 	 ,

dlatego też dziedzina atrybutu decyzyjnego
�

jest określona
��
 �!� � � 	 � .


 7 
 B �
"A7 � � �"%B � � �"%C � � 	"-D � � 	

Możemy wypisać zbiory elementów podobnych w sensie relacji ����� � : do
"A7

podobne
są
"%B

oraz
"%C

, do
"%B

podobne są
"87

oraz
"%C

, do
"HC

podobne są
"87

,
"%B

i
"-D

, wreszcie do
"%D

podobny jest
"HC

.
Aproksymacje pojęć � i 	 stanowią zbiory:

�
	 ����� 
 � � �

�
	 ����� 
 � � �#"A79� "%B#�>"%C;�>"-D �

�
	 ����� 
 	 � �#"-D �

�
	 ����� 
 	 � �#"A79� "%B#�>"%C;�>"-D �

Powyższy przykład ilustruje, że relacja tolerancji jest „ostrożna” w określaniu aproksy-
macji pojęć. Warto tutaj przypomnieć nierówność 2.5 opisującą własności górnej i dolnej
aproksymacji dla relacji nierozróżnialności w kompletnych tabelach informacyjnych.

� � 	 ��� ��
 � ����� 	 ���	��
 � �
(3.5)

Rozszerzając sens standardowej relacji nierozróżnialności na dane z niekompletnym opisem
obiektów, w taki sposób, że brakująca wartość traktowana jest jak dopuszczalna wartość z
dziedziny atrybutu, prawdziwy jest następujący fakt (patrz np. [56]).
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Fakt 3.2

� � 	 ����� 
 � � 	 ��� � 
 � ����� 	 ���	��
 � � 	 ����� 
 ��� �
(3.6)

Oznacza to, że aproksymacje pojęcia generowane przez relację tolerancji są bardziej ogólne
od aproksymacji generowanych przez relację nierozróżnialności.

Warto tutaj zauważyć, że aproksymacje generowane przez relację nierozróżnialności naj-
bardziej przybliżają � w sensie powyższej nierówności. Wynika to wprost z wykorzystania
wszystkich możliwych rozróżnień kombinacji wartości zapisanych w tabeli informacyjnej.
Niestety takie aproksymacje w obliczu danych o niekompletnym opisie obiektów często pro-
wadzą do nieprawdziwych wniosków.

Z drugiej strony relacja tolerancji jest najbardziej ogólną relacją, jest relacją „najbez-
pieczniejszą”. Generowane przez nią aproksymacje są odpowiednio najmniejsze (najwięk-
sze) dla aproksymacji dolnych (górnych) wykorzystujących wiedzę � . Wszystkie inne re-
lacje wprowadzane w niniejszym rozdziale zawsze ograniczone są przez relację nierozróż-
nialności i tolerancji, a ich aproksymacje mieszczą się pomiędzy tymi dwoma relacjami w
sensie powyższej nierówności.

3.3 Podobieństwo niesymetryczne

W zastosowaniach praktycznych relacja podobieństwa symetrycznego — tolerancji najczę-
ściej nie spełnia pokładanych w niej oczekiwań dobrego odpowiednika relacji nierozróżnial-
ności. Generowane przez nią aproksymacje są zbyt ogólne, a liczba i sposób ułożenia bra-
kujących wartości nie ma dużego wpływu na podobieństwo obiektów. Można powiedzieć,
że relacja podobieństwa symetrycznego jest nazbyt „ostrożna”, nawet w przypadkach, gdy
można z całą pewnością wykluczyć przynależność poszczególnych przykładów do dolnej
aproksymacji pojęcia.

Poszukiwania wielu badaczy lepszego zamiennika relacji nierozróżnialności, który po-
zwalał by na budowę efektywniejszych klasyfikatorów, zaowocowały alternatywnym roz-
wiązaniem w postaci relacji podobieństwa niesymetrycznego (patrz [20, 22, 52, 54, 55, 56]).

Definicja 3.6 Relacja podobieństwa niesymetrycznego
Niech

��� �4� �>	��
będzie systemem informacyjnym i niech � � 	

. Relację podobieństwa
niesymetrycznego � ��� � � � � � ��
 �

generowaną przez zbiór � definiujemy w następujący
sposób:

� ��� � � � � � � � " ��
 � � ��
 � �
� 
 ��� 
 � "@� � 
 ��
'� ��
 �+"@� � � � : (3.7)

Relacja ta różni się w istotny sposób od relacji tolerancji. Pomysł wprowadzenia relacji
podobieństwa niesymetrycznego może się wydawać nienaturalny, jednakże można go czę-
ściowo argumentować przykładem z [54]. Człowiek — ekspert w zakresie malarstwa nie
używa sformułowania, że oryginał obrazu jest podobny do jego kopii. Tylko kopia może być
podobna do oryginału, a nie na odwrotnie. W innych dziedzinach wiedzy również występują
przypadki, gdy podobieństwo jest określane w sposób niesymetryczny.

Aby obiekt
"

był podobny do obiektu



musi zachodzić standardowy warunek równości
wartości określonych atrybutów. Oprócz tego obiekt



musi być „oryginałem” dla obiektu
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"
, musi być określony na co najmniej tych samych atrybutach co obiekt

"
. W drugą stronę

taki warunek nie jest konieczny i „kopia”
"

może posiadać więcej brakujących wartości
atrybutów niż



. Tak zdefiniowana relacja w oczywisty sposób nie jest symetryczna. Łatwo

jednak pokazać, że jest zwrotna i przechodnia.

Fakt 3.3 Własności relacji podobieństwa niesymetrycznego.

1. Relacja podobieństwa niesymetrycznego jest zwrotna.

� " � � � ��� � � � �M�+" � "@�

2. Relacja podobieństwa niesymetrycznego nie jest symetryczna.

� " � 
 � � � ��� � � � �M�+" � 
 ��� � � � � � � �M��
H�>"@�

3. Relacja podobieństwa niesymetrycznego jest przechodnia.

� " ��
@�
0 � � � ��� � � � �M� " ��
'� � � ��� � � � �M� 
@�
0 � � � ��� � � � � �+" � 0 �

Relacja podobieństwa niesymetrycznego nie jest oczywiście relacją równoważności, co
uniemożliwia konstrukcję klas abstrakcji. Nie możemy zatem posługiwać się klasami abs-
trakcji w celu zdefiniowania górnej i dolnej aproksymacji pojęcia. Jako zamiennik klas abs-
trakcji możemy tutaj zastosować dwa zbiory obiektów podobnych, zbiór oryginałów do któ-
rych obiekt

"
jest podobny, oraz zbiór kopii podobnych do obiektu

"
.

Definicja 3.7 Zbiory obiektów podobnych.
Każdemu obiektowi

"
przypiszemy dwa zbiory obiektów podobnych. Przez � � "@� ozna-

czymy zbiór obiektów podobnych do
"

, a przez ���
7 � "@�

oznaczymy zbiór obiektów do których"
jest podobny i zdefiniujemy jak następuje:

� � "@�/� � 
 � � � � " ��
 � � � ��� � � � � � � (3.8)

� �
7 �+"@� � � 
 � � � ��
H�>"@� � � ��� � � � � � : (3.9)

Zbiory obiektów podobnych umożliwią nam czytelną interpretację aproksymacji górnej i
dolnej. Aproksymacja dolna pojęcia to zbiór obiektów na pewno do pojęcia należących. Aby
to zagwarantować trzeba przyjąć, że obiekt

"
należy do dolnej aproksymacji tylko wtedy,

gdy wszystkie obiekty do niego podobne (a zatem i on sam) należą do pojęcia. Do górnej
aproksymacji pojęcia należą natomiast te obiekty, które są podobne do pewnego obiektu z ba-
danego pojęcia. Wtedy nie możemy wykluczyć, że gdy poznamy więcej wartości badanego
obiektu nie stanie się on identyczny z pewnym obiektem należącym do aproksymowanego
zbioru.

Definicja 3.8 Dolna i górna aproksymacja zbioru.
Niech

� � �����
	��
będzie systemem informacyjnym, � � 	

będzie zbiorem atrybutów
oraz � � �

będzie pewnym pojęciem, które chcemy aproksymować.
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1. Dolną B-aproksymacją pojęcia � w systemie informacyjnym
�

nazywamy zbiór:

��� ��� 
 � � �#" � � � � �
7 � "@� ��� �� �#" � � � � 
 � � � � � � � � � �M� 
@�>"@� � ��� � : (3.10)

2. Górną B-aproksymacją pojęcia � zbiór:

� �
��� 


� � � � � ��
'� � 
 � � �� �#" � � � � 
 � � 
 � � �+"@� �� �#" � � � � 
 � � � � ��� � � � � �+" ��
'� � � � ���� � : (3.11)

Tak zdefiniowana górna i dolna aproksymacja pojęcia różni się zdecydowanie od po-
przednich aproksymacji względem relacji nierozróżnialności i tolerancji. Aproksymacje ge-
nerowane przez relację podobieństwa niesymetrycznego najczęściej różnią się zdecydowanie
od pozostałych.

Przykład 3.2
Kontynuując przykład 3.1 możemy wyznaczyć odpowiednie aproksymacje względem re-

lacji podobieństwa niesymetrycznego. Na początek potrzebne będą nam zbiory elementów
podobnych (zbiór oryginałów i kopii).

� � �+"A7>� ���#"A7 � � � �
7 �+"A7>� � �#"A79� "%B;�>"%C �

� � �+"%B9� ���#"A7 � "%B � � � �
7 �+"%B9� � �#"%B �

� � �+"%C9� ���#"A7 � "%C#�>"-D � � � �
7 � "%C9� � �#"%C �

� � �+"-D � ���#"-D � � � �
7 �+"-D � � �#"%C#� "-D �

Możemy teraz łatwo wyznaczyć aproksymacje pojęć � oraz 	 .
�
	 ����� 
 � ���#"%B �

�
	 ����� 
 � ���#"A7 �>"%B#�>"%C �

�
	 ����� 
 	 ���#"%CM�>"-D �

�
	 ����� 
 	 ���#"%CM�>"-D �

Własności aproksymacji względem relacji podobieństwa niesymetrycznego można scha-
rakteryzować w sposób podobny do faktu 3.2. Zgodnie z oczekiwaniami, relacja podobień-
stwa niesymetrycznego mieści się pomiędzy relacją nierozróżnialności i relacją tolerancji.

Fakt 3.4

	 ����� 
 � � 	
�
��� 
 � � 	 ���	��
 � ��� � 	 ��� ��
 ��� 	 � ��� 
 � � 	 ����� 
 � (3.12)

Aproksymacje, a co za tym idzie również i klasyfikacja oparta na tej relacji jest odmienna
od pozostałych. Definiowalność pojęcia jest nieco bardziej szczegółowa niż dla relacji to-
lerancji oraz bardziej ogólna niż dla relacji nierozróżnialności zaadaptowanej do danych z
niekompletnym opisem obiektów. Można powiedzieć, że tutaj wykorzystuje się więcej infor-
macji ze zbioru danych (systemu informacyjnego), niemniej jednak może się to niekorzyst-
nie odbić na poprawności rezultatów. To, czy wnioskowanie oparte o relację podobieństwa
niesymetrycznego charakteryzują lepsze wyniki empiryczne zależy od przyjętej tabeli infor-
macyjnej i musi być rozpatrywane indywidualnie.
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3.4 Relacje parametryzowane

Relacje tolerancji i podobieństwa niesymetrycznego w ustalony sposób rozstrzygają o po-
dobieństwie obiektów i definiują jednoznacznie aproksymacje górną i dolną obiektów. Jed-
nakże dla szczególnych danych każda z tych relacji może się okazać niewłaściwa, czy to z
powodu nazbyt ogólnej, czy też nieprawidłowej klasyfikacji. Właściwym zatem podejściem
było by dopasowanie zamiennika relacji nierozróżnialności do konkretnych danych tak, aby
klasyfikacja była poprawna i jednocześnie wystarczająco szczegółowa. Zaproponowane w
pracach [19, 21, 53, 54, 55]. rozwiązanie tego zagadnienia opiera się na zastosowaniu roz-
mytych relacji podobieństwa.

Zbiory i relacje rozmyte

Zbiory rozmyte to pewne uogólnienie standardowego, teoriomnogościowego zbioru, gdzie
zakładamy, że elementy mogą albo do zbioru należeć, albo nie należeć. Funkcja charaktery-
styczna takiego „ostrego” zbioru przyjmuje tylko wartości 
 lub � .

��� ��� � � 
 � � � (3.13)

Zbiory rozmyte dopuszczają dużo większą swobodę w określaniu przynależności elementów
do zbioru, gdyż elementy mogą należeć do zbioru rozmytego w różnym stopniu. Funkcja
charakterystyczna opisująca zbiór rozmyty może przybierać wszystkie wartości z przedziału� 
 � � � . � � ��� � � 
 � � � (3.14)

Relację w standardowym, teoriomnogościowym podejściu definiuje się jako podzbiór
iloczynu kartezjańskiego dziedzin argumentów. W przypadku relacji binarnej na

�
oznacza

to, że relacja , to podzbiór
� 
 �

. Utożsamiając relację z jej funkcją charakterystyczną,
można powiedzieć, że , � ��
 ��� � 
 � � � : (3.15)

Relacja rozmyta, to uogólnienie standardowego pojęcia relacji. Tak jak standardowa rela-
cja jest „ostrym” zbiorem elementów, tak relacja rozmyta jest zbiorem rozmytym. W naszym
przypadku relacji binarnej na

�
oznacza to, że funkcja charakterystyczna relacji rozmytej

jest określoną następująco: , � ��
 ��� � 
 � � � : (3.16)

Dzięki rozmytej relacji podobieństwa obiekty z uniwersum
�

mogą być podobne do
siebie w pewnym stopniu, w przedziale � 
 � � � . Daje to większą siłę wyrazu niż tylko rozgra-
niczenie na obiekty podobne i niepodobne.

Ponieważ zbiory rozmyte operują na wartościach liczbowych stopnia przynależności ele-
mentów, definiowane są za pomocą funkcji charakterystycznych. W istocie pojęcie zbioru
rozmytego jest utożsamiane z rozmytą funkcją charakterystyczną i ilekroć operujemy zbio-
rach rozmytych, używamy do tego rozmytej funkcji charakterystycznej (patrz np. [11, 28]).

Relacje podobieństwa

Dotychczas rozpatrywane relacje podobieństwa, służące do wyznaczania górnej i dolnej
aproksymacji pojęć, nie uwzględniały ważnego aspektu jakim jest stopień podobieństwa
obiektów pomiędzy sobą.
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Przykład 3.3
Dana jest następująca tabela decyzyjna

� � �����
	�� ��� � � , gdzie
�!���#" 79�>"%B;�>"%C � oraz	���� 
 7 � 
 B#� 
 C � .


 7 
 B 
 C �
"A7 � � � �"%B � � � �"%C � � � 	

Intuicyjnie obiekt
"HB

jest bardziej podobny do
" 7

, niż obiekt
"HC

do
"A7

. Niemniej jednak
zarówno relacja tolerancji, jak i podobieństwa niesymetrycznego, określa podobieństwo tych
obiektów w taki sam sposób, nie pozwalający na zróżnicowanie stopnia podobieństwa.

� ��� � �+	�� �+"%B#�>"A7>� � ����� � �+	��M� "%C#�>"A7>�9� � ��� � �.	�� �+"%B#�>"A7>� � � ��� � �.	��M� "%C#�>"A7 �
Dysponując pojęciem relacji rozmytej w łatwy sposób możemy dobrać taką relację po-

dobieństwa, która zróżnicuje nam stopień podobieństwa obiektów zgodnie z intuicją.

Przykład 3.4 Rozmyta relacja podobieństwa.
Najczęściej stosowana relacja podobieństwa rozmytego opiera się na interpretacji pro-

babilistycznej brakujących wartości. Brakujące wartości mogą przybierać jedną z istnieją-
cych wartości atrybutu z jednakowym prawdopodobieństwem. Podobieństwo obiektów wzgl.
jednego atrybutu można zatem zapisać wzorem:

� ��� �+" ��
'� �
������ �����

� 
 � "@� � 
 ��
'� �� �

 
 � "@� �� 
 ��
'� � 
 �+"@� ���� ��
 ��
'� �� �7
� � L � � 
 � "@� ��� ��
 ��
'� ���� ��
 �+"@� �� � � 
 ��
'� � �7
� � L � � � 
 � "@� ��� ��
 ��
'� ���

:
(3.17)

Teraz możemy łatwo zapisać rozmytą relację podobieństwa, określoną na podzbiorze atry-
butów � , � � � � � � � 
 ��� � 
 � � � :

� � � � �M� " ��
 � �	�
� � � � �

�+" � 
 � :
(3.18)

Tak zdefiniowana relacja podobieństwa odpowiada probabilistycznej interpretacji bra-
kujących wartości, jako zdarzeń niezależnych ze schematu klasycznego. Ponadto ze względu
na zaburzenia, jakie mogło by to wprowadzić do procesu wnioskowania, w literaturze przyj-
mowane jest niejawnie założenie, że � � " �>"@�/� � .

Weźmy tabelę informacyjną z poprzedniego przykładu (3.3). Przypuśćmy, że dla każdego
 � � � � � ��� � � � . Możemy zapisać rozmytą relację podobieństwa � � �.	�� w postaci tablicy
stopni przynależności.

"A7 "%B "%C
"A7 �

7C 7I
"%B 7C �

7B G
"%B 7I 7B G �
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Rozmyte aproksymacje pojęć

Mając zadaną rozmytą relację podobieństwa możemy przystąpić do definiowania aproksy-
macji górnej i dolnej, która w tym przypadku również będzie pojęciem rozmytym, określo-
nym na rodzinie podzbiorów

�
.

Przekładając standardową definicję aproksymacji górnej i dolnej na język logiki rozmytej
(patrz np. [53, 56]) uzyskujemy funkcję, która każdemu podzbiorowi

�
przypisuje stopień

przynależności do aproksymacji.

Definicja 3.9 Rozmyta aproksymacja dolna i górna1

� Rozmyta aproksymacja dolna pojęcia � to funkcja
�
��� 
 	 � � �4���/� � 
 � � � taka, że�

��� 
 	 � � � � ��� � � � ��� ��� � � � � � � 0'� "@�9� � 	 �+"@� �>�>� : (3.19)

� Rozmyta aproksymacja górna pojęcia � to funkcja
�
� � 
 	 � � ������� � 
 � � � taka, że�

� � 
 	 � � �/� ��� � � � �	� ��� � � � � � �.0'�>"@�9� � 	 � "@�>�>� �9: (3.20)

Gdzie
� 	 �+"@� jest stopniem w jakim obiekt

"
należy do pojęcia � (w przypadku niesprzecznej

tabeli decyzyjnej funkcja ta przyjmuje wartości ze zbioru
� 
 � � � ), a � , � oraz � jest odpo-

wiednio koniunkcją (T-normą), alternatywą (T-konormą,S-normą) oraz implikacją rozmytą
(patrz np. [11, 28]).

Przykład 3.5
Kontynuując przykład 3.4 możemy użyć „probabilistycznych” operatorów rozmytych:

� � � 
 ��
9�/� 

� 

� � � 
 ��
9�/� 
�� 


� 
�� 

� � � 
 ��
9�/� � � 
�� 
�� 

Aproksymacja dolna i górna zdefiniowana jest wtedy następująco:�

��� 
 	 � � � � �
� � �

�
� ���

� � � � � � 0 �>"@� � � � � 0'� "@� � � 	 � "@�>�9� (3.21)

�
� � 
 	 � � � � �

� � �
� � � �

� ���
� � � � � �.0'�>"@� � � 	 �+"@�>� �9: (3.22)

Stopień, w jakim pojedynczy obiekt
0 � �

może stanowić dolne lub górne przybliżenie
pojęcia � jest zdefiniowane następująco:�

� � 
 	 �.0 �/� �
� ���

� � � � � � 0'�>"@� � � � �.0'�>"@� � � 	 �+"@� �9� (3.23)

�
� � 
 	 � 0 ��� � � �

� ���
� � � � � �.0'�>"@� � � 	 �+"@�>� : (3.24)

1Dzięki wykorzystaniu własnósci operatorów rozmytych w niniejszej definicji wyeliminowane zostało nie zawsze do-
brze określone pojęcie klasy relacji (porównaj [53, 56]).
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Rozmyte aproksymacje dolna i górna mogą być bezpośrednio użyte do indukcji reguł
decyzyjnych (patrz [53, 56]). Regułom takim przypisuje się wtedy stopień zaufania będący
w istocie stopniem, w jakim obiekty pasujące do reguły stanowią aproksymację dolną lub
górną badanego pojęcia. Podczas procesu indukcji reguł mogą być generowane tylko reguły
posiadające większy stopień zaufania niż pewna zadana wartość. Decydując się na zmniej-
szenie stopnia zaufania reguł możemy uzyskać więcej reguł, które dokładniej opisują badane
pojęcie. Jednakże reguły o zbyt niskim stopniu zaufania mogą prowadzić do fałszywych
wniosków.

3.5 Podsumowanie

Teoria zbiorów przybliżonych okazała się być bardzo użyteczna do analizy danych o nie-
kompletnym opisie obiektów. Pojęcia aproksymacji zbiorów dają się łatwo zaadaptować do
systemów informacyjnych z brakującymi wartościami atrybutów. System decyzyjny skon-
struowany w oparciu o teorię zbiorów przybliżonych z powodzeniem można zastosować do
takich danych.

Celem systemów decyzyjnych jest uzyskanie jak najlepszej klasyfikacji badanych obie-
któw. Przedstawione tutaj rozwiązania co prawda umożliwiają dokonanie analizy danych o
niekompletnym opisie obiektów, jednakże posiadają również kilka słabych punktów.

Zaprezentowane relacje tolerancji i podobieństwa niesymetrycznego zakładają ustaloną
semantykę brakujących wartości. Relacje te w stały sposób rozstrzygają, czy obiekty są do
siebie podobne, czy też nie. Jednakże, wśród danych pochodzących z rzeczywistości, często
można natrafić na takie, w których mechanizmy rządzące powstawaniem i znaczeniem bra-
kujących wartości są skomplikowane i nie przystają do ustalonego schematu ich porówny-
wania. Co prawda relacja tolerancji gwarantuje nam maksymalną poprawność wyciąganych
wniosków, jednak może się okazać, że dysponując dodatkową wiedzą można w sposób bez-
pieczny uzyskać dokładniejsze aproksymacje pojęć. Klasyfikatory oparte o relacje tolerancji
i podobieństwa niesymetrycznego mogą być nieelastyczne i uzyskiwać nie najlepsze wyniki.

Pewnym rozwiązaniem jest tutaj parametryzowana relacja podobieństwa. Za pomocą
funkcji określającej stopień podobieństwa obiektów pomiędzy sobą można podjąć próbę
uwzględnienia nawet skomplikowanych mechanizmów rządzących brakującymi wartościami.
Jednakże proces doboru takiej funkcji jest bardzo skomplikowany. Usiłując wyznaczyć opty-
malną funkcję a priori musimy dysponować dużą wiedzą na temat przetwarzanych danych
oraz musimy również umieć zawrzeć tę wiedzę w postaci funkcji podobieństwa obiektów.
Gdy podejmujemy próbę automatycznego wyznaczenia optymalnej funkcji podobieństwa
spośród pewnej klasy funkcji stajemy przed problemem bardzo czasochłonnego problemu
optymalizacyjnego. Wszystko to sprawia, że chociaż teoretycznie dysponujemy możliwością
wyznaczenia relacji podobieństwa dopasowanej do przetwarzanych danych, to rozwiązanie
takie jest niepraktyczne. Należy jednak zauważyć, że dla pewnych obszarów zastosowań
może być to rozwiązanie w pełni akceptowalne i bardzo skuteczne.

Idealnym rozwiązaniem było by opracowanie takiej relacji podobieństwa, która mogła by
zostać wyznaczona na podstawie danych. Podobnie jak uczymy się pojęć w oparciu o przy-
kłady, mogli byśmy również podjąć próbę wyuczenia się relacji podobieństwa obiektów,
która uchwyci wszystkie zawiłości związane z brakującymi wartościami obiektów. Niestety,
jak do tej pory nie znaleziono rozwiązania dla tego problemu. Wiele przesłanek wskazuje, że
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rozwiązanie takie nie może opierać się na numerycznym wyznaczaniu podobieństwa obie-
któw, jak ma to miejsce w przypadku parametryzowanych relacji podobieństwa, a powinno
operować jedynie pojęciami teoriomnogościowymi, podobnie jak sama teoria zbiorów przy-
bliżonych. Takie „symboliczne” (w przeciwieństwie do numerycznego) rozwiązanie było by
wielkim zwycięstwem teorii zbiorów przybliżonych nad danymi o niekompletnym opisie
obiektów. Pytanie w jaki sposób konstruować relacje podobieństwa na podstawie danych
pozostaje jednak otwarte.
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Rozdział 4

Metody wnioskowania bezpośredniego

Zadaniem tego rozdziału jest opisanie metod nie wywodzących się z nurtu teorii zbiorów
przybliżonych, które potrafią wnioskować w oparciu o dane z niekompletnym opisem obie-
któw bez potrzeby modyfikowania danych wejściowych. W odróżnieniu od metod leniwych
opisywanych w następnym rozdziale, tutaj celem każdej metody jest konstrukcja pewnej
hipotezy opisującej pojęcie.

Istnieje wiele metod wnioskowania indukcyjnego, które mają niewiele wspólnego z teorią
zbiorów przybliżonych. Ze względu na zapotrzebowanie na metody potrafiące radzić sobie z
brakującymi wartościami również na tym gruncie dopracowano się metod, które nie modyfi-
kują danych z niekompletnym opisem obiektów, a wnioskują na nich w sposób bezpośredni.
Porównanie w jaki sposób udaje im się uniknąć problemu niekompletnego opisu obiektów
może być bardzo kształcące. W szczególności zaprezentowane w rozdziale 7 wyniki eks-
perymentalne stanowią porównanie metody podziału z algorytmem C4.5 opisywanego w
niniejszym rozdziale.

4.1 C4.5

Metoda C4.5 wymyślona przez Quinlana to chyba jedna z najbardziej popularnych metod
wnioskowania indukcyjnego. Jej główna idea opiera się na schemacie zstępującej indukcji
drzewa decyzyjnego na podstawie danych treningowych. Za pomocą zbudowanego drzewa
decyzyjnego możemy klasyfikować obiekty ze zbioru testowego. Metoda cechuje się wysoką
jakością klasyfikacji oraz dużą sprawnością w radzeniu sobie z brakującymi wartościami.

Metody klasyfikacji w oparciu o indukcję drzew decyzyjnych swoimi korzeniami sięgają
lat sześćdziesiątych i pierwotnie rozpatrywane były w ujęciu statystycznym. Na grunt maszy-
nowego uczenia się we współczesnej postaci drzewa decyzyjne wprowadził Quinlan, który
przyjął odmienną od statystyków perspektywę i terminologię, a także wprowadził teorioin-
formacyjne kryteria oceny testów oraz techniki przycinania. Rozwijany przez niego system,
nazywany w kolejnych wersjach ID3, C4 i C4.5, stanowi punkt odniesienia dla sporej części
badań nie tylko nad algorytmami konstruowania drzew decyzyjnych, lecz uczenia się pojęć
w ogólności.

W tym podrozdziale ograniczymy się do ogólnego opisu metod bazujących na drzewach
decyzyjnych, bez wdawania się w szczegóły implementacyjne metody C4.5. Pierwotny sche-
mat zstępującej konstrukcji drzewa przewija się praktycznie bez modyfikacji w każdej meto-
dzie bazującej na drzewach decyzyjnych. Jedynie rozwiązanie problemu brakujących warto-
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ści jest na tyle szczególne dla metody C4.5, że poświęcimy mu więcej uwagi. Metoda C4.5
obfituje w różnorakie ulepszenia prostego schematu budowy drzewa, które zostały szczegó-
łowo opisane w książce [42], a jej kod źródłowy jest ogólno dostępny w internecie.

4.1.1 Drzewa decyzyjne

Drzewo decyzyjne, to struktura umożliwiająca klasyfikację obiektów. Składa się ona z wierz-
chołków połączonych etykietowanymi krawędziami. Każdy obiekt podlegający klasyfikacji
rozpoczyna swoją ścieżkę klasyfikacji w korzeniu drzewa, a kończy ją w liściu drzewa. Kra-
wędzie drzewa są etykietowane testami, czyli prostymi formułami logicznymi, które decy-
dują do którego z synów zostanie przesłany obiekt w celu dalszej klasyfikacji. Testy te są
rozłączne i pełne w taki sposób, że dla każdego obiektu istnieje jedna, jednoznacznie wy-
znaczona ścieżka klasyfikacji1. Liście natomiast, mają przypisaną klasę decyzyjną, do której
należą, lub powinny należeć wszystkie obiekty, których ścieżki klasyfikacji kończą w tym
liściu. Gdy obiekt kończy swoją ścieżkę klasyfikacji w danym liściu, mówi się również, że
obiekt został zaklasyfikowany do tego liścia.

Drzewo decyzyjne konstruowane jest w oparciu o dwie podstawowe zasady. Pierwszą
z nich, jest założenie, aby klasyfikacja uzyskana za pomocą drzewa decyzyjnego posiadała
jak najmniejszy błąd (liczbę złych odpowiedzi) na danych treningowych. Ponieważ jednak
takie działanie może prowadzić do zjawiska przeuczenia należy uzyskać pewien kompromis
pomiędzy współczynnikiem błędu a stopniem skomplikowania hipotezy, czyli wielkością
drzewa. Ma to swoje uzasadnienie w zasadzie minimalnego opisu (ang. minimal description
length, MDL) (patrz np. [44, 42]). Zasada ta jest również przesłanką do stosowania metod
minimalizacji złożoności informacyjnej podzbiorów obiektów, rozdzielanych za pomocą te-
stów na krawędziach drzewa.

Jeśli obiekty ze zbioru treningowego zaklasyfikowane do pewnego liścia należą do róż-
nych klas decyzyjnych, wtedy zbiór zaklasyfikowanych do niego obiektów jest niejedno-
rodny, a liść taki nazywamy niejednorodnym. Gdy wszystkie obiekty treningowe zaklasy-
fikowane do danego liścia należą do tej samej klasy decyzyjnej, liść taki jest jednorodny
lub inaczej „czysty”. Ponieważ w dane pochodzące z rzeczywistości mogą być, i często są
sprzeczne (a także ze względu na stosowanie metod przycinania), liściom nie koniecznie
muszą odpowiadać obiekty z jednej klasy decyzyjnej. Klasyfikowanym obiektom testowym,
które trafiają do niejednorodnego („brudnego”) liścia przypisuje się najczęściej pojedynczą
decyzję wybraną przez głosowanie większościowe spośród obiektów treningowych zakla-
syfikowanych do tego liścia. Inną koncepcją jest przypisywanie wszystkich decyzji, razem
z ich prawdopodobieństwem empirycznym, wyznaczonym na podstawie zaklasyfikowanych
do tego liścia obiektów treningowych.

Proces konstrukcji drzewa decyzyjnego przebiega iteracyjnie. Początkowo wszystkie obie-
kty przypisane są do jednego wierzchołka będącego zarazem korzeniem i liściem. Określa
się również warunek stopu, ustanawiający kompromis pomiędzy współczynnikiem błędu a
wielkością drzewa. W pętli powtarzany jest proces wyboru liścia. Najczęściej jest to ko-
lejny niejednorodny liść lub liść o najbardziej niejednorodnym zbiorze zaklasyfikowanych
obiektów. Zbiór ten usiłuje się rozdzielić za pomocą testu na podzbiory obiektów o jak
najmniejszej złożoności informacyjnej. Idealną sytuacją było by rozdzielić zbiór obiektów

1Przynajmniej dla danych o kompletnym opisie obiektów.
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Rysunek 4.1: Proste drzewo decyzyjne

zaklasyfikowanych do takiego wierzchołka na podzbiory jednorodne. Wybór testów mini-
malizujących złożoność informacyjną, lub inaczej, maksymalizujących zysk informacyjny,
to heurystyczna strategia postępowania, mająca zagwarantować jak najmniejszą złożoność
drzewa (liczbę testów i wierzchołków). Postępowanie takie jest motywowane chęcią wyge-
nerowania minimalnego opis hipotezy, zgodnie z zasadą MDL. Jako miarę złożoności in-
formacyjnej zbiorów stosuje się takie funkcje jak entropia, rozróżnialność, Gini index czy
test �

B
. Po wyborze optymalnego testu tworzy się nowe wierzchołki (najczęściej dwa), bę-

dące synami rozbijanego liścia. Krawędzie prowadzące do nowo utworzonych wierzchołków
etykietuje się wybranym testem i jego negacją (lub wybranymi testami, gdy dopuszczamy
rozbicia na więcej niż dwa podzbiory). Proces zostaje zakończony, gdy wszystkie liście są
wystarczająco jednorodne aby umożliwić skuteczną klasyfikację.

Testy obiektów którymi etykietowane są krawędzie drzewa decyzyjnego rozdzielają obie-
kty do synów wierzchołka na podstawie wartości atrybutów obiektu. Najprostsze testy, sto-
sowane w metodzie C4.5, opierają się na badaniu wartości jednego atrybutu. Dla atrybutów
symbolicznych sprawdza się, czy atrybut na danym obiekcie przyjmuje pewną wartość. Testy
tej postaci możemy zapisać jako 
 $ � "@� � �

, gdzie
� � � � � , oraz

"
odpowiada testowanemu

atrybutowi. Dla atrybutów numerycznych możemy korzystać z liniowego uporządkowania
dziedziny atrybutu. Testy dla takich atrybutów mogą mieć postać 
 $ � "@� � �

. W przypadku
gdy obiekt spełnia dany test, przechodzi do odpowiadającego mu syna tego wierzchołka.

Przejście przez obiekt ścieżki klasyfikacji od korzenia do liścia jednoznacznie wyznacza
spełnione przez niego testy. Możemy to zapisać w postaci formalnej za pomocą koniunk-
cji testów, uzyskujemy wtedy w naturalny sposób reguły decyzyjne, opisywane również w
podrozdziale 2.62.

Przykład 4.1
Reguły decyzyjne dla drzewa z rysunku 4.1 wyglądają następująco:
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2Tutaj stosujemy nieco bogatszy język do zapisu formuł atmomowych.
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Krawędzie mogą być również etykietowane bardziej skomplikowanymi testami. W wierz-
chołku można sprawdzać jednocześnie wartości wielu atrybutów. W przypadku atrybutów
numerycznych oznacza to cięcie przestrzeni obiektów za pomocą hiperpłaszczyzn (patrz np.
[32]). Ponadto można konstruować nie tylko dwa wykluczające się testy, ale ich większą
liczbę. Na przykład, można skonstruować po jednym teście dla każdej wartości atrybutu
(symbolicznego). Podejście takie stosowane począwszy od algorytmu ID3 opisanego w [40].

Raz utworzone drzewo decyzyjne może być wielokrotnie wykorzystywane do klasyfika-
cji obiektów testowych, inaczej niż ma to miejsce w metodzie LazyDT opisywanej w pod-
rozdziale 5.2. Proces klasyfikacji obiektu jest szybki i polega na znalezieniu takiej ścieżki w
drzewie, że obiekt spełnia testy wszystkich krawędzi tej ścieżki.

4.1.2 Brakujące wartości

Gdy usiłujemy przetwarzać dane o niekompletnym opisie obiektów za pomocą metod opar-
tych na drzewach decyzyjnych napotykamy na kilka trudności.

� Wybór testu, za pomocą którego dzielimy obiekty, jest dokonywany na podstawie heu-
rystycznego kryterium jakim jest zysk informacyjny. Jeśli dwa testy używają różnej
liczby obiektów o brakującej wartości atrybutu, jak powinno być to uwzględniane pod-
czas porównywania ich przydatności?

� Gdy test zostanie już wybrany, obiekty z brakującą wartością testowanego atrybutu nie
mogą być zaklasyfikowane do żadnego z potomków. Jak powinny być traktowane takie
obiekty podczas rozdzielania?

� Kiedy drzewo decyzyjne używane jest do klasyfikacji nowych, testowych obiektów,
jak powinno się postąpić, gdy obiekt posiada brakującą wartość testowanego atrybutu?

Na podstawie badań opisanych w pracy [41] wybrana została strategia postępowania,
która co prawda nie uzyskuje najlepszych wyników dla wszystkich danych eksperymental-
nych, ale średnio przewyższa swoją skutecznością inne podejścia. Metoda ta została szcze-
gółowo opisana w książce [42]. Ponadto w pracach [30, 36, 58] rozważano słuszność przy-
jętego przez Quinlana podejścia i proponowano pewne ulepszenia zarówno procesu indukcji
drzewa, jak i np. przycinania drzew decyzyjnych.

Podejście zastosowane w algorytmie C4.5 opiera się na empirycznym rozkładzie prawdo-
podobieństwa z jakim obiekty o znanych wartościach atrybutów spełniają rozważane testy.
Modyfikacja kryterium wyboru testu została wyprowadzona z interpretacji znaczenia infor-
macji. Zysk informacyjny, jako funkcja podlegająca maksymalizacji przez wybór optymal-
nego testu, powinien zostać tak przeliczony, aby uwzględniał obiekty z brakującymi warto-
ściami atrybutów. Ponieważ informacja pozwalająca zaklasyfikować te obiekty do któregoś
z podzbiorów nie jest znana, dlatego na tych obiektach zysk informacyjny powinien wyno-
sić zero. Oznacza to, że zysk informacyjny powinien zostać zmodyfikowany o współczynnik
częstości występowania obiektów bez brakujących wartości obiektów. Odbywa się to według
wzoru: �


 1 5 � � ��� � � � �
�

 1 5 � � �9� (4.1)

gdzie � ��� $�� ��� �
	 � $��
����� � �
�
����� � ��������������� � � �

� 	
� � $
� $�� ��� ��	 � $��
����� � .

Uniwersytet Warszawski — Wydział Matematyki, Informatyki i Mechaniki



ROZDZIAŁ 4. METODY WNIOSKOWANIA BEZPOŚREDNIEGO 39

Po wyborze testu musimy rozdzielić obiekty do podzbiorów, tak aby spełniały ustalone
testy. Jednakże obiekty o nieznanej wartości testowanego atrybutu nie mogą być zaklasyfi-
kowane do żadnego z podzbiorów. Metoda zaproponowana przez Quinlana polega na zasto-
sowaniu obiektów ważonych i dystrybucji obiektów z brakującymi wartościami atrybutów
do wszystkich podzbiorów jednocześnie. Przypuśćmy, że zbiór obiektów � za pomocą 5
testów dzielimy na podzbiory � 7 �M:;:;:M� ��� . Obiekty, które mają brakującą wartość testowa-
nego atrybutu przypisywane są do zbioru � $ z wagą równą

� � � �
� � � . Oznacza to, że obiekty takie

są rozdzielane do wszystkich podzbiorów zgodnie z empirycznym prawdopodobieństwem
takiego zdarzenia. Komplikacji musi ulec algorytm, gdyż teraz musimy operować nie „ca-
łymi” obiektami, ale również „częściami” obiektów. Uzyskuje się to przez zastosowanie wag
z zakresu � 
 � � � .

Podobne podejście zastosowane zostało podczas klasyfikacji obiektów testowych. Tutaj
również obiekty o nieznanej wartości atrybutu rozdzielane są po wszystkich krawędziach
drzewa decyzyjnego z wagami z zakresu � 
 � � � . Nie możemy zatem mówić o pojedynczej
ścieżce klasyfikacji, gdyż obiekt może teraz posiadać wiele ścieżek klasyfikacji. Wszystkie
odpowiedzi (tzn. decyzje pochodzące z liści) sumowane są z wagami, z jakimi obiekt został
zaklasyfikowany do danego liścia. W ten sposób uzyskuje się nie pojedynczą klasyfikację
do klasy decyzyjnej, ale klasyfikację do wielu klas decyzyjnych wraz z prawdopodobień-
stwami przynależności do danej klasy decyzyjnej. Na tej podstawie dokonuje się ostatecznej
klasyfikacji za pomocą głosowania.

4.2 LRI

Zaproponowana w przez Weissa i Indurkhya metoda LRI (Lightweight Rule Induction) pre-
zentuje nieco odmienne podejście do indukcji reguł decyzyjnych. W odróżnieniu od metod
takich jak C4.5, gdzie reguły budowane są na podstawie wyindukowanego drzewa decyzyj-
nego, tutaj reguły decyzyjne indukowane są z danych bezpośrednio. Różnic pomiędzy takimi
podejściami jest wiele. Chyba najważniejszą z nich jest to, że reguły powstałe z drzewa de-
cyzyjnego są wzajemnie wykluczające się, podczas gdy reguły wyindukowane w sposób
bezpośredni nie muszą spełniać takiego wymagania. Metody bezpośredniej indukcji reguł
stanowią drugą, najbardziej popularną po drzewach decyzyjnych grupę algorytmów uczenia
się pojęć.

4.2.1 Indukcja reguł decyzyjnych

Reguła to najczęściej koniunkcja prostych testów, podobnie jak miało to miejsce w przykła-
dzie 4.1. Mówimy, że reguła pokrywa obiekt, gdy obiekt spełnia warunkową część reguły.

Standardowa metoda indukowania reguł decyzyjnych opiera się na konstrukcji zbioru
reguł pokrywającego dane treningowe. Zazwyczaj proces indukcji przebiega iteracyjnie. In-
dukowana jest reguła, pokrywająca możliwie wiele obiektów i poprawiająca jakość klasyfi-
kacji, a następnie obiekty pokryte przez regułę są usuwane ze zbioru treningowego i proces
jest powtarzany, dopóki zbiór obiektów treningowych nie został wyczerpany. Proces gene-
rowania pojedynczej reguły polega na iteracyjnym dodawaniu testów (formuł atomowych)
maksymalizujących jakość klasyfikacji. Warunkiem stopu jest tutaj osiągnięcie określonej
długości reguły. Gdy reguła składa się z zadanej liczby formuł atomowych algorytm prze-
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chodzi do konstruowania następnej reguły, aż do momentu, w którym wszystkie obiekty ze
zbioru treningowego są prawidłowo klasyfikowane przez wygenerowany zbiór reguł.

W metodzie LRI rozszerza się nieznacznie standardowy model reguły decyzyjnej, umoż-
liwiając połączenie kilku reguł w postaci koniunkcyjnej w jedną regułę w postaci DNF, o ile
tylko reguły dotyczyły tej samej klasy decyzyjnej. Rozwiązanie zadania klasyfikacji składa
się ze zbioru równej liczby nieważonych reguł dla każdej klasy decyzyjnej. Nowy przykład
jest klasyfikowany do pewnej klasy decyzyjnej przez głosowanie proste, czyli do klasy wska-
zanej przez największą liczbę aktywnych3 reguł.

Kolejną modyfikacją zastosowaną w metodzie LRI jest adaptacyjny system ważenia obie-
któw. Ma to na celu wygenerowanie zbioru reguł jak najlepiej określających badane pojęcie.
System ten jest szczegółowo opisany w pracach [59, 60]. Podobny system próbowano za-
stosować do procesu generowania wzorców w metodzie podziału, jednakże wyniki ekspery-
mentalne nie potwierdziły jego skuteczności przy rozwiązywaniu tego problemu.

4.2.2 Brakujące wartości

W celu przetwarzania danych z niekompletnym opisem obiektów w metodzie LRI stosuje
się podobny mechanizm do wykorzystywanego w metodzie C4.5.

Podczas wyboru optymalnego testu napotyka się na trudności w porównywaniu jakości
testów bazujących na atrybutach o różnej liczbie brakujących wartości. Jakość testów jest
mierzona za pomocą liczby popełnianych przez regułę błędów, inaczej niż ma to miejsce
w metodzie C4.5, gdzie jakość testów mierzona jest zyskiem informacyjnym uzyskanych
podziałów obiektów. Liczba błędów, w przypadku danych o niekompletnym opisie obie-
któw, jest normalizowana przez iloraz sumy wag wszystkich obiektów przez sumę wag obie-
któw posiadających wypełnione wartości rozpatrywanych atrybutów, co stanowi odwrotność
współczynnika � stosowanego w metodzie C4.5. Główna różnica w stosunku do metody
C4.5 polega tutaj na tym, że test nie są oceniane niezależnie. Oceniana jest reguła powstająca
przez dodanie kolejnego testu do już wybranych. Oznacza to, że uwzględniana jest liczba
brakujących wartości dla któregokolwiek z atrybutów wchodzących w skład reguły.

Klasyfikacja obiektów testowych przez wyindukowany zbiór reguł nie przewiduje moż-
liwości używania brakujących wartości. Przyjmuje się, że wygenerowane reguły są na tyle
krótkie i jest ich na tyle dużo, że dla każdego obiektu, nawet o niekompletnym opisie, znaj-
dzie się pokrywająca go reguła. Nie jest to jednak rozwiązanie satysfakcjonujące. Znacznie
bardziej adekwatną metodą postępowania była by tutaj na przykład próba częściowego do-
pasowania obiektów do reguł. Jeśli obiekt spełnia część warunkową reguły na obecnych
wartościach atrybutów można przyjąć, że spełnia część warunkową reguły, analogicznie do
równości słabych w algebrach częściowych (patrz podrozdział 3.2.1). Liczbę brakujących
wartości atrybutów, które wchodzą w skład warunkowej części reguły można potraktować
wtedy jako podstawę do obliczenia tzw. współczynnika kary, służącego do zmniejszenia
ważności udziału danej reguły w ostatecznym głosowaniu. Jest to rozwiązanie analogiczne
do obiektów „ułamkowych” wprowadzonych w metodzie C4.5. Tutaj jednak zmniejsza się
nie wagę obiektu, ale wagę reguły (w zakresie � 
 � � � ), aby modelować niedokładne dopaso-
wanie obiektu do jej części warunkowej. Mechanizm głosowania prostego, podczas wyboru
ostatecznej klasyfikacji należy wtedy zastąpić głosowaniem z ważoną ważnością głosów.

3Reguła jest aktywna dla danego obiektu, gdy obiekt spełnia jej czę́sć warunkową.
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4.3 Podsumowanie

Zaprezentowane tutaj metody oczywiście nie są jedynymi, które umożliwiają przetwarzanie
danych z niekompletnym opisem obiektów w sposób bezpośredni. Jednakże opisane tutaj
rozwiązania problemu brakujących wartości uznawane są za skuteczne. Co więcej, praktycz-
nie każda metoda wnioskowania bezpośrednio w oparciu o dane z niekompletnym opisem
obiektów i nie wywodząca się z teorii zbiorów przybliżonych działa w oparciu o zbliżone,
jeśli nie identyczne, mechanizmy. Należy również zauważyć, że choć istnieją inne metody,
umożliwiające przetwarzanie danych z niekompletnym opisem obiektów, nie jest ich znowu
aż tak wiele i większość istniejących rozwiązań nie potrafi poradzić sobie z tym problemem.
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Rozdział 5

Leniwe metody uczenia maszynowego

W dotychczas zaprezentowanych metodach uczenia maszynowego podejmowaliśmy próbę
skonstruowania pewnego pojęcia (klasyfikatora) na podstawie innych pojęć — atrybutów
warunkowych obiektów z dostępnego nam podzbioru uniwersum. Zbiór, na którym próbu-
jemy tego dokonać, nazywa się zbiorem obiektów treningowych. Klasyfikacja przynależno-
ści innych obiektów (zwanych testowymi) dokonywana jest na podstawie indukcyjnie wy-
uczonego pojęcia i jest relatywnie szybsza (o znacznie mniejszym nakładzie obliczeniowym)
niż sam proces uczenia, który ze swej natury jest zazwyczaj aproksymacją NP-trudnego pro-
blemu optymalizacyjnego. Algorytmy z grupy tych metod mają za zadanie jawne sformuło-
wanie pewnej hipotezy, która klasyfikuje wszystkie obiekty, przypisując je do określonego
pojęcia (klasy decyzyjnej).

Paradygmat leniwego uczenia maszynowego opiera się na każdorazowej klasyfikacji no-
wego obiektu — obiektu testowego — na podstawie uprzednio zgromadzonych danych tre-
ningowych, a nie wyuczonego opisu pojęcia. Dane treningowe w takim przypadku nie pod-
legają uprzedniemu specjalnemu przygotowaniu, bądź to przygotowanie jest relatywnie nie-
skomplikowane i szybkie. Cały ciężar wnioskowania indukcyjnego przerzucony jest tutaj
na proces klasyfikacji obiektu testowego i wiąże się z analizą wszystkich zgromadzonych
przykładów treningowych.

5.1 Metoda najbli ższych sąsiadów

Najprostszą i najbardziej intuicyjną metodą leniwego uczenia maszynowego jest metoda
najbliższych sąsiadów (Nearest Neighbours). Jej główną ideą jest selekcja pewnej liczby
obiektów treningowych „najbardziej podobnych” do aktualnie klasyfikowanego przykładu.
Następnie, na podstawie przynależności tak wyselekcjonowanych obiektów do poszczegól-
nych klas decyzyjnych, dokonuje się głosowania i klasyfikuje się obiekt testowy do tej klasy
decyzyjnej, do której przynależało najwięcej spośród wyznaczonych najbliższych sąsiadów.
Oczekujemy, że obiekty o podobnym opisie będzie cechowała również podobna klasyfikacja.

Metoda ta daje dobre wyniki wszędzie tam, gdzie zmiany klasyfikacji mają charakter
„ciągły” ze względu na opis obiektów i niewielka zmiana opisu najczęściej nie powoduje
zmiany przynależności do danego pojęcia. Do zastosowania tej metody potrzebne nam są
pojęcie podobieństwa obiektów pomiędzy sobą oraz sposób wyboru zbioru najbliższych są-
siadów i decyzji na podstawie takiego zbioru.
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5.1.1 Podobieństwo obiektów

Niech
� � �����
	 � � �

będzie systemem informacyjnym. Dotychczas zbiór atrybutów wa-
runkowych

	 � � 
 7 �;:;:;: � 
 � � definiowaliśmy jako funkcję 
 $ � � � � � � . Każdy z atry-
butów postrzegaliśmy jako pojęcie (proste lub złożone) opisujące cechy danego obiektu.
Można jednak obiekty z uniwersum

�
interpretować jako uporządkowane n-tki

� � " ���� ��� �;:;:;: �	� ��� � . Wtedy na zbiór
�

możemy patrzeć jak na podzbiór przestrzeni n-wymiarowej� ��� � � ��� 
 :;:M: 
 � � � .
W przypadku, gdy przetwarzamy dane o kompletnym opisie obiektów, na przestrzeni

� definiujemy metrykę
�

, która określa odległości pomiędzy obiektami. Tak zdefiniowana
metryka decyduje o podobieństwie obiektów między sobą. Jeśli obiekty są bliskie sobie, w
sensie metryki

�
mówimy, że obiekty są do siebie podobne.

Przykład 5.1 Metryka na przestrzeni � .
Niech

��� �����
	��
będzie systemem informacyjnym. Zbiór atrybutów

	
rozkłada się na

dwa rozłączne podzbiory, zbiór atrybutów symbolicznych
	
! oraz zbiór atrybutów numerycz-

nych
	
� . Metrykę

� 7
na przestrzeni � zdefiniujemy jako funkcję

� 7 ��� 
 � �
	
:

� 7 � " ��
 � ���
� ��	

��� ��

 � 
 � 	 ! � 


� "@� � 
 ��
'�
� � 
 � 	 ! � 


� "@� �� 
 ��
'�
 
 �+"@� � 
 � 
 � 
 
 � 	 � (5.1)

Metrykę unormowaną
� B

na przestrzeni � zdefiniujemy jako funkcję
� 7 ��� 
 � � � 
 � � � :

� B#�+" ��
'� � �

5
�
��� 	

��� ��

 � 
 � 	 ! ��


�+"@� � 
 � 
 �
� � 
 � 	 ! ��


�+"@� �� 
 � 
 �
� � � � �

�
� � � � ������ � L
������� � L 
 � 	 � (5.2)

Dla obiektów o kompletnym opisie definiowanie podobieństwa za pomocą metryki jest
intuicyjne i wygodne. Warto tutaj przypomnieć, że w teorii zbiorów przybliżonych dla kom-
pletnych danych definiowaliśmy relację nierozróżnialności, która bardzo dobrze odpowia-
dała intuicyjnemu podobieństwu obiektów między sobą i posiadała tę ważną własność, że
była relacją równoważności. Jednakże dla danych z brakującymi wartościami definiowane
były inne relacje, które nie koniecznie spełniały warunek przechodniości lub symetrii. Po-
dobnie rzecz ma się i tutaj. W przypadku, gdy tabela informacyjna składa się również z
obiektów o niekompletnym opisie może okazać się przydatne zdefiniowanie funkcji

�
, która

nie spełnia warunku nierówności trójkąta lub przemienności. Jednakże cały czas w mocy
pozostaje założenie, że funkcja

�
odpowiada podobieństwu obiektów pomiędzy sobą i w

dalszej części będzie nazywana funkcją podobieństwa.

Przykład 5.2 Funkcja podobieństwa dla danych o niekompletnym opisie obiektów.
Niech

� � �����
	��
będzie systemem informacyjnym oraz wszystkie atrybuty ze zbioru	

będą symboliczne. Funkcję podobieństwa
� C

na przestrzeni � zdefiniujemy jako funkcję� C ��� 
 � � � 
 � 5 � :

� C*�+" ��
'� ���
��� 	

��� ��

 � 
 �+"@� � 
 ��
'�
� � 
 �+"@� �� 
 ��
'� ��
 � "@� �� �

 � 
 �+"@� �� 
 ��
'� ��
 � "@�/� � (5.3)
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Funkcja podobieństwa
� C

nie spełnia ani nierówności trójkąta, ani nie jest przemienna.
Niemniej jednak spełniona jest zależność

� � " �>"@� � 
 . Jest to pożądana cecha do procesu
klasyfikacji obiektów. Ponieważ nie wiemy, czy dwa identyczne obiekty to jeden i ten sam
obiekt, czy też nie, bezpiecznie jest przyjąć zerową „odległość” pomiędzy nimi. 1

Przy ocenie podobieństwa obiektów można zastosować tzw. ważoną funkcję podobień-
stwa. Każdemu z atrybutów przypisujemy wagę � ����� 
 , która decyduje o stopniu istotności
różnicy obiektów na danym atrybucie. Znajduje to zastosowanie w przypadku, gdy zmienno-
ści opisów obiektów na atrybutach w różnym stopniu wpływają na decyzję do której obiekt
jest zaklasyfikowany.

Przykład 5.3 Ważona funkcja podobieństwa.
Niech

��� �����
	��
będzie systemem informacyjnym z poprzedniego przykładu. Przykła-

dem ważonej funkcji podobieństwa na przestrzeni � jest funkcja
� D

:

� D*�+" � 
 � ���
� ��	

��� ��

 � 
 �+"@� � 
 ��
'�
� � � 
 �+"@� �� 
 ��
'� ��
 �+"@� �� �

 � 
 �+"@� �� 
 ��
'� ��
 �+"@� � � (5.4)

Wagi atrybutów mogą być arbitralnie dobrana na podstawie wstępnej analizy danych.
Jest to również wdzięczne zadanie optymalizacyjne dla algorytmów ewolucyjnych, gdzie
w naturalny sposób możemy przyjąć � � � � �M:;:;:M� � ��� �

zarówno za genotyp jak i fenotyp
osobnika.

5.1.2 Wybór zbioru najbliższych sąsiadów

Mając zdefiniowaną funkcję podobieństwa możemy przystępować do wyboru zbioru naj-
bliższych sąsiadów. Zbiór najbliższych sąsiadów dla obiektu

"
będziemy oznaczać przez �	� .

Zbiór �	� powinien spełniać następującą własność :

� 
 � � � � " ��
'� �������
� � �	�

� �+" � 0 � � 
 � �	� : (5.5)

Proces wyboru zbioru najbliższych sąsiadów ma zazwyczaj ustalony parametr & , który
decyduje o liczności zbioru ��� . Przez � � �

oznaczymy zbiór obiektów treningowych.
Obiekt

"
zazwyczaj nie należy do zbioru � , a w szczególności nie należy do zbioru ��� . Jest

to nowy obiekt, którego klasyfikacji nie znamy i chcemy ją właśnie wyznaczyć.

Algorytm 5.1 Wyznaczanie zbioru � �

1. �	� :=
�

2. wyznacz



takie, że
� � " ��
'� � ��

�

� � ��� � �
� �+" � 0 �

3. �	� := �	� � � 
 �
4. jeśli



�	�

 � & zakończ, w p.p. przejdź do 2.

1Inaczej, ni ż będzie miało to miejsce w uzupełnianiu brakujących wartósci za pomocą metody najbli ższych sąsiadów.
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Stosując metodę najbliższych sąsiadów najczęściej wyznacza się zbiór ��� zawierający
dokładnie & obiektów, tak jak zostało to zilustrowane powyższym algorytmem. Niemniej jed-
nak można sobie również wyobrazić inną metodę postępowania. W przypadku, gdy funkcja
odległości przyjmuje niewiele wartości, wtedy wiele obiektów zostaje „sklejonych” w klasy
obiektów równo odległych od

"
. Możemy wtedy zastosować inny sposób doboru zbioru � � .

Mianowicie wybieramy co najmniej & obiektów, dodając klasy równo odległych obiektów
w całości. Gdy okaże się, że liczebność zbioru ��� równa się lub przekracza & kończymy
dodawanie, jednakże może się okazać, że zbiór ��� jest istotnie większy niż & obiektów.

5.1.3 Klasyfikacja obiektu

Będąc w posiadaniu zbioru najbliższych sąsiadów. Możemy przystępować do klasyfikacji
obiektu

"
.

Najprostszą metodą klasyfikacji jest głosowanie. Polega to na ustaleniu najczęściej po-
wtarzającej się decyzji w zbiorze ��� . Innymi słowy obiektowi

"
przypisujemy wartość atry-

butu decyzyjnego
�H�+"@� � ��� � � taką, że


 � 
 � �	��� �H� 
 � � ��� � � � 
 � � ���
��� � � � 
 � 
 � �	� � �H� 
 � ��� 
 � 
 : (5.6)

W przypadku, gdy wartość
��� � � nie może być wyznaczona jednoznacznie możemy po-

niechać klasyfikacji (odpowiadając „nie wiem”) lub przyjąć którąkolwiek z wartości arbitral-
nie (np. taką, która częściej występuje w całym zbiorze � ). Z tego też powodu dobrze jest
dobierać nieparzystą wartość & . W przypadku, gdy atrybut decyzyjny przyjmuje tylko dwie
wartości (częsty przypadek), wtedy zawsze uzyskamy jednoznaczny wynik głosowania.

Oprócz prostego głosowania można stosować również bardziej skomplikowane metody
wyboru decyzji. Na przykład można ważyć głosy obiektów za pomocą wartości funkcji po-
dobieństwa lub stosować kryterium absolutnej większości głosów.

Wartość & należy dobierać eksperymentalnie. Zbyt mały rozmiar zbioru najbliższych są-
siadów prowadzi do częstych błędów przy klasyfikacji obiektów na granicy pojęć. Zbyt duża
wartość & prowadzi natomiast do utraty lokalności algorytmu. Wtedy do głosowania brane
są również mało lub wcale podobne obiekty i przypomina to bardziej wyznaczanie decy-
zji dominującej w całym zbiorze treningowym. Zjawisko to jest szczególnie wyraźne, gdy
dysponujemy danymi w których pewne wartości atrybutu decyzyjnego są wyraźnie liczniej
reprezentowane niż inne.

5.1.4 Brakujące wartości

Metoda najbliższych sąsiadów potrafi wnioskować również na podstawie danych o niekom-
pletnym opisie obiektów. Dzieje się to dzięki abstrakcji jaką nakłada się na zbiór obiektów.
Podejmując decyzję nie rozpatruje się tutaj poszczególnych wartości atrybutów, tylko operu-
jemy na podobieństwie obiektów pomiędzy sobą. Jest to podejście naturalne dla człowieka,
który często przedstawia dane za pomocą różnego rodzaju diagramów. Szczególnie w przy-
padku, gdy funkcja podobieństwa jest metryką można wyobrazić sobie, że usiłujemy wyzna-
czyć kulę zawierającą & najbliższych obiektów w stosunku do badanego i na tej podstawie
podjąć decyzję. Jakość klasyfikacji zależy oczywiście od dobranej funkcji podobieństwa,
która jest tutaj parametrem.
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Niemniej jednak niezależnie od przyjętej funkcji podobieństwa nie dla wszystkich da-
nych możemy uzyskać tutaj zadowalające rezultaty. Ponadto wybór dobrej funkcji podo-
bieństwa jest sam w sobie trudny i często czasochłonny. Również nie bez znaczenia pozo-
staje fakt, że dla klasyfikacji pojedynczego obiektu musimy wykonać


 � 
 obliczeń funkcji
podobieństwa. Oznacza to, że metoda ta jest dużo wolniejsza od innych, nie leniwych metod
wnioskowania.

5.2 Leniwe drzewa decyzyjne

Standardowy schemat budowania drzew decyzyjnych opiera się na próbie konstrukcji po-
jęcia na podstawie danych treningowych. W szczególności, jeśli jest to klasyczna metoda
nie adaptacyjna (tzw. off-line), drzewo decyzyjne, raz zbudowane dla danych treningowych,
nie ulega żadnym modyfikacjom podczas wyznaczania przynależności do pojęcia poszcze-
gólnych obiektów ze zbioru danych treningowych. Jednak, podobnie jak ma to miejsce w
metodzie najbliższych sąsiadów, można sobie wyobrazić, że dokonujemy budowy drzewa
decyzyjnego nie raz, dla wszystkich obiektów treningowych, ale dla każdego z obiektów te-
stowych z osobna. Ponieważ takie postępowanie niesie ze sobą ryzyko dużej złożoności ob-
liczeniowej, związanej z wielokrotną konstrukcją drzewa decyzyjnego, nieodzownym staje
się odpowiedni mechanizm buforowania wspólnych wyników (testów, poddrzew itp.).

Friedman, Kohavi i Yun w pracy [13] zaproponowali metodę LazyDT realizującą pa-
radygmat leniwego uczenia się przy konstrukcji drzew decyzyjnych. Zaprezentowany tam
algorytm potrafi w naturalny sposób analizować również dane o niekompletnym opisie obie-
któw. Charakteryzuje go również kilka innych interesujących własności, które nie są moż-
liwe do uzyskania w modelu tradycyjnych drzew decyzyjnych. Dzięki zastosowaniu mecha-
nizmów buforowania wspólnych wyników częściowych algorytm cechuje się akceptowal-
nym czasem wykonania.

Metody budowania drzew decyzyjnych borykają się z problemami takimi jak replikacja
i fragmentacja. Przypuśćmy, że naszym zadaniem jest klasyfikacja pacjentów jako zdrowy
lub chory. Niezwykle ważna wydaje się być informacja, czy ta osoba jest HIV pozytywna,
czy też nie, wtedy od razu można stwierdzić, że pacjent jest chory. Jednak jest to mało praw-
dopodobne, żeby standardowe drzewo decyzyjne posiadało test tego atrybutu w korzeniu,
a to za sprawą małej liczby przykładów. Zamiast tego test takiego atrybutu zostanie odsu-
nięty w dół drzewa i tam, na każdej ścieżce, na której występują przykłady pacjentów HIV
pozytywnych, test tego atrybutu będzie zreplikowany.

Na podstawie takiej obserwacji można oczekiwać, że drzewa, a raczej ścieżki klasyfi-
kacyjne zbudowane dla poszczególnych przypadków mogą być znacznie krótsze i dawać
łatwiejsze wytłumaczenie takiej klasyfikacji (decyzji). Test kilku badań krwi lub podobnych
atrybutów może być jasnym i zrozumiałym wytłumaczeniem dla klasyfikacji pacjenta jako
zdrowego. Natomiast pacjent łatwo może być sklasyfikowany jako chory na podstawie wy-
jaśnienia, że jest HIV pozytywny.

5.2.1 Realizacja algorytmiczna

Algorytm klasyfikacji obiektów testowych za pomocą leniwych drzew decyzyjnych jest sto-
sunkowo prosty. Podobnie jak klasyczne algorytmy oparte na drzewach decyzyjnych w swej
podstawowej postaci operuje na atrybutach symbolicznych, zatem w celu zaaplikowania go
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do danych zawierających atrybuty numeryczne należy proces klasyfikacji poprzedzić dys-
kretyzacją danych.

Algorytm 5.2 LazyDT.
Wejście: Zbiór obiektów treningowych � � ��� 7 ��� B;�M:;:;: � oraz obiekt

"
będący przedmiotem

klasyfikacji.

1. Jeśli � jest jednorodny, tzn. składa się z obiektów jednej klasy decyzyjnej
�
, zwróć

�
jako decyzję dla obiektu

"
.

2. Jeśli obiekty ze zbioru � posiadają wartości wszystkich atrybutów równe
"

zwróć do-
minującą klasę

�
jako decyzję dla obiektu

"
.

3. Wybierz atrybut 
 � .
4. Jako nowy zbiór � wybierz zbiór tych obiektów treningowych, dla których 
 � � � �M� �
 � �+"@� (dokonaj cięcia na atrybucie 
 � przypisując na zbiór � obiekty zgodne z

"
na

atrybucie 
 � ). Przejdź do 1.

Podstawowym pytaniem jest w jaki sposób wybierać atrybut 
 � w trzecim kroku algo-
rytmu. Zazwyczaj stosuje się w takich przypadkach jedną ze standardowych miar cięć, mie-
rzącą zysk informacyjny (entropia), różnice rozkładu (Gini index,test �

B
) i tym podobne.

Jednak nie jest to rozwiązanie satysfakcjonujące. Należy zauważyć, że najwięcej proble-
mów powstaje gdy klasa

� � jest dominująca w zbiorze � , ale klasa
� � była by odpowiedzią

prawidłową. Ze względu na to, że standardowe miary cięć biorą pod uwagę jedynie względne
częstości występowania obiektów z poszczególnych klas decyzyjnych, nie były by w stanie
odgadnąć poprawnej decyzji, a zysk informacyjny przyjął by ujemną wartość.

Przed przystąpieniem do wyboru najbardziej obiecującego atrybutu należy znormalizo-
wać liczbę wystąpień każdej klasy decyzyjnej tak, aby były równoliczne. Wtedy łatwo jest
wskazać atrybut (czyli zarazem test), który daje największy zysk informacyjny.

Algorytm ten wymaga dla każdego obiektu testowego budowy drzewa decyzyjnego, które
zaklasyfikuje ten obiekt do właściwej klasy decyzyjnej. Dla każdego obiektu dokonywany
jest wielokrotnie wybór właściwego testu i podział zbioru treningowego. Tak sformułowany
algorytm byłby stosunkowo wolny. Kosztem dodatkowej pamięci na przechowywanie wy-
ników częściowych można zastosować pewne mechanizmy buforowania, które bardzo przy-
spieszą działanie całego procesu klasyfikacji.

5.2.2 Brakujące wartości

Leniwe drzewa decyzyjne ze względu na swoją budowę są łatwe w zaadaptowaniu do dzia-
łania na danych z niekompletnym opisem obiektów.

Brakujące wartości atrybutów dla obiektów testowych są obsługiwane w naturalny spo-
sób. Atrybut obiektu testowego który posiada brakującą wartość nie jest brany pod uwagę
podczas wyboru kolejnego cięcia w trzecim kroku algorytmu. Jest to największa różnica w
stosunku do klasycznych drzew decyzyjnych, tam nie można zawczasu wybrać które spośród
atrybutów mogą być wzięte do klasyfikacji danego obiektu.

Obiekty treningowe mogą posiadać brakujące wartości na atrybutach nie wchodzących w
skład bieżącej ścieżki decyzyjnej dla klasyfikowanego obiektu. Jeśli natomiast dokonywane
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jest cięcie na atrybucie, gdzie pewna liczba obiektów treningowych posiada brakujące war-
tości takie obiekty są eliminowane (tzn. nie wchodzą w skład żadnego z dwóch podzbiorów
powstających po cięciu na danym atrybucie). Oczywiście można sobie wyobrażać bardziej
wyrafinowane metody filtrowania obiektów treningowych posiadających brakujących war-
tości podobnie jak ma to miejsce np. w algorytmie C4.5 (patrz podrozdział 4.1).
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Rozdział 6

Uzupełnianie

W przypadku napotkania na dane z niekompletnym opisem obiektów naturalnym postępowa-
niem wydaje się być próba rekonstrukcji pełnych danych. Przy takiej rekonstrukcji wykorzy-
stujemy dostępną wiedzę o obiektach i na tej podstawie staramy się w miejsce brakujących
wartości wstawić takie, które wydają się być najbardziej odpowiednie. Jako odpowiedniość
można stosować tutaj wiele kryteriów: niesprzeczność, podobieństwo, zachowanie zgodne
empirycznym rozkładem prawdopodobieństwa itp. Należy jednak przypomnieć rozgrani-
czenie na wartości brakujące z powodu braku pomiaru lub zaniedbania oraz na takie, które
nie są stosowalne w danym przypadku. Dobrym przykładem na wartość brakującą pierw-
szego rodzaju jest brak danych co do wzrostu pacjenta. Każdy pacjent cechuje się pewnym
wzrostem i w pewnych okolicznościach można podjąć próbę uzupełnienia tej wartości na
podstawie innych, znanych informacji. Czasami jednak brak wartości sam w sobie posiada
duże znaczenie. Przykładem braku z powodu niestosowalności mogą być tutaj informacje o
posiadanym samochodzie takie jak kolor, model, wielkość itp. Wszystkie one nie znajdują
zastosowania w przypadku, gdy osoba nie jest posiadaczem żadnego samochodu. Widać od
razu, że uzupełnianie takich brakujących wartości nie niesie ze sobą żadnej wartości mery-
torycznej i pogarsza zdecydowanie jakość danych wejściowych.

6.1 Motywacje i podstawowe problemy

Ze względów zarówno implementacyjnych jak i teoretycznych bardzo pożądane było by,
gdyby istniała uniwersalna metoda pozwalająca na rekonstrukcję danych z niekompletnym
opisem obiektów do postaci w pełni wypełnionej tabeli informacyjnej. Wszystkie metody
pracujące doskonale w przypadku danych z kompletnym opisem obiektów znajdowały by
wtedy zastosowanie również w przypadku danych z brakującymi wartościami atrybutów.
Również rozważania teoretyczne, dopasowane do przypadku pełnych tabel informacyjnych,
mogły by być bez kłopotliwego rozpatrywania brakujących wartości atrybutów przeniesione
na grunt tabel niekompletnych. Naturalne wydaje się zatem, że problem ten był i jest wni-
kliwie badany. Powstało wiele prac na temat uzupełniania brakujących wartości, jednakże
metody te uzyskują dobrą skuteczność jedynie w dość wąskim obszarze zastosowań (patrz
np. [14, 23, 24, 25, 41, 45]).

Pierwszą, najprostszą metodą radzenia sobie z niekompletnym opisem obiektów, było
ignorowanie specjalnego znaczenia brakującej wartości i traktowanie jej jak normalnej, do-
puszczalnej wartości z dziedziny atrybutu. Wynikało to wprost z metod implementacji prze-
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chowywania zbiorów danych z brakującymi wartościami. Abstrahując od problemów im-
plementacyjnych takie postępowanie jest równoważne uzupełnianiu brakujących wartości za
pomocą pewnej specjalnej wartości, która dodawana była do dziedziny każdego z atrybutów
na równi ze zwykłymi, dopuszczalnymi wartościami.

Ponieważ brak wartości nie może być reprezentowany w pamięci komputera w spo-
sób bezpośredni, każda implementacja obejmująca brakujące (lub niezdefiniowane) war-
tości musi je kodować za pomocą pewnego specjalnego słowa, które należy do dziedziny
typu danych używanego do reprezentacji, ale nie odzwierciedla żadnej wartości należącej do
dziedziny atrybutu. Dlatego interpretowanie tego specjalnego wpisu jako normalnej, dopusz-
czalnej wartości na równi z pozostałymi, może być interpretowane jako forma uzupełniania
brakujących wartości pewną ustaloną wartością z dziedziny atrybutu.

Przykład 6.1 Przypuśćmy, że mamy tabelę decyzyjną opisującą stan zdrowia pacjentów, w
której występuje kolumna „Wzrost” i dla każdego pacjenta przyjmuje ona wartości:

� � niski�
� średniego wzrostu

� � wysoki

Dziedziną wartości tego atrybutu jest
� � ��� � � � . Brakujące wartości muszą być tutaj przed-

stawione, ze względu na ograniczenia implementacyjne, jako jedna spośród możliwych do
reprezentowania liczb całkowitych. Możemy przyjąć, że będziemy traktować 
 jako wartość
specjalną, oznaczającą wartość brakującą — brak wpisu w daną komórkę pamięci. Rozsze-
rzając odpowiednio dziedzinę atrybutu o 
 uzyskujemy możliwość traktowania tak zakodowa-
nych brakujących wartości na równych prawach z pozostałymi, dopuszczalnymi wartościami
z dziedziny atrybutu.

Takie postępowanie wydaje się naturalne i jest często z dużym powodzeniem stosowane
w innych dziedzinach informatyki. Jednakże przy dokładnej analizie danych, jaka jest wyma-
gana w inteligentnym przetwarzaniu informacji, niezbędne okazuje się zachowanie wiedzy
o tym, że brakujące wartości różnią się zdecydowanie od pozostałych wartości z dziedziny
atrybutu.

6.2 Uzupełnianie globalne

Najprostszą metodą uzupełniania danych stosującą „inteligentne” przetwarzanie danych w
celu dopasowania odpowiedniej wartości z dziedziny atrybutu do brakującej wartości w opi-
sie obiektu jest uzupełnianie globalne. Przetwarzanie danych zawartych w tabeli informacyj-
nej polega tutaj na zastosowaniu pewnych statystyk na posiadanym zbiorze danych. Standar-
dowym postępowaniem jest dobór jakiejś naturalnej statystyki, obliczenia jej wartości dla
wszystkich znanych wartości danego atrybutu (czyli wszystkich wypełnionych miejsc danej
kolumny), a następnie uzupełnienie brakujących miejsc za pomocą tak wyliczonej warto-
ści. Najczęściej używane tutaj statystyki, to średnia lub mediana dla atrybutów o dziedzinie
liniowo uporządkowanej (zazwyczaj liczbowej) oraz najczęściej występująca wartość dla
pozostałych atrybutów.

Algorytm 6.1
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1. Wyznacz wartość � � � � za pomocą statystyki � ,
� := � ��� � � � " � � � 
 � "@����� � �� � � � .

2. Dla każdego obiektu
"

takiego, że 
 � "@� � � powtarzaj

(a) 
 �+"@� := � .
Odczytanie wszystkich wartości jest wymagane, ponieważ musimy dysponować wyliczoną
statystyką, żeby przystąpić do uzupełniania brakujących wartości. Zatem złożoność pro-
blemu jest

� � � � (gdzie � to liczba obiektów). Algorytm można zapisać tak, żeby od-
czytywał co najwyżej dwukrotnie zawartość tabeli, zatem jego złożoność obliczeniowa jest
rzędu � � � � . Złożoność pamięciowa zależy od przyjętej statystyki � i wynosi � � � � dla
średniej oraz � � 
 � � 
 � (gdzie

� � to dziedzina atrybutu a) dla najczęściej występującej war-
tości. Jeśli wybraną statystyką jest mediana, to teoretycznie można algorytm zaimplemen-
tować w miejscu (tj. o złożoności pamięciowej � � � � ), ale albo zwiększa to czas wyko-
nania do � � ������� B � � �>� , albo wymaga użycia takich algorytmów liniowych (np. algorytm
Bluma-Floyda-Pratta-Rivesta-Tarjana), gdzie w notacji � � � � jest ukryta duża stała, zazwy-
czaj większa zarówno od


 � � 
 jak i od ����� B � � � . Taka implementacja była by więc nieefek-
tywna ze względów praktycznych, gdzie podstawowym problemem jest czas działania, a nie
zajętość pamięci.

Pomimo swej prostoty, metoda ta daje najczęściej dosyć dobre wyniki, chociaż odbie-
gające wyraźnie od pozostałych, bardziej wyrafinowanych metod. Stosując ten algorytm do
konkretnych danych można próbować go dostroić, dobierając bardziej odpowiednią staty-
stykę, jednakże ze względu na globalne wyliczanie wartości używanej do uzupełniania bra-
kujących miejsc, takie strojenie można przeprowadzić tylko w ograniczonym zakresie.

Prezentowana powyżej metoda, to uogólnienie opisywanych w literaturze metod „Most
Common Value” (patrz [23, 24, 25]) oraz „Mean-and-Mode” (patrz [14]).

6.3 Uzupełnianie lokalne względem decyzji

Poprzednią metodę można na gruncie uczenia maszynowego zakwalifikować do metod „bez
nauczyciela” („bez nadzoru”). W przypadku, gdy wśród atrybutów wyróżniamy atrybut de-
cyzyjny

�
, dysponujemy klasyfikacją obiektów do poszczególnych klas decyzyjnych. Można

wtedy ulepszyć takie uzupełnianie dzieląc wstępnie obiekty na zbiory odpowiadające po-
szczególnym klasom decyzyjnym. Takie postępowanie odpowiada metodom „z nauczycie-
lem” („z nadzorem”), które cechują się najczęściej większą sprawnością niż metody „bez
nauczyciela”. Podczas gdy w poprzednim algorytmie bazujemy na dystrybucji wartości da-
nego atrybutu na wszystkich obiektach w tabeli, teraz możemy lokalnie obliczyć dystrybucję
wartości oddzielnie dla obiektów z różnych klas decyzyjnych. Patrząc na to w taki sposób, że
obiekty w tablicy są przykładami należącymi do różnych pojęć, a pojęcia te zakodowane są
w postaci różnych wartości atrybutu decyzyjnego, odpowiada to podzieleniu tabeli na zbiory
przykładów poszczególnych pojęć. Dopiero na tak podzielonej tabeli stosujemy poprzedni
algorytm oddzielnie dla każdego zbioru obiektów.

Algorytm 6.2

1. Podziel zbiór atrybutów na grupy względem przynależności do klas decyzyjnych,� 
 � := �#" � � � �H�+"@� � � $ � .
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2. Dla każdej grupy wyznacz wartość � 
 � � � � za pomocą statystyki � ,
� 
 � := � � � � � � " � � 
 � � 
 �+"@� � � � �� � � � .

3. Dla każdego obiektu
"

takiego, że 
 � "@��� � powtarzaj

(a)
� $

:=
�H�+"@�

, pod warunkiem, że 
 �+"@� = � 
 � .
Algorytm musi poznać zawartość całej tabeli. Można go zaimplementować tak, aby odczy-
tywał zawartość tabeli dwukrotnie. Zatem jego złożoność obliczeniowa jest rzędu � � � � .
Złożoność pamięciowa zależy od przyjętej statystyki S i wynosi � � 
 � 
 
 � (gdzie


 ��
 

to liczba

klas decyzyjnych) dla średniej, oraz � � 
 ��
 
 � 
 � � 
 � (gdzie
� � to dziedzina atrybutu a) dla naj-

częściej występującej wartości. Ponieważ jednak
� 


zazwyczaj jest małe oraz z góry ustalone
dla danego zastosowania możemy o niej myśleć jak o stałej.

Metoda ta daje dosyć dobre wyniki w porównaniu z innymi metodami radzenia sobie z
brakującymi wartościami (nie tylko uzupełnianiem). Należy jednak zwrócić uwagę, że bra-
kujące wartości uzupełniane są zgodnie z naszymi oczekiwaniami dotyczącymi klasyfika-
cji obiektów do poszczególnych klas decyzyjnych. Takie postępowanie może prowadzić do
nadmiernego wzmacniania i wyostrzania danych do już posiadanej informacji — czyli ich
samych. Jest to swoiste sprzężenie zwrotne, które eliminuje na siłę sprzeczności w danych,
będące zazwyczaj ich integralną częścią, występującą często na granicy pojęć. Zjawisko ta-
kie jest szeroko znane w uczeniu maszynowym i określa się je jako nadmierne dopasowanie
(ang. „over-fitting”).

Prezentowana powyżej metoda to ulepszenie uzupełniania globalnego, prezentowanego
powyżej, zainspirowane metodami „Global Closest Fit” i „Concept Closest Fit” opisanymi
w pracach [23, 24, 25]. Ponadto ostatnio, w pracy [14], opisana została bardzo podobna
metoda „Natural Cluster Based Mean-and-Mode”, która jest analogicznym rozwinięciem
prezentowanej tam metody „Mean-and-Mode”.

6.4 Uzupełnianie lokalne względem atrybutu

Warto zauważyć, że metoda uzupełniania lokalnego względem decyzji (czyli atrybutu decy-
zyjnego) w dość naiwny sposób zakłada, że pojedyncze atrybuty warunkowe są skorelowane
z atrybutem decyzyjnym. Jednakże taka sytuacja wcale nie musi mieć miejsca. Oddzielnie
traktowane atrybuty warunkowe mogą być niezależne od decyzji, chociaż w większej liczbie
mogą dokładnie wyznaczać decyzje.

Przykład 6.2 Problem XOR.
Załóżmy, że mamy dwie zmienne losowe

	
i � , które przyjmują wartości 
 lub � z jed-

nakowym prawdopodobieństwem
7B . Zdefiniujmy zmienną losową � � 	 � ��� � . Zmienna

losowa � jest całkowicie wyznaczona przez zmienne losowe
	

i � . Jednakże � jest nieza-
leżną zmienną losową z

	
i � traktowanymi oddzielnie.

Naturalnym ulepszeniem powyższej metody jest zastosowanie zamiast atrybutu decyzyj-
nego innego atrybutu, bardziej skorelowanego z atrybutem, którego wartość chcemy uzupeł-
nić. Dobór atrybutu, który jest związany większymi zależnościami, powinien zaowocować
mniejszym nadmiernym dopasowaniem wpisywanych wartości do znanych obiektów trenin-
gowych i daje większe szanse prawidłowego zaklasyfikowania obiektów testowych. Podsta-
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wowym zatem problemem jest zbadanie, które atrybuty są ze sobą związane największymi
zależnościami.

Jeśli badana jest para atrybutów numerycznych, możemy zastosować dobrze znany ze
statystyki i wykorzystywany często przy wstępnym wykrywaniu cech znaczących współ-
czynnik korelacji. Jeśli chcemy sprawdzić jak bardzo są od siebie zależne dwa atrybuty
symboliczne (tj. o dyskretnej i nieuporządkowanej dziedzinie) możemy wykorzystać miary
informacyjne zbiorów stosowane najczęściej do konstrukcji drzewach decyzyjnych. Możemy
tutaj zastosować takie miary jak: entropia, rozróżnialność, konflikt, Gini indeks, �

B
i inne po-

dobne, szeroko znane i badane przy okazji problemu optymalnych testów w wierzchołkach
drzew decyzyjnych oraz dyskretyzacji atrybutów. Zazwyczaj kosztem niewielkiej dodatko-
wej pamięci można zaimplementować obliczenie takiej miary w czasie liniowym ze względu
na liczbę obiektów.

O ile porównywanie par atrybutów numerycznych oraz par atrybutów symbolicznych
ze sobą nie nastręcza większych trudności, to nie istnieje dobra i niezawodna metoda po-
równywania atrybutów symbolicznych z numerycznymi. Takie porównania mogą być ko-
nieczne, jeśli np. w tabeli informacyjnej jeden atrybut jest numeryczny, a wszystkie pozo-
stałe są symboliczne. Ponadto, może się okazać, że większe zależności wiążą parę atrybutów
różnego typu, czego nie jesteśmy w stanie stwierdzić analizując tylko pary atrybutów tego
samego typu. Jeśli dziedzina atrybutu numerycznego jest dyskretna i niewielkiej mocy mo-
żemy wtedy pominąć informację o tym, że wartości takiego atrybutu są liniowo uporządko-
wane i potraktować tak, jak by były wartościami symbolicznymi. W przeciwnym przypadku
celowe jest zastosowanie dyskretyzacji.

Metody analizy danych oparte na teorii zbiorów przybliżonych wymagają danych wstęp-
nie zdyskretyzowanych. W takich danych wszystkie atrybuty numeryczne zostały zamie-
nione atrybutami symbolicznymi wyznaczonymi w sposób, który ma na celu zachowanie
jak najwięcej cennych informacji dla procesu analizy. Ma to też tę zaletę, że odsiewa zbędny
szum informacyjny związany z gęstą dziedziną liczb rzeczywistych, a związany z takimi zja-
wiskami jak błędy pomiaru, czy naturalny rozrzut danego parametru dookoła pewnej war-
tości. Dane tak przygotowane składają się wyłącznie z atrybutów symbolicznych. Można
wtedy zastosować metodę uzupełniania lokalnego względem atrybutu stosując jedną miarę
informacyjną zbiorów dla wszystkich atrybutów. Wyniki porównania zależności atrybutów
pomiędzy sobą są wtedy obiektywne i lepiej nadają się do wyznaczenia atrybutu związanego
największymi zależnościami.

Prezentowana powyżej metoda jest połączeniem metod „Attribute Rank Cluster based
Mean-and-Mode algorithm” oraz „K-Means Clustering based Mean-and-Mode algorithm”
prezentowanych w pracy [14].

6.5 Uzupełnianie metodą najbli ższych sąsiadów

Bardziej wyrafinowanym sposobem uzupełniania brakujących wartości jest zastosowanie
metody najbliższych sąsiadów. Metoda ta jest zazwyczaj wykorzystywana do klasyfikacji
obiektów i opisana jest bardziej szczegółowo w rozdziale dotyczącym leniwych metod ucze-
nia się. Jednakże można jej główną ideę wykorzystać również do uzupełniania brakujących
wartości.

Prezentowane do tej pory metody uzupełniania niekompletnego opisu obiektów koncen-
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trowały się głównie na zależnościach pomiędzy atrybutami w badanej tabeli informacyjnej.
Wszystkie obiekty były traktowane grupowo i tylko w niewielkim stopniu wykorzystywana
była informacja o wzajemnym podobieństwie obiektów do siebie. Co najwyżej jeden atrybut
brany był pod uwagę przy ocenie podobieństwa obiektów. Można sobie jednak wyobrazić
metodę działającą w odmienny sposób, gdzie pierwszym i najważniejszym krokiem jest do-
bór obiektów w pewnym sensie najbardziej podobnych do badanego, wykorzystującą całą
dostępną informacje o obiektach.

Motywacją do zastosowania metody najbliższych sąsiadów jest to, że obiekty o zbliżo-
nym opisie na istniejących wartościach atrybutów prawdopodobnie cechuje również podo-
bieństwo na pozostałych atrybutach (w tym niewypełnionych). Ponieważ klasyfikacja oparta
na metodzie najbliższych sąsiadów uzyskuje dosyć dobre rezultaty (przynajmniej dla nie-
których danych) i jest intuicyjnie prosta w interpretacji, można przyjąć, że powinna również
dawać dobre rezultaty gdy wykorzysta się ją do uzupełniania brakujących wartości.

Podstawowym pojęciem jakie należy zdefiniować do zastosowania tej metody jest podo-
bieństwo obiektów między sobą. Dla danych o w pełni kompletnym opisie obiektów przyj-
muje się najczęściej, że przestrzeń obiektów jest przestrzenią metryczną. W przypadku, gdy
dane posiadają obiekty o niekompletnym opisie przyjmuje się słabsze założenia, określając
funkcję podobieństwa na przestrzeni obiektów. Za pomocą dobranej funkcji podobieństwa
wybiera się & sąsiadów o najmniejszej odległości od obiektu badanego, dla pewnego usta-
lonego & . Polega to na wyliczeniu odległości wszystkich obiektów od obiektu badanego i
wybraniu spośród nich & obiektów najbliższych.

Zdefiniowanie funkcji podobieństwa, która nie spełnia nawet warunku
� � " �>"@� � 
 , może

mieć w przypadku uzupełniania brakujących wartości swoje uzasadnienie. Zaprezentowana
poniżej funkcja podobieństwa preferuje obiekty bardziej wypełnione. Zatem w zbiorze naj-
bliższych sąsiadów znajdzie się więcej wartości, na podstawie których możemy wyznaczyć
wartość odpowiednią do wstawienia na miejsce brakującej.

Przykład 6.3 Funkcja podobieństwa, która nie spełnia warunku
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(6.1)

Dysponując dużym zbiorem danych można również zastosować nieco inną metodę selek-
cji & obiektów najbardziej podobnych, tutaj jednak & nie jest z góry ustalone. Jako funkcję
podobieństwa można przyjąć tym razem funkcję, która zwraca 
 , jeśli obiekty są identyczne
na uzupełnionych wartościach, oraz � w przeciwnym przypadku. Odpowiada to relacji po-
dobieństwa symetrycznego na gruncie teorii zbiorów przybliżonych.
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Teraz, jako & najbliższych sąsiadów wybieramy wszystkie obiekty, które są w zerowej „od-
ległości” od obiektu badanego. & w tym przypadku jest zmienne, niemniej jednak w dalszym
ciągu dysponujemy zbiorem najbliższych sąsiadów. Należy również zauważyć, że dla nie-
których danych zbiór taki może okazać się pusty.
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Dysponując zbiorem (niepustym) & najbliższych sąsiadów możemy zastosować metodę
uzupełniania brakujących wartości za pomocą prostych statystyk (najczęstszej wartości, me-
diany czy średniej). Oczekujemy, że w tym przypadku obiekty będące najbliższymi sąsia-
dami zostały starannie dobrane spośród zbioru obiektów treningowych i będą w lepszym
stopniu opisywały możliwą do uzupełnienia wartość.

W naturalny sposób możemy zmodyfikować poprzednie metody tak, aby zamiast wybra-
nych obiektów na podstawie decyzji, czy też atrybutu najbardziej skorelowanego, do procesu
wyliczania statystyk brały zbiór obiektów wyznaczonych na podstawie metody najbliższych
sąsiadów, czy też powyższej modyfikacji. W metodzie tej zarówno możemy sterować pa-
rametrami funkcji podobieństwa obiektów, jak i również statystyką, na podstawie której
wylicza się wartość do wstawienia. Należy zauważyć, że statystyka najczęstszej wartości
odpowiada standardowemu głosowaniu w oryginalnej metodzie najbliższych sąsiadów.

Ze względu na to, że proces wyboru obiektów najbardziej podobnych może być czaso-
chłonny, warto jest od razu wypełnić wszystkie brakujące miejsca w uzupełnianym obiekcie,
żeby oszczędzić czasu na ponowne wyznaczanie zbioru najbliższych sąsiadów. Niemniej
jednak ta metoda jest dużo bardziej czasochłonna niż wcześniej opisane metody uzupeł-
niania brakujących wartości i szczególnie w przypadku gdy dysponujemy dużymi zbiorami
danych treningowych należy zastanowić się nad celowością jej stosowania. Można również
ze zbioru danych treningowych wydzielić mniejszy zbiór i tylko w nim poszukiwać naj-
bliższych sąsiadów. Należy tego dokonać starannie, aby zbiór ten był reprezentatywny w
odniesieniu do całego zbioru treningowego.

6.6 Uzupełnianie za pomocą systemu decyzyjnego

Powyżej opisany sposób uzupełniania brakujących wartości za pomocą metody najbliższych
sąsiadów może nasunąć spostrzeżenie, że każdy klasyfikator — system decyzyjny byłby
dobrym, a nawet lepszym substytutem metody najbliższych sąsiadów.

Proces wypełniania brakujących wartości jest analogiczny do procesu klasyfikacji obie-
któw do poszczególnych pojęć. Podczas klasyfikacji wypełniamy brakującą wartość obiektu
na atrybucie decyzyjnym. Zatem teoretycznie można by zastosować analogiczny proces do
uzupełniania innych brakujących wartości, nie tylko decyzji ale również atrybutów warun-
kowych, traktując je jako „tymczasowy atrybut decyzyjny”. Należy jednak zastanowić się
nad zasadnością takiego postępowania.

Dysponując systemem decyzyjnym, który nie potrafi wnioskować w oparciu o dane z bra-
kującymi wartościami atrybutów, musimy ograniczać się albo do pewnego podzbioru obie-
któw treningowych, które posiadają kompletny opis (często taki zbiór może być pusty) lub
do pewnego podzbioru atrybutów, na których wszystkie obiekty są opisane (również może
okazać się pusty). Nawet jeżeli proces taki dla konkretnych danych jest wykonalny, to ze
względu na to, że nie uwzględnia on całej informacji zawartej w danych, a tylko jej wycinek,
może wprowadzać duże zaburzenia i mylne wartości, które skutecznie zaszumiają wiedzę
zawartą w tabeli informacyjnej. Ponadto wszystkie systemy decyzyjne cechuje ograniczona
sprawność klasyfikacji, która dla typowych danych oscyluje zazwyczaj w przedziale 60%–
95%, zatem nie możemy mieć gwarancji, że system wykorzystujący informację zawartą w
danych dobrze uzupełni brakujące wartości.

Gdy dysponujemy systemem decyzyjnym, który potrafi wnioskować w oparciu o dane
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z niekompletnym opisem obiektów, wtedy powstaje pytanie, czy w ogóle warto jest dane
uzupełniać. Uzupełnianie brakujących wartości po pierwsze nie zawsze znajduje oparcie w
rzeczywistości (gdy np. dany obiekt istotnie nie posiada żadnego opisu względem danego
pojęcia), a po drugie wprowadza zniekształcenia i powoduje zjawisko nadmiernego dopa-
sowania się do danych (ang. over-fitting). Nie bez znaczenia pozostaje też fakt, że proces
klasyfikacji obiektów jest dosyć czasochłonny i jego wielokrotne wykonywanie przy braku
gwarancji powodzenia przestaje być zasadne. Tym bardziej, że istnieje możliwość jednokrot-
nego zanalizowania danych za pomocą tej metody, która i tak potrafi się uporać z brakują-
cymi wartościami bez potrzeby ich uzupełniania.

6.7 Podsumowanie

Uzupełnianie brakujących wartości jest uniwersalną metodą radzenia sobie z problemem
danych o niekompletnym opisie obiektów. Należy jednak zdawać sobie sprawę z ograni-
czonego zakresu zastosowań tego podejścia. Wypełnianie brakujących miejsc niesie ze sobą
zagrożenie wprowadzenia istotnych zaburzeń do danych, uniemożliwiając tym samym wy-
krycie subtelnych zależności pomiędzy atrybutami warunkowymi a decyzją.

Należy wspomnieć, że na gruncie statystyki dopracowano się ważnych wyników doty-
czących uzupełniania. Przede wszystkim należy tutaj wspomnieć o metodzie EM (patrz np.
[15, 61]). Oryginalnie jest to metoda służąca klastrowaniu danych. Polega ona na dopaso-
waniu pewnej liczby rozkładów prawdopodobieństwa do grup obiektów w taki sposób, aby
maksymalizować szansę, że istniejące obiekty zostały wylosowane właśnie z tych rozkła-
dów. Rozkłady te są wyznaczane iteracyjnie, kolejno przybliżając coraz dokładniej zaob-
serwowane empiryczne prawdopodobieństwa wartości obiektów. Uzupełnianie brakujących
wartości metodą EM polega na dolosowaniu brakujących wartości z tak wyznaczonych roz-
kładów prawdopodobieństwa.

We współczesnej statystyce metodę EM stosuje się w połączeniu z tzw. uzupełnianiem
wielokrotnym. Polega to na wygenerowaniu kilku alternatywnych tabel uzupełnionych za
pomocą metody EM oraz połączeniu wyników klasyfikacji na każdej z tych tabel przez gło-
sowanie. W pracy [45] zostało udowodnione, że nawet niewielka liczba takich alternatyw-
nych tabel potrafi znacząco poprawić jakość klasyfikacji.

Warto tutaj przypomnieć, że na gruncie teorii zbiorów przybliżonych istnieje analogiczne
rozwiązanie w postaci relacji tolerancji. Odpowiada to rekombinacji wyników z wszystkich
możliwych uzupełnień danej tabeli. Powstaje zatem pytanie o zasadność stosowania tak wy-
rafinowanych i czasochłonnych metod uzupełniania, gdy dostępne są równoważne i szybsze
rozwiązania oparte o teorię zbiorów przybliżonych.
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Rozdział 7

Metoda podziału

7.1 Wprowadzenie

W większości dotychczas opisywanych metod wnioskowania na podstawie danych z nie-
kompletnym opisem obiektów usiłowano dopasować brakujące miejsca do istniejących war-
tości danego atrybutu. Działo się to przez założenie, że brakująca wartość może być dowolną
z dopuszczalnych wartości atrybutu czy też przez dystrybucję obiektów „ułamkowych” do
grup obiektów o poszczególnych wartościach danego atrybutu. Również dosyć uniwersalna
metoda, jaką jest uzupełnianie brakujących wartości, miała na celu zaniedbanie informacji o
tym, że dana wartość jest brakująca i wypełnienie wszystkich brakujących wartości kosztem
zaburzenia danych. Nie jest to jednak postępowanie naturalne i zgodne z ludzką intuicją.
Poszukiwać należało by raczej metody, która umożliwiała będzie bezpośrednie operowanie
na danych o niekompletnym opisie obiektów.

Pierwszym powodem, dla którego istniejące metody mogą okazać się nieskuteczne, jest
nienaturalne traktowanie brakujących wartości. Umysł człowieka, który jest najlepszym zna-
nym systemem decyzyjnym, zawsze potrafi poradzić sobie z tym problemem. Jeżeli lekarz
ma stwierdzić stan zdrowia pacjenta nie dysponując kompletem badań, wtedy nie usiłuje
uzupełniać brakujących wyników na podstawie istniejących, tylko próbuje sformułować dia-
gnozę tylko i wyłącznie na podstawie tych danych, którymi dysponuje. Jeżeli nie jest to
całkowicie możliwe, wtedy formułuje odpowiedź przybliżoną i ewentualnie zleca wykona-
nie dodatkowych badań. Może on dokonywać porównań z wynikami innych pacjentów, jed-
nakże nie dzieje się to w oparciu o brakujące wartości. Pomimo tego, że lekarz dysponuje
wiedzą o podobnych przypadkach, wnioskuje jednak na podstawie istniejących informacji
i ani nie uzupełnia danych, ani nie ocenia możliwego wyniku danych, gdyż nie było by to
wiarygodne.

Istniejące algorytmy, które potrafią poradzić sobie z brakującymi wartościami atrybu-
tów, takie jak LRI czy LazyDT różnią się zdecydowanie od najpopularniejszych obecnie
algorytmów. Wykorzystane tam metody generowania drzew decyzyjnych i indukcji reguł co
prawda potrafią poradzić sobie z brakującymi wartościami, niemniej jednak odbija się to
niekorzystnie na efektywności. Ponadto metody te uniemożliwiają wykorzystanie ugrunto-
wanej wiedzy w zakresie tak dobrze zbadanych zagadnień jak zbiory przybliżone, czy metod
optymalizacji drzew decyzyjnych (np. przycinanie [8, 58]).

Kolejną motywacją do poszukiwań innej metody radzenia sobie z brakującymi warto-
ściami jest duża liczba istniejących skutecznych metod, które nie potrafią sobie poradzić z
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Wydajność

Zadania
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Rysunek 7.1: Metoda
� 7

jest bardziej ogólna ni ż metoda
� B

i mo że býc z powodzeniem stosowana
do szerszej klasy zadań. Jednak że na swoim odcinku specjalizacji metoda

� B
osiąga zdecydowanie

większą wydajność (patrz [31]).

brakującymi wartościami. Metody te były badane na przestrzeni wielu lat, mają ugruntowane
podłoże teoretyczne oraz są licznie reprezentowane przez częstokroć duże programy kom-
puterowe, które zostały zaimplementowane wielkim nakładem pracy. Adaptacja istniejących
gotowych programów komputerowych niewielkim nakładem pracy tak, aby były w stanie
poradzić sobie z danymi o niekompletnym opisie obiektów z zadowalającą jakością, byłaby
znakomitym rozwiązaniem.

7.2 Motywacje

Powszechnie znanym faktem jest, że metody wąsko wyspecjalizowane lepiej sprawdzają się
w swojej dziedzinie, niż metody ogólne (zobacz rys. 7.1). Co prawda metody ogólne można
stosować na szerszej klasie problemów, jednakże metody wyspecjalizowane w rozwiązywa-
niu konkretnych problemów uzyskują zdecydowanie większą wydajność. Sytuację tę można
przyrównać do człowieka ogólnie wykształconego i np. specjalisty w zakresie samochodów.
W zasadzie każdy wie, gdzie w samochodzie znajduje się silnik, niemniej jednak jego na-
prawę lepiej zlecić specjaliście w tej dziedzinie, niż wykonywać samemu.

W ostatnich latach na znaczeniu uzyskały metody merologiczne jak i obliczeń na granu-
lach (patrz np. [26]), których myślą przewodnią jest dekompozycja skomplikowanych zadań
na prostsze, które można by wykonywać za pomocą wyspecjalizowanych metod. Dekompo-
zycja skomplikowanych zadań nie jest zresztą pomysłem nowym i znajdowała się zawsze
w polu zainteresowań sztucznej inteligencji takich jak planowanie, czy systemy wieloagen-
towe. Niemniej jednak dopiero niedawno za sprawą obliczeń na granulach stało się realne
inteligentne wykorzystanie dekompozycji do celów analizy danych i odkrywania wiedzy.

Dekompozycja to bardzo silne narzędzie do walki ze złożonością problemów ze świata
rzeczywistego. Polega to najczęściej na podziale modelu całego zadania na lokalne podmo-
dele opisujące prosty i niezależny fragment, który może zostać w całości poddany dalszej
analizie. W następnych krokach dokonuje się syntezy wiedzy z lokalnych podmodeli, która
może być wykonywana wieloetapowo, tworząc strukturę drzewa (lub grafu) zależności po-
między modelami. Mówi się czasem również o przetwarzaniu warstwowym, czy uczeniu
warstwowym w kontekście maszynowego uczenia.

Kolejnym, godnym zainteresowania zagadnieniem, są zaawansowane metody uzupełnia-
nia brakujących wartości za pomocą systemów decyzyjnych. Ich działanie opisane zostało w
poprzednim rozdziale. Tutaj warto tylko przypomnieć, że metody te używają klasyfikatora
na wejściowej tablicy (podtablicy) w celu wypełnienia brakujących wartości w jednej z ko-
lumn tej tablicy. W celu uzupełnienia większej liczby kolumn, musimy posłużyć się większą
liczbą klasyfikatorów. Można zatem mówić o swoistym sprzężeniu zwrotnym, gdyż mody-
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Rysunek 7.2: Oto jest myśl przewodnia metody podziału. Dane z tabeli
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model uzyskuje się na podstawie modeli pojęcia dla podtabel.

fikujemy tablicę na podstawie której wnioskujemy. Nie jest to zatem metoda bezpieczna,
gdyż uzupełnianie wprowadza szumy i zaburzenia do danych, a procesy, w których wy-
stępuje sprzężenie zwrotne są zazwyczaj mało stabilne i zwracają trudne do przewidzenia
wyniki. Niemniej jednak, jest to teoretycznie najlepsza metoda uzupełniania brakujących
wartości. Gdyby udało się z tej metody wyeliminować sprzężenie zwrotne i uzupełnianie
samo w sobie, gwarantowało by to nam dużą staranność i skuteczność w obchodzeniu się z
brakującymi wartościami.

7.3 Metoda podziału

Ideą przewodnią metody podziału, jest dekompozycja i zastosowanie wielu klasyfikatorów.
Proces wnioskowania na danych wejściowych jest dekomponowany w taki sposób, żeby
wnioskować tylko i wyłącznie na podstawie tabel informacyjnych z kompletnym opisem
obiektów. Bardzo ważnym aspektem jest to, żeby taka dekompozycja zachowała możliwie
najwięcej informacji z początkowych danych. W przeciwnym przypadku możemy utracić
zarówno atrybuty warunkowe, które są związane zależnościami z atrybutem decyzyjnym, jak
i niezbędną liczbę obiektów, umożliwiającą poprawne wyuczenie się pojęcia. Dekompozycja
realizowana jest poprzez wydzielenie lokalnych podzbiorów danych treningowych, które nie
zawierają żadnych brakujących wartości. Podzbiory te mogą mieć zarówno mniejszą liczbę
obiektów jak i mniejszą liczbę atrybutów niż dane wejściowe. Jednakże wszystkie obiekty
ze zbioru treningowego powinny znaleźć się w przynajmniej jednym z podzbiorów, a każdy
z takich podzbiorów powinien mieć jak największą liczbę atrybutów.

Następnie, na podstawie podzbiorów danych tworzone są lokalne modele. Modele te
mają za zadanie jedynie opisać pojęcie na swoim podzbiorze danych treningowych. W celu
uzyskania opisu pojęcia na całym zbiorze należy ponownie zastosować system decyzyjny,
który tym razem przyjmuje jako dane wejściowe odpowiedzi od modeli lokalnych. Na tej
podstawie podejmuje się decyzję dla wszystkich obiektów z uniwersum (patrz rys. 7.2).
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Do formalnego zdefiniowania procesu dekompozycji potrzebne nam będzie pojęcie wzo-
rca wypełnienia.

7.4 Wzorce wypełnienia

Często stosowanym w analizie tabel informacyjnych pojęciem jest wzorzec. Mówimy, że
obiekt pasuje do wzorca, gdy jego opis spełnia formułę logiczną definiującą dany wzorzec.
Pojęcie wzorca jest bardzo ogólne i szeroko stosowane (patrz np. [33, 34, 35]). Tutaj jed-
nak będziemy posługiwali się uproszczoną postacią wzorców. Ich jedynym zadaniem będzie
selekcja obiektów o podobnym wypełnieniu opisu wartościami atrybutów.

Definicja 7.1 Wzorzec wypełnienia.
Deskryptorem wypełnienia nazwiemy każdy napis postaci 
 �� � , gdzie 
 � 	 jest atry-

butem występującym w badanej tabeli informacyjnej. Powiemy, że obiekt
"

spełnia deskryp-
tor 
 �� �

, wtedy i tylko wtedy, gdy 
 �+"@� �� �
. Wzorcem wypełnienia nazwiemy koniunkcję

zbioru (może być pusty) deskryptorów wypełnienia. Obiekt spełnia wzorzec wypełnienia, gdy
spełnia każdy z deskryptorów wypełnienia wzorca. Obiekt

"
spełnia wzorzec � oznaczymy" 
 � � .

Przykład 7.1
Obiekt

"
określony na atrybutach 
 7 �;:;:;: � 
 D w sposób następujący 
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 , 
 D6�+"@� � � spełnia wzorce wypełnienia:

�
�
7 ���

— wzorzec pusty, każdy obiekt spełnia wzorzec pusty,

�
� B � 
 7 �� � ,

�
� C � 
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�
��D � 
 7 �� � � 
 C �� � .

Obiekt
"

nie spełnia wzorców wykorzystujących atrybuty 
 B i 
 D , np. 
 B �� �
oraz 
 7 ��� � 
 B �� � nie są spełniane przez obiekt

"
.

Od tej pory wzorce wypełnienia będą nazywane po prostu wzorcami. Dla każdego obiektu
istnieje jeden szczególny wzorzec zwany schematem wypełnienia, który opisuje wszystkie
wypełnione wartości danego obiektu.

Definicja 7.2 Schemat wypełnienia obiektu.
Schematem wypełnienia obiektu

"
nazwiemy taki wzorzec ��� , który posiada maksymalną

liczbę deskryptorów wypełnienia.

� � � �
����	��6� � � ����	� 


����
(7.1)

Posługując się wzorcami możemy łatwo definiować podzbiory uniwersum obiektów,
które cechują się podobnym wypełnieniem wartości atrybutów. Oznaczmy przez � � zbiór
obiektów, które spełniają wzorzec

�
.

� �8���#" � � � " 
 � � � (7.2)
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Możemy zatem w pewien sposób utożsamiać wzorzec z obiektami, które go spełniają.
Wzorce charakteryzuje się za pomocą tzw. gabarytów wzorca. Termin ten ma swoje in-

tuicyjne uzasadnienie, gdy zwizualizujemy obiekty spełniające wzorzec w postaci tabeli.

Definicja 7.3 Szerokość wzorca.
Szerokością wzorca

�
nazwiemy liczbę deskryptorów wchodzących w skład wzorca i ozna-

czymy � �
. Wzorzec

�
7
z poprzedniego przykładu posiada szerokość równą zero, � � � � � ��� �

� oraz � � � � � .
Definicja 7.4 Wysokość wzorca.

Wysokością wzorca
�

nazwiemy liczbę obiektów spełniających wzorzec i oznaczymy
� �

.
Zatem

� �8� 
 � � 
 .
Teraz możemy ściśle wyrazić naszą intuicję dotyczącą podziału danych wejściowych

na podtabele. Ponieważ podtabela taka nie może zawierać żadnych brakujących wartości,
więc składa się z obiektów pasujących do wzorca zawierającego deskryptory wypełnienia
dla wszystkich kolumn tej tabeli. Ponadto zależy nam na tym, żeby szerokość takiego wzo-
rca była jak największa. Umożliwia to wykrycie zależności pomiędzy atrybutami warun-
kowymi, a atrybutem decyzyjnym. Jednocześnie liczba obiektów tej tabeli, czyli wysokość
wzorca, nie może być zbyt mała, aby na jej podstawie można było się wyuczyć żądanej
klasyfikacji. W oczywisty sposób oba te warunki są przeciwstawne i niezbędnym jest wy-
pracowanie pewnego kompromisu. Szczegółowy opis metod poszukiwania wzorców opisany
będzie w podrozdziale 7.6.

7.5 Opis algorytmu

Metoda podziału składa się z dwóch podstawowych etapów. Na początku należy dokonać
podziału danych wejściowych a następnie syntezy wyników.

Algorytm 7.1 Metoda podziału.

1. Podział

2. Synteza wyników

7.5.1 Podział

Celem podziału jest uzyskanie pewnej liczby podtabel posiadających określone cechy. Ta-
bele powstające w wyniku podziału danych wejściowych nie mogą zawierać żadnych bra-
kujących wartości. Jest to warunek, który musi zostać bezwzględnie spełniony, aby taki
podział był poprawny. Ponadto tabele takie powinny umożliwiać skuteczne wnioskowanie
indukcyjne, co może być osiągnięte np. przez zagwarantowanie odpowiednio dużych gaba-
rytów takich tabel (tzn. wysokości i szerokości, czyli liczby obiektów i liczby atrybutów)
oraz poprzez wykorzystanie możliwie największej liczby wartości z tabeli wejściowej. Są to
dwa podstawowe kryteria oceny skuteczności podziału. Oprócz tego istnieją jeszcze pewne
własności podziałów, które nie wpływają bezpośrednio na jakość wnioskowania. Na przy-
kład liczba podtabel powstających z takiego podziału ma zdecydowany wpływ na szybkość
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Rysunek 7.3: Metoda podziału polega na dekompozycji wej́sciowych danych na podtablice o kom-
pletnym opisie obiektów, zastosowaniu klasyfikatora na podtablicach, a następnie syntezie wyników
końcowych na podstawie podmodeli.

klasyfikacji. Dlatego korzystniej jest dzielić dane wejściowe na mniejszą liczbą podtabel.
Przeciwnym argumentem, jest hipoteza statystyczna, że większa liczba podtabel może za-
gwarantować lepszą jakość podczas syntezy wyników. Hipoteza ta została zweryfikowana
empirycznie i, jak pokażą wyniki eksperymentów, nie znajduje zastosowania w tym przy-
padku.

Wynikiem podziału jest pewna liczba tabel o kompletnym opisie obiektów, które pod-
legają następnie procesowi wnioskowania i syntezy wyników. Przyjmuje się również zało-
żenie, że wszystkie obiekty zawarte w tabeli wejściowej muszą zostać zaklasyfikowane do
przynajmniej jednej z powstałych podtabel. Ponieważ zagadnienie podziału jest kluczowym
elementem mającym wpływ na jakość wnioskowania zostanie omówione od strony algoryt-
micznej w podrozdziale 7.6.

7.5.2 Synteza wyników

Końcowym rezultatem każdego systemu decyzyjnego jest klasyfikacja obiektów do poszcze-
gólnych pojęć — klas decyzyjnych. W tym przypadku dysponujemy nie jedną, ale wieloma
tabelami informacyjnymi. Co więcej, obiekty posiadające różne schematy wypełnienia roz-
proszone są pomiędzy różne tabele. W skrajnym przypadku poszczególne obiekty mogą być
elementami tylko jednej podtabeli powstałej z podziału, dlatego w procesie wnioskowania
musimy uwzględnić wszystkie podtabele.

Syntezę wyników przeprowadzimy w dwóch krokach. Inspiracji do zastosowania takiej
metody można poszukiwać w metodzie uzupełniania za pomocą systemów decyzyjnych, ob-
liczeń na granulach, czy nawet tak odległemu zagadnieniu jakim są wielowarstwowe sieci
neuronowe. Na każdej z podtabel (patrzy rys. 7.2 i 7.3) dokonujemy niezależnej konstrukcji
lokalnego modelu pojęcia za pomocą sytemu decyzyjnego. Lokalność modeli polega tutaj
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na ograniczeniu informacji do pewnego podzbioru atrybutów i obiektów, które są całkowi-
cie wypełnione na danym podzbiorze atrybutów. Drugim krokiem jest zastosowanie systemu
decyzyjnego łączącego wyniki częściowe z każdego modelu lokalnego. Odpowiada to kon-
strukcji nowej tabeli informacyjnej, gdzie atrybutami są podmodele lokalne, a wartościami
atrybutów jest klasyfikacja obiektów z tabeli wejściowej do pewnego pojęcia lub odmowa
takiej klasyfikacji spowodowana tym, że obiekt nie należy do dziedziny danego podmodelu.
Na takiej tablicy dokonywana jest ostateczna klasyfikacja wszystkich obiektów do określo-
nych klas decyzyjnych.

Każdy lokalny system decyzyjny może być postrzegany jako specjalista w swojej dzie-
dzinie. Zawsze do sklasyfikowania przyjmuje w pełni uzupełnione obiekty na określonym
podzbiorze atrybutów i może wypracować hipotezę opisującą pojęcie na swoim wycinku
wiedzy. Synteza, oparta na systemie decyzyjnym łączącym odpowiedzi częściowe rozstrzyga
ewentualne konflikty pomiędzy specjalistami. Jej zadaniem jest wyuczenie się, który ze spe-
cjalistów lepiej sprawdza się na określonym podzbiorze obiektów, wyznaczonym czasem
przez dość skomplikowane formuły logiczne operujące na spełnianiu lub nie spełnianiu przez
obiekt określonych wzorców1.

Algorytm 7.2 Synteza wyników.

1. Zastosowanie niezależnych systemów decyzyjnych do wyznaczonych wcześniej podta-
bel.

2. Konstrukcja tabeli informacyjnej łączącej wyniki częściowe.

3. Zastosowanie systemu decyzyjnego udzielającego odpowiedzi dla wszystkich obiektów
wejściowych.

Pozostałym do rozstrzygnięcia zagadnieniem, jest wybór metod klasyfikacji na każdym
z kroków syntezy wyników. Teoretycznie, można by w dość dowolny sposób dobierać nie-
zależnie od siebie metody klasyfikacji dla podtabel powstałych z podziału oraz tabeli łączą-
cej wyniki częściowe. Jednakże nie widać powodu, dla którego warto narażać się na takie
komplikacje. Metoda podziału projektowana była jako środek zaradczy, umożliwiający za-
stosowanie istniejących zaawansowanych i zaimplementowanych metod klasyfikacji. Ich siła
wyrazu, czyli zdolność do konstrukcji złożonych hipotez, jest na tyle duża, że z powodze-
niem można je stosować w każdym kroku syntezy wyników. Warto tutaj tylko zauważyć,
że o ile konkretna klasyfikacja na etapie lokalnych podtabel nie jest tak istotna (można by
wręcz zastosować klasyfikację do jakiś pojęć pomocniczych), to łączenie wyników częścio-
wych musi opierać się na metodzie, która potrafi konstruować wystarczająco zaawansowane
hipotezy do rozstrzygania ewentualnych konfliktów.

7.6 Podział danych wejściowych

Podział danych wejściowych na podtabele jest sam w sobie zagadnieniem skomplikowanym.
Ponadto w decydującym stopniu przyczynia się do uzyskanych wyników. Jak pokazane to
zostało w podrozdziale 7.4, każdą podtabelę możemy utożsamiać z pewnym wzorcem

�
, a

1W zale żnósci do zastosowanego systemu decyzyjnego. Np. dla klasyfikatora regułowego będą to koniunkcje spełniania
lub nie spełniania przez obiekt wzorców wyznaczonych w fazie podziału.
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raczej zbiorem obiektów spełniających ten wzorzec � � . Zatem wyznaczanie podziałów da-
nych wejściowych to nic innego jak wyszukiwanie wzorców o pożądanych własnościach.
Opis metod wyszukiwania podziałów rozpoczniemy charakteryzacji złożoności obliczenio-
wej problemu.

7.6.1 Złożoność obliczeniowa

Większość problemów związanych z wyszukiwaniem pojedynczego wzorca (ogólnego) za-
wiera się w klasie problemów NP-trudnych. W szczególności klasyczny problem wyszuki-
wania wzorca o maksymalnych gabarytach zdefiniowanych jako szerokość



wysokość jest

NP-trudnym problemem optymalizacyjnym (zobacz np. [33, 35, 34]). W przypadku wyszu-
kiwania wzorców wypełnienia możemy posłużyć się analogią takiego zadania do wyszu-
kiwania wzorców ogólnych np. w tabelach gdzie wszystkie atrybuty mają dwuelementową
dziedzinę (atrybuty binarne).

Twierdzenie 7.1
Problem wyszukiwania wzorca wypełnienia jest NP-trudny, o ile odpowiadający mu pro-

blem wyszukiwania wzorca ogólnego również jest NP-trudny2.

Dowód
Jest oczywiste, że problem wyszukiwania wzorca wypełnienia zawarty jest w klasie pro-

blemów NP. Wystarczy zatem pokazać, że za pomocą wielomianowego sprowadzenia po-
trafimy algorytmem wyszukiwania wzorców wypełnienia rozwiązać problem wyszukiwania
wzorców ogólnych.

Weźmy tablicę informacyjną
� � �4� �>	��

taką, że
	 � � 
 79�M:;:;:M� 
 � � , oraz � $.� � � �� 
 � � � . W czasie wielomianowym możemy skonstruować tablicę

� � � �����
	 � �
taką, że	 � ��� 


J 7 � 

77 �;:;:;: � 


J
�

� 

7
� � . Wartości atrybutów zdefiniowane są następująco:



J$ �+" � �/� � 
 � 
 $ �+" �9� � 
� � 
 $ �+" �9� � �

�
(7.3)



7$ �+" � �/� � � � 
 $ �+" �9� � 


� � 
 $ �+" �9� � �
:

(7.4)

Złożoność tej konwersji jest wielomianowa i wynosi � � 
 	 
 � . Stosujemy algorytm wy-
szukiwania wzorców wypełnienia na tabeli

� �
i dostajemy rozwiązanie

� �
. Teraz wystarczy

pokazać, jak dokonać konwersji rozwiązania
� �

dla tabeli
� �

na rozwiązanie
�

dla tabeli
�

.
Przy wyszukiwaniu wzorca o maksymalnych gabarytach (odpowiednio zdefiniowanych)

nigdy nie zostaną jednocześnie wybrane atrybuty 

J$

oraz 

7$

dla żadnego
1
. Jest tak dlatego, że

żaden obiekt nie spełnia wzorca wypełnienia zawierającego jednocześnie 

J$

oraz 

7$
. Zatem

dla każdego
1

w znalezionym wzorcu wypełnienia istnieje co najwyżej jeden deskryptor
zawierający 


J$
lub 


7$
. Wzorzec (ogólny) dla tabeli

�
powstaje w następujący sposób. Każdy

deskryptor wypełnienia wzorca
� �

postaci 
 �$ �� � zamieniamy na deskryptor wzorca
�

postaci
 $ � �
. W ten oto sposób otrzymamy rozwiązanie

�
dla tabeli

�
, które posiada dokładnie te

same gabaryty co rozwiązanie
� �

dla tabeli
� �

.

2Istnieją problemy wyszukiwania wzorca rozwiązywalne w czasie wielomianowym, np. gdy poszukujemy wzorca o
największych gabarytach zdefiniowanych jako szerokósć + wysokość (patrz [34] str. 19).
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Q.E.D

Oprócz zagadnienia wyszukiwania jednego wzorca może nas również interesować zagad-
nienie wyszukiwania wielu wzorców jednocześnie. Ma to swoje uzasadnienie przy próbie
wygenerowania wszystkich wzorców stanowiących podział danych wejściowych na podta-
bele. Problem ten jest co najmniej tak trudny, jak wyszukiwanie jednego wzorca. Zatem aby
pokazać, że należy do klasy problemów NP-trudnych wystarczy pokazać, że jest problemem
klasy NP. Ponieważ nie zdefiniowane zostały jeszcze dokładne kryteria wyboru takich wzor-
ców, posłużymy się poniższym faktem do pokazania, że bardzo szeroka klasa problemów
decyzyjnych związanych z wyszukiwaniem wielu wzorców mieści się w klasie NP.

Fakt 7.1
Mając zadaną tablicę informacyjną i zbiór wzorców można w wielomianowym czasie

sprawdzić czy:

1. wzorce pokrywają wszystkie obiekty,

2. wzorce pokrywają wszystkie atrybuty,

3. wzorce posiadają określone gabaryty będące dowolną funkcją3 wysokości i szerokości,

4. każdy obiekt jest pokryty przez zadaną liczbę wzorców,

5. liczba „ominiętych” przez wzorce istniejących wartości atrybutów jest mniejsza od
zadanej.

7.6.2 Wyszukiwanie wielu wzorców

Podstawowym pomysłem na wygenerowanie pożądanego podziału jest znalezienie rodziny
wzorców pokrywającej łącznie wszystkie obiekty i posiadającej dodatkowe, pożądane ce-
chy. Standardowymi wymaganiami może być tutaj, aby wzorce posiadały jak największe
gabaryty w sensie szerokość



wysokość lub szerokość

B 

wysokość. Oprócz tego, możemy

żądać, żeby liczba istniejących wartości atrybutów nie pokrytych przez żaden obiekt była
minimalna. Mówimy wtedy o tzw. „ominiętych” wartościach. Może tak się zdarzyć, gdy
suma deskryptorów wzorców spełnianych przez dany obiekt jest mniejsza niż deskryptory
schematu wzorca.

Zadanie wygenerowania kompletnej rodziny wzorców o zadanych własnościach jest skom-
plikowanym problemem. Nie jest to jednak zagadnienie zupełnie nowe. W podobnych pro-
blemach, jak np. wyszukiwanie zbioru pokrywających reguł decyzyjnych czy reguł asocja-
cyjnych również występuje problem pokrycia całej tabeli informacyjnej pewną liczbą wzor-
ców (patrz np. [33, 34]). Nie istnieje jednak dobre rozwiązanie algorytmiczne, które umoż-
liwiało by aproksymację tego problemu NP-trudnego w sposób bezpośredni. Praktycznie
wszystkie problemy tego typu rozwiązywane są poprzez iteracyjne, zachłanne pokrywanie
coraz większej liczby obiektów tabeli wejściowej.

Istnieje co prawda uniwersalna metoda optymalizacyjna, która umożliwiła by rozwią-
zanie takiego zadania w sposób bezpośredni. Algorytmy genetyczne — bo o nich mowa,
umożliwiają optymalizację prawie dowolnej funkcji. Należy się jednak zastanowić nad real-
nością i efektywnością takiego rozwiązania.

3Ale taką funkcją, którą mo żna obliczýc w czasie wielomianowym dysponując wartościami argumentów
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Po pierwsze, chcąc zastosować algorytm genetyczny musimy zdefiniować kodowanie
osobników i operatory genetyczne. Niemniej jednak w niniejszym zadaniu nie mamy zada-
nej z góry liczny wzorców wchodzących w skład rodziny. Utrudnia to w sposób znaczący
implementację i, co ważniejsze, niekorzystnie wpływa na takie parametry algorytmu gene-
tycznego jak zbieżność, czy generowanie osobników należących do dziedziny poprawnych
rozwiązań.

Drugim aspektem jest stopień swobody rozwiązania, czyli liczba zmiennych. Jak poka-
zuje doświadczenie w badaniu algorytmów genetycznych, gdy stopień swobody przekracza
pewną dużą liczbę4, rzędu � 
 
 – � 
 
 
 , algorytmy genetyczne zaczynają generować rozwią-
zania dużo bardziej odległe od rozwiązania optymalnego oraz zaczynają mieć problemy ze
zbieżnością od rozwiązań gorszych do lepszych.

Ta krótka charakterystyka sugeruje, że do rozwiązywania tego zadania należy zastoso-
wać standardowe i o dobrze poznanych własnościach algorytmy zachłannego, iteracyjnego
generowania kolejnych wzorców. Jak pokażą wyniki eksperymentalne zaimplementowanie
ew. metody generującej całościowe rozwiązanie w jednym przebiegu nie może znacząco
wpłynąć na liczbę wygenerowanych wzorców jak i również na ostateczną klasyfikację, gdyż
liczba wzorców wygenerowanych za pomocą metody zachłannej jest już wystarczająco nie-
wielka.

7.6.3 Zachłanna konstrukcja pokrycia

Algorytm zachłannego generowania pokrycia wzorcami jest dobrze znaną i skuteczną me-
todą aproksymacyjną rozwiązywania tego problemu.

Algorytm 7.3
Mamy daną tabelę informacyjną

�
, oraz algorytm

�
wyszukiwania optymalnego wzorca5�

dla zadanej tabeli informacyjnej.

1.
��J � � �

,
1 � 


2.
��$ � � � �+� $ �

3.
�/$��@7 � � � $

� � � � 6
4.
1 � ��1

� �

5. Jeśli
�/$ ���

zakończ. W przeciwnym przypadku przejdź do 3.

Algorytm generuje kolejno najlepsze wzorce dla danej tabeli, po czym usuwa wszystkie
pokryte już obiekty i wyszukuje kolejnego najlepszego wzorca dla pozostałych elementów.
Oczywiście kolejno wygenerowane wzorce mogą również pokrywać elementy uprzednio
wyrzucone, niemniej jednak nie ma to wypływu na ocenę wzorca podczas zastosowania
algorytmu

�
wyszukiwania jednego wzorca.

4Liczbę ����� mo żemy w tym przypadku traktowác jako du żą, poniewa ż najczę́sciej towarzyszy jej rozmiar przestrzeni
rozwiązań co najmniej �

���	�
.

5Najczęściej jest to aproksymacja wzorca optymalnego.
6 
���
 oznacza zbiór obiektów spełniających wzorzec � � (patrz roz. 7.4).
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Istniejące również modyfikacje tego algorytmu, nie usuwające permanentnie już pokry-
tych obiektów, a tylko zmniejszające ich znaczenie podczas wyboru wzorca poprzez za-
stosowanie ważenia obiektów. Modyfikacje takie zostały przebadane eksperymentalnie dla
różnych metod ważenia obiektów, jednakże uzyskane wyniki okazały się być zdecydowanie
gorsze. Dalsze eksperymenty przeprowadzone zostały tylko i wyłącznie dla powyżej opisa-
nego algorytmu, odpowiadającego zmniejszeniu wagi raz pokrytego obiektu do zera.

7.7 Algorytmy wyszukiwania wzorca

Wyszukiwanie wzorca jest zagadnieniem wystarczająco trudnym i tak często spotykanym,
że samo w sobie stanowi osobną dziedzinę inteligentnego przetwarzania informacji. Na prze-
strzeni lat dopracowano się różnych skutecznych metod aproksymacji rozwiązania optymal-
nego. Czasem stosuje się również metody dokładne, przeprowadzające analizę wszystkich
możliwych wzorców, co prowadzi do wykładniczej złożoności obliczeniowej.

Przede wszystkim należy zdefiniować pojęcie wzorca optymalnego lub najlepszego. Ce-
lem metody podziału jest uzyskanie jak najlepszej klasyfikacji obiektów, zatem podtabele
powstałe w wyniku podziału powinny umożliwiać skuteczne wnioskowanie indukcyjne. Sku-
teczne wnioskowanie może zostać uniemożliwione, gdy nie dysponujemy zbyt małym zbio-
rem atrybutów, aby zachodziła chociażby częściowa zależność atrybutu decyzyjnego od tego
podzbioru atrybutów. Również niewystarczająca liczba obiektów może uniemożliwić wybra-
nie prawidłowej hipotezy opisującej pojęcie. Naturalną oceną wzorca wdaje się zatem stan-
dardowa funkcja jakości wzorca postaci szerokość



wysokość. Czasami stosuje się również

inne modyfikacje, jak szerokość
B 


wysokość itp. Badania eksperymentalne pokazały jednak,
że różnice w liczbie znalezionych wzorców były nieduże, a co najważniejsze, w ostatecznej
klasyfikacji wyniki nie różniły się zbytnio w zależności od przyjętej funkcji jakości, w za-
kresie szerokość

7 

wysokość,

:;:;:
, szerokość

D 

wysokość.

Eksperymenty uwidoczniły jednak niedoskonałość takiego podejścia. Podczas wyszuki-
wania wzorców znajdowano dużo wzorców o podobnych gabarytach, jednakże dających dra-
stycznie różne wyniki klasyfikacji. Należy sobie zatem zadać pytanie, dlaczego taką cechę
danych, jaką jest możliwość przeprowadzenia dokładnego wnioskowania mierzymy gabary-
tami wzorców, a nie w sposób bezpośredni.

Definicja 7.5 Jakość predykcyjna wzorca.
Jakością predykcyjną wzorca

�
dla danej metody � nazwiemy współczynnik poprawnych

odpowiedzi klasyfikacji metodą � danych testowych obciętych do wzorca. Dane treningowe
również podlegają procesowi obcięcia do wzorca.

Obcięcie danych do wzorca oznacza, że zarówno do zbioru danych treningowych jak i
testowych wybieramy tylko obiekty spełniające wzorzec

�
, a zbiór atrybutów warunkowych

zawężamy do atrybutów występujących w deskryptorach wypełnienia wzorca
�
.

Podczas oceny jakości wzorca można w bezpośredni sposób użyć jakości predykcyjnej
wzorca. Należy jednak mieć na uwadze, że proces ewaluacji tej wartości jest długi i posiada
złożoność obliczeniową rzędu co najmniej � ��� � ����� � � 7, gdzie

�
to liczba atrybutów, a �

to liczba obiektów. Do ostatecznej oceny jakości wzorca można również zastosować funkcję
uwzględniającą zarówno jakość predykcyjną wzorca jak i jego gabaryty.

7Zło żonósć obliczeniowa konstrukcji klasyfikatora zale ży równie ż od rozmiaru dziedzin wartósci atrybutów
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W publikacjach [34, 35] zaprezentowane zostały efektywne algorytmy, deterministyczny
Max I i randomizowany Max II, które cechuje szybki czas działania i duża skuteczność
aproksymacji, większa od prostego algorytmu genetycznego. Niestety algorytmy te nie mo-
gły być wykorzystane eksperymentów, gdyż ich konstrukcja bazuje na wyszukiwaniu wzor-
ców w oparciu o gabaryty zdefiniowane jako szerokość



wysokość. Eksperymenty przepro-

wadzane były również dla funkcji opartych o jakość predykcyjną wzorca. Funkcje takie nie
mogą być optymalizowane za pomocą wyżej wspomnianych algorytmów.

7.7.1 Algorytmy genetyczne

Algorytmy genetyczne to dobrze rozwinięta dziedzina sztucznej inteligencji. Ze szczegóło-
wym opisem zasad działania i metod projektowania algorytmów genetycznych można zapo-
znać się np. w pracach [9, 16, 31]. Algorytmy te należą do skutecznych metod optymaliza-
cji, które potrafią z powodzeniem optymalizować nawet najbardziej skomplikowane funkcje.
Należy jednak zwracać uwagę na sposób zmienności optymalizowanej funkcji oraz na repre-
zentację rozwiązania w postaci genotypu. Od właściwego dobrania reprezentacji i parame-
trów algorytmu genetycznego zależy szybkość zbieżności do rozwiązania suboptymalnego i
jakość tego rozwiązania.

Charakter zmienności funkcji jakości wzorca jest dosyć szczególny i zastosowanie pro-
stego algorytmu genetycznego do wyszukiwania wzorców może nie przynieść zadowalają-
cych rezultatów. Aby uzyskać algorytm genetyczny odpowiadający naszym oczekiwaniom
należy go nieco przeprojektować.

Algorytm 7.4 Genetyczny algorytm wyszukiwania wzorców.

1. Utwórz populację początkową ze wszystkich schematów wypełnienia występujących w
tabeli.

2. Za pomocą operatorów genetycznych utwórz populację potomną o liczbie osobników
� � .

3. Zastosuj selekcję do całej grupy � � osobników (najlepiej ruletkową lub turniejową) w
celu uzyskania następnej populacji o liczbie osobników � .

4. Powtarzaj od 2. zadaną liczbę iteracji.

Algorytm ten różni się istotnie od klasycznych algorytmów genetycznych. Ze względu
na kolejność zastosowania operatorów genetycznych i selekcji przypomina on nieco me-
tody ewolucyjne. Również istotną modyfikacją jest częściowo zmienna wielkość populacji
podczas różnych faz algorytmu. Także operatory genetyczne zostały indywidualnie zapro-
jektowane do rozwiązywania problemu wyszukiwania wzorców wypełnienia. Jako opera-
tory genetyczne zastosowano również proste operacje teoriomnogościowe umożliwiające
duże skoki w przestrzeni rozwiązań jednocześnie zachowujące własności osobników wej-
ściowych. Zastosowane operatory:

� mutacja jednorodna,

� przecięcie,

� suma,
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� krzyżowanie jednorodne.

Algorytm tej postaci doskonale nadaje się do wyszukiwania najlepszego wzorca nieza-
leżnie od stopnia skomplikowania funkcji jakości wzorca. Sterując parametrami algorytmu,
czyli wielkością populacji � , liczbą iteracji oraz prawdopodobieństwami użycia operatorów
genetycznych, możemy wyznaczyć empirycznie ustawienia gwarantujące dobre rozwiąza-
nia.

7.7.2 Optymalizacja wyszukiwania wzorca

Zastosowanie algorytmów wyszukiwania wzorca może być czasochłonne. Można jednak
zredukować czas wyszukiwania dokonując kilku prostych optymalizacji.

Podstawową metodą, jaką należy zastosować w celu zredukowania czasu wykonania jest
tzw. kompresja tabeli. Kompresja tabeli polega na utworzeniu tabeli pomocniczej w czasie
� � � ��� � � � , w której zawarte będą schematy wszystkich obiektów wraz z liczebnością ich
wystąpienia. Jak pokazały doświadczenia kompresja taka redukuje liczbę wierszy tabeli do
wielkości porównywalnych z

�
(liczbą atrybutów). Nawet dla dużych tabel liczba wystę-

pujących schematów nie przekracza zazwyczaj � 
 
 –
� 
 
 różnych schematów. Wyznaczenie

wysokości wzorca (liczby obiektów spełniających wzorzec) odbywa się wtedy nieporówna-
nie szybciej, niż na tabeli wejściowej. Zastosowanie kompresji tabeli, pomimo wstępnego,
przetwarzania pozwala na bardzo duże oszczędności czasowe.

Kolejną metodą godną polecenia jest zapamiętywanie wyników częściowych. Szcze-
gólnie jest to istotne podczas optymalizacji funkcji jakości zależnej od jakości predykcyj-
nej wzorca. Obliczenie takiej wartości jest bardzo czasochłonne i zastosowanie np. prostej
tablicy haszującej zawierającej wartości jakości predykcyjnej już sprawdzanych wzorców
przynosi duże oszczędności czasowe. Jest to istotne przy użyciu algorytmów genetycznych.
Jeśli używany przez nas algorytm genetyczny został dobrze zaprojektowany, wtedy charak-
teryzuje się szybką zbieżnością do rozwiązania suboptymalnego. Liczba istotnie różnych
wzorców jest wtedy dwa lub więcej razy mniejsza niż liczba wszystkich osobników podda-
nych sprawdzeniu.

7.7.3 Podsumowanie

W tej chwili dysponujemy już pełnym opisem metody podziału. Dwa podstawowe etapy
tej metody to dekompozycja i synteza wyników. Dekompozycja to wygenerowanie podzia-
łów, czyli wzorców określających podtablice. Podziały generowane są iteracyjnie za pomocą
algorytmu zachłannego, który wykorzystuje algorytm wyszukiwania jednego wzorca, gene-
tyczny lub inny. Dysponując podziałami, stosujemy algorytm wnioskowania indukcyjnego
na podtablicach, a wyniki zapisujemy do tabeli łączącej wyniki częściowe. Ponownie stosu-
jemy algorytm wnioskowania indukcyjnego, tym razem do tabeli łączącej wyniki i uzysku-
jemy ostateczny klasyfikator wszystkich obiektów tabeli wejściowej.

7.8 Opis eksperymentów

Teoretyczna analiza algorytmów nie zawsze okazuje się stosowna w zetknięciu z rzeczy-
wistością. Tym bardziej, że nie potrafimy tutaj przewidzieć dokładności wyników, gdyż w
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bardzo szczególny sposób zależą one od danych wejściowych. Każdą metodę w dziedzinie
analizy danych należy również sprawdzić empirycznie. Jest to bardzo popularna metoda po-
stępowania. W zasadzie dla wszystkich metod istnieją publikacje dokumentujące osiągane
wyniki, a dane na których testy te były wykonane znajdują się w ogólno dostępnych repo-
zytoriach stworzonych właśnie w tym celu. Istotnym zatem elementem pracy jest gruntowne
przetestowanie metody podziału w celu porównania jej wyników z innymi dostępnymi me-
todami.

Wyniki eksperymentów uzyskano stosując metodę testowania klasyfikatorów CV5. Me-
toda ta polega na podzieleniu zbioru danych na 5 równolicznych i rozłącznych podzbiorów.
Podczas klasyfikacji

D E danych traktuje się jako dane treningowe, a
7E jako dane testowe. Cały

proces powtarzany jest pięciokrotnie tak, aby wykorzystać wszystkie możliwości przydziału
4 podzbiorów do zbioru treningowego, a jeden pozostały użyć jako zbiór testowy. Jako wy-
nik końcowy podaje się średnią z pięciu prób klasyfikacji danych. Metoda CV5 (ang. cross
validation) umożliwia dość dobre wyznaczenie sprawności klasyfikatora.

Niestety wynik CV5 może się nieco oscylować (w zakresie kilku procent) w zależno-
ści od dystrybucji elementów oryginalnej tabeli do pięciu podzbiorów. Aby wynik ekspe-
rymentu był miarodajny i powtarzalny każdy eksperyment został wykonany 100 razy dla
różnych rozbić oryginalnej tabeli. Ostateczne wyniki pochodzą z uśrednienia wyników każ-
dego z eksperymentów. Ma to na celu zapobiec ewentualnemu zaburzeniu wyników przez
mniej lub bardziej sprawiedliwy podział danych na zbiór testowy i treningowy.

7.8.1 Algorytmy

Eksperymenty przeprowadzane były za pomocą 11 różnych algorytmów. Wszystkie algo-
rytmy oprócz C4.5 są konkretną realizacją metody podziału. Jako klasyfikator w etapie syn-
tezy wyników wykorzystany został algorytm C4.5. Ponieważ podtabele powstające w eta-
pie dekompozycji (podziału) nie zawierają żadnych brakujących wartości, umożliwia to do-
kładne porównanie zachowania się metod radzenia sobie z brakującymi wartościami w algo-
rytmie C4.5 i w różnych implementacjach metody podziału. Do porównania celowo została
wybrana metoda C4.5, gdyż uchodzi ona za jedną z najlepszych metod zarówno klasyfikacji,
jak i radzenia sobie z brakującymi wartościami.

Opis algorytmów będących implementacją metody podziału ogranicza się tylko i wyłącz-
nie do charakterystyki użytej metody generowania podziałów. Synteza wyników jest taka
sama dla wszystkich algorytmów i opiera się na metodzie C4.5.

� J48 — odpowiednik algorytmu C4.5 opracowanego przez J. R. Quinlana. Algorytm
ten był opisywany w podrozdziale 4.1.

� all — wszystkie schematy wypełnienia.

� exact — dokładny algorytm sprawdzający wszystkie
� � wzorców. Wzorce najlepsze

wybierane są na podstawie jakości określonej � � � � � � �
�
� �

.

� ga50 — algorytm genetyczny wykonujący 50 iteracji dla populacji o zmiennej liczbie
50–200. Funkcja jakości � � � � � � �

�
� �

.

� ga20 — algorytm genetyczny wykonujący 20 iteracji dla populacji o zmiennej liczbie
20–80. Funkcja jakości � � � �/� � �

�
� �

.
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��� 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
��� 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
� 2.06 2.41 2.76 3.11 3.45 3.80 4.15 4.50 4.84 5.19 5.54 5.88 6.23 6.58

Tablica 7.1: Jeśli sprawność wzorca wynosi � B , to liczba ���B jest dwa razy większa ni ż ��� 7 . Oznacza
to, że względem miary 	 ��

����� ��� wzorzec posiadający sprawność �

B
mo że miéc prawie dwa razy

mniejsze gabaryty 
���� , ni ż wzorzec posiadający sprawósć � 7 , a mimo tego będzie oceniony jako
lepszy.

� ga10 — algorytm genetyczny wykonujący 10 iteracji dla populacji o zmiennej liczbie
10–40. Funkcja jakości � � � � � � �

�
� �

.

� ev1 — algorytm genetyczny wykonujący 10 iteracji dla populacji o zmiennej liczbie
10–40. Funkcja jakości � � � � � � �

�
� �
� �
7�
, gdzie � � oznacza jakość predykcyjną wzorca

(sprawność wyrażoną w zakresie � 
 � � � , wyliczoną na podstawie wstępnej klasyfikacji
obiektów pasujących do tego wzorca).

� ev2 — algorytm genetyczny wykonujący 10 iteracji dla populacji o zmiennej liczbie
10–40. Funkcja jakości � � � � � � �

�
� �
���
B�
.

� ev4 — algorytm genetyczny wykonujący 10 iteracji dla populacji o zmiennej liczbie
10–40. Funkcja jakości � � � � � � �

�
� �
���
D�
.

� ev8 — algorytm genetyczny wykonujący 10 iteracji dla populacji o zmiennej liczbie
10–40. Funkcja jakości � � � � � � �

�
� �
���
?�
.

� ev — algorytm genetyczny wykonujący 10 iteracji dla populacji o zmiennej liczbie
10–40. Funkcja jakości � � � � � � � .

Użycie algorytmu all było spowodowane chęcią zweryfikowania hipotezy, że większa
liczba podziałów może mieć wpływ na poprawę wyniku. Algorytmy exact, ga50, ga20 i ga10
umożliwiają ocenę zastosowanego algorytmu genetycznego w zależności od liczby iteracji
i wielkości populacji w porównaniu do algorytmu dokładnego, wykonującego wykładniczą
liczbę sprawdzeń. Porównanie wyników algorytmów ga10, ev1,

:;:;:
, ev8 i ev pozwala ocenić

wpływ użycia jakości predykcyjnej wzorca na zachowanie się całego procesu wnioskowa-
nia (patrz tabela 7.1). Należy przypomnieć, że � �

�
� �

jest tylko heurystyką aproksymującą
przydatność wzorca do procesu wnioskowania. Wartość � � z pewnością jest bliższa nieznanej
funkcji przydatności, niemniej jednak jest też dużo bardziej czasochłonna do wyznaczenia.

7.8.2 Tabele

Do eksperymentów wykorzystano 12 zbiorów danych pochodzących z ogólno dostępnych
repozytoriów danych do celów badań nad sztuczną inteligencją. Głównym kryterium wy-
boru tabel informacyjnych była znaczna liczba brakujących wartości atrybutów, w miarę
równomiernie rozproszonych po całej tabeli.

Planowana implementacja algorytmów przewiduje używanie metod wnioskowania ope-
rujących tylko i wyłącznie na atrybutach symbolicznych. Dlatego jeśli w danych występo-
wały również atrybuty numeryczne, do eksperymentów brane były dwie tabele informacyjne.
Jedna tabela składała się z oryginalnych danych, a w drugiej wszystkie atrybuty numeryczne
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traktowane były jako atrybuty symboliczne. Taką konwersję możemy interpretować, jako
ignorowanie linowego porządku atrybutów numerycznych.

O ile nie zaznaczono inaczej, wszystkie poniżej wymienione tabele pochodzą z UCI Ma-
chine Learning Repository (patrz [5]).

� att � — tabela zawiera 1000 obiektów z 2 klas decyzyjnych, 1 atrybut numeryczny oraz
8 atrybutów symbolicznych. 24,4% obiektów posiada brakujące wartości.

� att ! — tabela zawiera 1000 obiektów z 2 klas decyzyjnych, 1 atrybut numeryczny trak-
towany jako symboliczny oraz 8 atrybutów symbolicznych. 24,4% obiektów posiada
brakujące wartości.

� ban � — tabela zawiera 540 obiektów z 2 klas decyzyjnych, 19 atrybutów numerycz-
nych oraz 11 atrybutów symbolicznych. 48,3% obiektów posiada brakujące wartości.

� ban ! — tabela zawiera 540 obiektów z 2 klas decyzyjnych, 19 atrybutów numerycz-
nych traktowanych jako symboliczne oraz 11 atrybutów symbolicznych. 48,3% obie-
któw posiada brakujące wartości.

� cmc2 � — tabela zawiera 1473 obiekty z 3 klas decyzyjnych, 2 atrybuty numeryczne
oraz 7 atrybutów symbolicznych. 14,9% obiektów posiada brakujące wartości.

� cmc2 ! — tabela zawiera 1473 obiekty z 3 klas decyzyjnych, 2 atrybuty numeryczne
traktowane jako symboliczne oraz 7 atrybutów symbolicznych. 14,9% obiektów po-
siada brakujące wartości.

� dna2 — tabela zawiera 3186 obiektów z 3 klas decyzyjnych, 60 atrybutów symbolicz-
nych. 14,1% obiektów posiada brakujące wartości.

� hab2 � — tabela zawiera 306 obiektów z 2 klas decyzyjnych, 3 atrybuty numeryczne.
20,3% obiektów posiada brakujące wartości.

� hab2 ! — tabela zawiera 306 obiektów z 2 klas decyzyjnych, 3 atrybuty numeryczne
traktowane jako symboliczne. 20,3% obiektów posiada brakujące wartości.

� hco � — tabela zawiera 368 obiektów z 2 klas decyzyjnych, 5 atrybutów numerycznych
oraz 14 atrybutów symbolicznych. 89,4% obiektów posiada brakujące wartości.

� hco ! — tabela zawiera 368 obiektów z 2 klas decyzyjnych, 5 atrybutów numerycznych
traktowanych jako symboliczne oraz 14 atrybutów symbolicznych. 89,4% obiektów
posiada brakujące wartości.

� hep � — tabela zawiera 155 obiektów z 2 klas decyzyjnych, 6 atrybutów numerycznych
oraz 13 atrybutów symbolicznych. 48,4% obiektów posiada brakujące wartości.

� hep ! — tabela zawiera 155 obiektów z 2 klas decyzyjnych, 6 atrybutów numerycznych
traktowanych jako symboliczne oraz 13 atrybutów symbolicznych. 48,4% obiektów
posiada brakujące wartości.

� hin — tabela zawiera 1000 obiektów z 3 klas decyzyjnych, 6 atrybutów symbolicz-
nych. 40,5% obiektów posiada brakujące wartości.
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� hyp � — tabela zawiera 3163 obiektów z 2 klas decyzyjnych, 6 atrybutów numerycz-
nych oraz 9 atrybutów symbolicznych. 36,8% obiektów posiada brakujące wartości.

� hyp ! — tabela zawiera 3163 obiektów z 2 klas decyzyjnych, 6 atrybutów numerycz-
nych traktowanych jako symboliczne oraz 9 atrybutów symbolicznych. 36,8% obie-
któw posiada brakujące wartości.

� pid2 � — tabela zawiera 768 obiektów z 2 klas decyzyjnych, 8 atrybutów numerycz-
nych. 48,8% obiektów posiada brakujące wartości.

� pid2 ! — tabela zawiera 768 obiektów z 2 klas decyzyjnych, 8 atrybutów numerycz-
nych traktowanych jako symboliczne. 48,8% obiektów posiada brakujące wartości.

� smo2 � — tabela zawiera 2855 obiektów z 3 klas decyzyjnych, 3 atrybuty numeryczne
oraz 5 atrybutów symbolicznych. 18,7% obiektów posiada brakujące wartości.

� smo2 ! — tabela zawiera 2855 obiektów z 3 klas decyzyjnych, 3 atrybuty numeryczne
traktowane jako symboliczne oraz 5 atrybutów symbolicznych. 18,7% obiektów po-
siada brakujące wartości.

� tumor — tabela zawiera 339 obiektów z 22 klas decyzyjnych, 17 atrybutów symbo-
licznych.8 61,1% obiektów posiada brakujące wartości.

7.8.3 Implementacja

Jako podstawa do implementacji algorytmów wybrany został system analizy danych Weka
[12] opisany w książce [61]. Wybór ten podyktowany został dostępnością pełnej implemen-
tacji algorytmu C4.5 wraz z jego dokładną dokumentacją. Oryginalna implementacja C4.5
pozbawiona jest dokumentacji technicznej, a w dodatku wykonana została w języku progra-
mowania C, więc nie nadaje się do łatwej modyfikacji i użycia wewnątrz innych programów.
Jako, że Weka zaimplementowana została w języku Java, również do implementacji wszyst-
kich opisanych wcześniej algorytmów użyty został ten język programowania. Pozwala to na
szybką implementację eksperymentów oraz łatwą modyfikację zastosowanych rozwiązań.
Oznacza to co prawda spowolnienie wykonania eksperymentów ok. 10 razy, jednak w dzi-
siejszych czasach, przy szerokiej dostępności dużych mocy obliczeniowych nie ma to aż tak
dużego znaczenia. Dużą zaletą takiego rozwiązania jest również łatwość w uruchamianiu
programu pod kontrolą różnych systemów operacyjnych.

Algorytmy implementujące różne warianty metody podziału wykonane zostały jako nie-
zależna część programu, nie wymagająca ingerencji w kod źródłowy Weki, oraz korzystająca
z własnych, zoptymalizowanych pod kątem eksperymentów struktur danych. Jedynym miej-
scem użycia systemu Weka był proces wnioskowania indukcyjnego metodą J48. Metoda J48
to pełna implementacja metody C4.5 Revision 8, która jest ostatnią niekomercyjną wersją
rozwojową metody C4.5, przed wprowadzeniem metody C5.0 (patrz [42]).

Wszystkie eksperymenty wykonywane były na komputerach PC z procesorami AMD
Duron 800Mhz lub Intel Pentium III 800Mhz pod kontrolą systemów operacyjnych Li-
nux i Microsoft Windows. Czas wykonania eksperymentów zależał od użytego algorytmu.

8Dane dotyczące nowotworów pochodzą z Instytutu Onkologii w Centrum Medycznym Uniwersytetu w Ljubljanie
dzięki życzliwósci M. Zwittera oraz M. Skolica.
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Różnice pomiędzy konfiguracjami konkretnych komputerów nie miały praktycznie żadnego
wpływu na szybkość działania. Wykonanie pełnej serii eksperymentów dla najszybszej me-
tody ga10 wyniosło 84 minuty, a dla najwolniejszej ev — 8 dni. Należy jednak pamięta ć,
że dla każdej z 21 tabel z danymi wykonywano stukrotne powtórzenie eksperymentu. Seria
eksperymentów z metodą ev wykonaną tylko jednokrotnie zajęła by mniej niż 2 godziny
przy wykorzystaniu wyżej opisanego sprzętu. Implementacja całego systemu w jednym z
mniej uniwersalnych języków programowania, jak np. C, czy C++, pozwoliła by na jeszcze
większe skrócenie tego czasu, do ok. 10–20 minut.

7.9 Wyniki eksperymentów

Eksperymenty przeprowadzano pod kontem weryfikacji przydatności metody podziału. Istot-
nym punktem badań, było stwierdzenie, która z implementacji metody podziału okaże się
najlepsza. Podczas eksperymentów weryfikowano również hipotezy dotyczące mechanizmów
działania poszczególnych komponentów metody. W szczególności, niezbędne było pokaza-
nie skuteczności zastosowanego algorytmu genetycznego, który jest głównym składnikiem
dekompozycji danych wejściowych na podtabele określone wzorcami.

7.9.1 Hipoteza statystyczna

Porównanie wyników algorytmów all i exact nie potwierdza słuszności hipotezy statystycz-
nej, że większa liczba podziałów wpływa na poprawę jakości wnioskowania. Należy zauwa-
żyć, że wzorce wykorzystane w metodzie all, czyli wszystkie schematy wypełnienia, muszą
być co najmniej tak szerokie (zawierać co najmniej tyle atrybutów), co wzorce użyte w me-
todzie exact. Nie jest zatem możliwe, aby w wzorce użyte w metodzie all ograniczały liczbę
atrybutów uniemożliwiając tym samym wykrycie zależności pomiędzy atrybutami warunko-
wymi a decyzją. Wyniki jakie możemy zaobserwować, szczególnie dla tabel posiadających
dużą liczbę schematów, jak np. hco, pokazują, że algorytm all cechuje nieco mniejsza do-
kładność klasyfikacji, niż algorytm exact. Istnieją co prawda zbiory danych, dla których to
metoda all okazuje się być lepsza, niemniej jednak nie są to częste przypadki.

7.9.2 Algorytm genetyczny

Wyniki metod exact, ga50, ga20 i ga10 ilustrują efektywność zaprojektowanego algorytmu
genetycznego. Nawet ograniczona do 10–40 osobników i 10 iteracji metoda ga10 umożliwia
wnioskowanie tak skuteczne, jak sprawdzanie wszystkich wzorców9. Różnice w osiąganych
wynikach różnią się z tabeli na tabelę, niemniej jednak nie są duże i nie rozstrzygają o prze-
wadze żadnego z algorytmów. Dla pewnych tabel każda z tych czterech metod okazuje się
być najlepsza. Wyniki te dobrze świadczą o jakości zastosowanego algorytmu genetycznego.
W celu przekonania się o dużej skuteczności tego algorytmu możemy również porównać
liczbę znalezionych wzorców, uwidocznioną na tabeli 7.4. Dla większości tabel uzyskano
dokładnie taką samą liczbę wzorców pokrywających całą tablicę. Pewną zasługę w uzy-
skaniu tak dobrych wyników należy również przypisać niezbyt dużej wrażliwości liczby
pokrywających tabelę wzorców na niewielką zmianę konkretnych wzorców i ich własności.

9Liczba wszystkich wzorców jest oczywiście równa ��� , gdzie
�

to liczba atrybutów.
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J48 all exact ga50 ga20 ga10 ev1 ev2 ev4 ev8 ev

att � 52.55 55.11 55.10 55.22 55.19 54.94 55.77 57.78 60.34 61.94 63.33
att � 57.79 58.13 58.09 58.01 58.00 57.99 59.12 60.83 63.00 64.23 65.17

ban � 62.14 65.56 65.26 65.20 65.82 68.51 70.43 72.69 74.91 76.30
ban � 73.62 72.26 73.79 74.14 73.70 76.90 78.71 80.72 82.41 83.31

cmc2 � 45.72 47.23 44.66 44.96 45.03 44.92 47.28 48.61 50.09 51.33 51.41
cmc2 � 47.88 47.68 47.18 47.06 46.98 47.17 48.31 50.24 51.88 53.19 53.27
dna2 86.84 87.31 80.48 80.50 80.73 86.20 86.95 87.16 88.39 89.07

hab2 � 71.54 68.26 67.96 68.00 67.90 68.07 69.14 70.71 72.90 74.67 75.98
hab2 � 71.13 72.11 72.36 72.41 72.47 72.66 72.55 73.82 74.75 75.43 75.36
hco � 81.68 78.73 79.61 79.85 79.90 79.50 81.96 83.60 85.02 85.99 86.00
hco � 81.22 77.38 78.67 78.74 78.96 80.17 82.67 84.12 85.50 86.48 86.69
hep � 80.12 76.18 76.40 76.33 76.19 75.88 79.53 81.48 83.70 85.29 86.59
hep � 78.35 76.83 75.90 76.15 76.25 76.37 81.43 84.60 86.32 88.18 88.74
hin 70.47 66.65 69.98 69.84 70.04 69.96 70.16 70.49 70.98 71.10 70.53

hyp � 95.82 96.44 96.71 96.70 96.68 96.72 96.76 96.79 96.80 96.81 97.09
hyp � 99.05 98.78 97.94 97.96 97.93 97.96 98.98 99.00 98.99 99.00 99.21
pid2 � 60.81 62.06 61.97 61.96 61.94 61.98 62.19 63.84 66.24 67.11 68.29
pid2 � 73.50 72.90 73.38 73.20 73.43 73.26 73.47 74.16 75.38 76.70 77.20

smo2 � 60.75 57.63 56.17 56.08 56.14 56.14 57.92 65.48 68.47 68.95 69.66
smo2 � 62.64 57.83 61.30 61.17 61.11 61.21 66.16 66.80 68.00 69.02 69.89
tumor 38.89 36.19 36.48 36.42 36.57 36.28 40.17 42.20 43.05 43.89 43.30

Tablica 7.2: Wyniki eksperymentów. Liczba poprawnych odpowiedzi klasyfikatora w procentach.

Jednakże wyniki takie wyraźnie pokazują dużą efektywność zaprojektowanego algorytmu
genetycznego.

Parametry tego algorytmu były strojone na podstawie badań eksperymentalnych i pre-
zentowane tutaj wyniki zostały wykonane przy najlepszych, dobranych empirycznie, usta-
wieniach. Podlegające strojeniu parametry to wielkość populacji i liczba iteracji, które osta-
tecznie zostały ustalone na niezależne od wielkości badanych tablic, a także prawdopodo-
bieństwa zastosowania operatorów genetycznych i wybór operatora selekcji.

7.9.3 Jakość predykcyjna wzorca

Włączenie jakości predykcyjnej wzorca do funkcji oceny było kluczowym punktem eks-
perymentów. Należy przypomnieć, że wszystkie metody ga10, ev1,

:M:;:
, ev8 oraz ev jako

optymalizatora używały tego samego algorytmu genetycznego. Jedyna różnica polegała na
sposobie obliczania funkcji oceny wzorca. Zmieniający się wykładnik przy jakości predyk-
cyjnej wzorca określa wpływ tej wartości na funkcję oceny. Zastosowanie metod ga10, ev1,
ev2, ev4, ev8 i ev można interpretować jako użycie wykładników odpowiednio 
 , � ,

�
, � ,

�
i

� , przy czym tę ostatnią wartość należy interpretować nieformalnie.
Podczas analizy wstępnych eksperymentów, gdzie porównywano znalezione wzorce z

wszystkimi wzorcami występującymi w danych, zauważono pewien rozrzut ostatecznych
wyników, pomimo zastosowania podobnej liczby wzorców o zbliżonych gabarytach. Wiąże
się to z występowaniem w danych dużej liczby wzorców o podobnych szerokościach i wy-
sokościach, które cechuje zdecydowanie odmienna jakość predykcyjna, czyli wpływ na sku-
teczność wygenerowanych hipotez. W oczywisty sposób nie wszystkie atrybuty i ich kombi-
nacje w taki sam sposób nadają się do aproksymacji pojęć, zakodowanych w postaci atrybutu

Uniwersytet Warszawski — Wydział Matematyki, Informatyki i Mechaniki



78 7.9. WYNIKI EKSPERYMENTÓW

J48 all exact ga50 ga20 ga10 ev1 ev2 ev4 ev8 ev

att � 52.55 +2.56 +2.55 +2.67 +2.64 +2.39 +3.22 +5.23 +7.79 +9.39 +10.78
att � 57.79 +0.34 +0.30 +0.22 +0.21 +0.20 +1.33 +3.04 +5.21 +6.44 +7.38

ban � 62.14 +3.42 +3.12 +3.06 +3.68 +6.37 +8.29 +10.55 +12.77 +14.16
ban � 73.62 -1.36 +0.17 +0.52 +0.08 +3.28 +5.09 +7.10 +8.79 +9.69

cmc2 � 45.72 +1.51 -1.06 -0.76 -0.69 -0.80 +1.56 +2.89 +4.37 +5.61 +5.69
cmc2 � 47.88 -0.20 -0.70 -0.82 -0.90 -0.71 +0.43 +2.36 +4.00 +5.31 +5.39
dna2 86.84 +0.47 -6.36 -6.34 -6.11 -0.64 +0.11 +0.32 +1.55 +2.23

hab2 � 71.54 -3.28 -3.58 -3.54 -3.64 -3.47 -2.40 -0.83 +1.36 +3.13 +4.44
hab2 � 71.13 +0.98 +1.23 +1.28 +1.34 +1.53 +1.42 +2.69 +3.62 +4.30 +4.23
hco � 81.68 -2.95 -2.07 -1.83 -1.78 -2.18 +0.28 +1.92 +3.34 +4.31 +4.32
hco � 81.22 -3.84 -2.55 -2.48 -2.26 -1.05 +1.45 +2.90 +4.28 +5.26 +5.47
hep � 80.12 -3.94 -3.72 -3.79 -3.93 -4.24 -0.59 +1.36 +3.58 +5.17 +6.41
hep � 78.35 -1.52 -2.45 -2.20 -2.10 -1.98 +3.08 +6.25 +7.97 +9.83 +10.39
hin 70.47 -3.82 -0.49 -0.63 -0.43 -0.51 -0.31 +0.02 +0.51 +0.63 +0.06

hyp � 95.82 +0.62 +0.89 +0.88 +0.86 +0.90 +0.94 +0.97 +0.98 +0.99 +1.27
hyp � 99.05 -0.27 -1.11 -1.09 -1.12 -1.09 -0.07 -0.05 -0.06 -0.05 +0.16
pid2 � 60.81 +1.25 +1.16 +1.15 +1.13 +1.17 +1.38 +3.03 +5.43 +6.30 +7.48
pid2 � 73.50 -0.60 -0.12 -0.30 -0.07 -0.24 -0.03 +0.66 +1.88 +3.20 +3.70

smo2 � 60.75 -3.12 -4.58 -4.67 -4.61 -4.61 -2.83 +4.73 +7.72 +8.20 +8.91
smo2 � 62.64 -4.81 -1.34 -1.47 -1.53 -1.43 +3.52 +4.16 +5.36 +6.38 +7.25
tumor 38.89 -2.70 -2.41 -2.47 -2.32 -2.61 +1.28 +3.31 +4.16 +5.00 +4.41

Tablica 7.3: Wyniki eksperymentów. Ró żnica osiągniętych wyników w stosunku do metody J48.

decyzyjnego. Użycie jakości predykcyjnej przy wyliczaniu funkcji oceny wzorca umożliwia
selekcję tych wzorców, które wpłyną na polepszenie wyników klasyfikacji. Przykładowo
przy wykładniku � wzorzec o jakości predykcyjnej 


:�� �
może posiadać o � 
�� mniejsze ga-

baryty niż wzorzec o jakości 

:�� 
 , a i tak zostanie oceniony jako lepszy (porównaj także

tabelę 7.1).
Zdecydowana poprawa wyników metody ev1 w porównaniu do ga10 wykazuje słusz-

ność zastosowania takiej metodologii. Porównując liczbę znalezionych wzorców (patrz ta-
bela 7.4) znajdujemy potwierdzenie empiryczne obserwacji o dużej liczbie podobnych ga-
barytami wzorców. W większości przypadków liczba znalezionych wzorców nie zwiększyła
się znacznie, a czasami nawet zmalała. Zauważmy zatem, że zdecydowana poprawa jako-
ści klasyfikacji uzyskana została przy praktycznie identycznej liczbie podtabel użytych do
dekompozycji danych.

Porównując wyniki kolejnych metod, ev2, ev4, ev8 i ev, obserwujemy stopniowy wzrost
jakości klasyfikacji. Dla niektórych tabel liczba wzorców, które posłużyły do dekompozycji,
niewiele wzrasta, lub stabilizuje się na poziomie zbliżonym do uzyskanego w metodach
exact i ga10. Istnieją również tabele, gdzie występuje drastyczny wzrost liczby podtabel, aż
do wielkości porównywalnych z liczbą schematów. Nie istnieje jednak szczególny związek,
pomiędzy szybkością wzrostu liczby wzorców, a uzyskaną poprawą (pogorszeniem) jakości
wnioskowania.

Wyniki uzyskane przy zastosowaniu metody ev są najlepsze ze wszystkich, oraz jako
jedyne pozostają lepsze od wyników metody J48 dla każdej tabeli. Chociaż pierwotnym
zamysłem eksperymentów było porównanie jakości mechanizmów radzenia sobie z braku-
jącymi wartościami, zbyt naiwnym stwierdzeniem było by, gdybyśmy przyjeli, że uzyskana
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all exact ga50 ga20 ga10 ev1 ev2 ev4 ev8 ev

att � 17.15 3.90 3.93 3.90 3.94 4.00 4.10 4.15 4.09 5.35
att � 17.19 3.90 3.93 3.93 3.96 3.97 4.00 4.03 3.88 4.97

ban � 56.80 5.33 6.98 9.00 8.09 8.28 9.01 10.08 22.14
ban � 56.83 5.27 6.85 8.92 8.18 8.49 9.26 10.62 23.10

cmc2 � 6.96 2.00 2.00 2.00 2.00 2.41 2.59 2.91 3.51 3.92
cmc2 � 6.94 2.00 2.00 2.00 2.00 2.15 2.47 3.25 4.11 5.25
dna2 7.80 1.00 1.01 1.06 2.54 2.63 2.61 3.55 7.08

hab2 � 5.00 3.83 3.67 3.65 3.69 3.20 3.01 2.78 2.50 1.84
hab2 � 5.00 3.82 3.65 3.66 3.65 3.67 3.52 3.24 3.08 2.33
hco � 164.65 5.03 5.03 5.16 5.46 5.80 6.16 6.89 9.70 67.54
hco � 164.58 5.00 5.02 5.20 5.51 6.08 6.38 7.39 9.97 65.26
hep � 18.48 3.84 3.83 3.85 4.03 4.12 4.30 4.70 5.30 8.27
hep � 18.47 3.83 3.81 3.86 4.02 4.15 4.39 4.81 5.50 8.77
hin 25.97 4.11 3.90 3.87 3.83 4.91 5.74 7.21 8.77 13.22

hyp � 17.96 2.00 2.00 2.00 2.01 2.01 2.02 2.01 2.01 4.55
hyp � 17.96 2.00 2.00 2.00 2.00 2.02 2.04 2.04 2.14 7.53
pid2 � 6.77 2.97 2.97 2.98 2.98 2.99 3.11 3.41 3.48 3.89
pid2 � 6.76 2.97 2.99 2.97 2.98 2.98 2.87 3.01 3.26 4.81

smo2 � 4.00 2.00 2.00 2.00 2.00 2.42 1.80 1.33 1.39 2.14
smo2 � 4.00 2.00 2.00 2.00 2.00 1.26 1.15 1.15 1.26 2.06
tumor 6.40 1.99 1.99 1.99 2.17 2.53 3.03 3.58 3.84 4.37

Tablica 7.4: Średnia liczba u żytych wzorców. Wartósć ta odpowiada liczebności lokalnych podmodeli
u żytych w metodzie podziału.

poprawa jest tylko i wyłącznie zasługą lepszego potraktowania brakujących wartości. Me-
toda podziału oferuje dużo większe możliwości analizy danych, poprzez wielokrotne za-
stosowanie klasyfikatora. Zastosowanie algorytmu ev oznacza nie tylko inteligentną filtra-
cję brakujących wartości, ale również dobór cech znaczących, czyli atrybutów istotnych do
aproksymacji pojęć. Poprawa jakości klasyfikacji jest rezultatem wielu różnych czynników,
podobnie jak ma to miejsce w innych metodach opartych na wielokrotnej klasyfikacji, ta-
kich jak np. Bagging i Boosting (patrz np. [43]). Niemniej jednak, jako całość metoda ta
umożliwia radzenie sobie z brakującymi wartościami i to z końcową skutecznością zdecydo-
wanie lepszą, od jednej z najlepszych metod potrafiących analizować dane z niekompletnym
opisem obiektów, jaką jest C4.5.
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Rozdział 8

Zakończenie

Zaprezentowana w niniejszej pracy metoda podziału jest skutecznym i uniwersalnym roz-
wiązaniem umożliwiającym wnioskowanie w oparciu o dane z niekompletnym opisem obie-
któw. Źródłem jej wysokiej sprawności jest zarówno uniemożliwienie systemom decyzyj-
nym wnioskowania w oparciu o brak informacji, jak i zastosowanie wielokrotnej, etapowej
klasyfikacji, która pozwala na konstrukcję bardziej złożonych hipotez dotyczących badanego
pojęcia. Ma ona jednak pewną przewagę nad innymi metodami uczenia się pojęć w oparciu
o przykłady stosującymi złożony model hipotez.

Wyniki teorii maszynowego uczenia się pokazują, że gdy podczas procesu uczenia się
przeszukujemy bardziej skomplikowaną przestrzeń hipotez w celu odnalezienia tej pasującej
do badanego pojęcia, wzrasta znacznie liczba niezbędnych przykładów do prawidłowego
wyuczenia się pojęcia. To zjawisko opisuje tzw. wymiar Vapnika-Chervonenkisa (patrz [8,
57]). W metodzie podziału unika się tego problemu stosując dwuetapową konstrukcję opisu
pojęcia na zbiorze wszystkich przykładów.

Ta własność w połączeniu ze skuteczną eliminacją brakujących wartości z procesu wnio-
skowania pozwala na uzyskanie dobrej skuteczności klasyfikacji. Jak pokazują wyniki eks-
perymentalne metoda podziału przewyższa swoją skutecznością metodę C4.5 uznawaną za
najlepszą metodę wnioskowania w oparciu o dane z niekompletnym opisem obiektów.

Metoda podziału została zaprojektowana pod kątem jej zastosowania w systemach de-
cyzyjnych opartych na teorii zbiorów przybliżonych. Planowana jest implementacja metody
podziału w ramach biblioteki RSES-lib wykonanej w Zakładzie Logiki Matematycznej Uni-
wersytetu Warszawskiego pod opieką naukową prof. dra hab. Andrzeja Skowrona przez ze-
spół ludzi pod kierownictwem dra Jana Bazana.

Dalszym kierunkiem do badań nad brakującymi wartościami atrybutów powinno być
skonstruowanie algorytmu umożliwiającego odkrywanie wiedzy dotyczącej brakujących war-
tości bezpośrednio z danych. Wiedza taka powinna umożliwiać algorytmiczne wyznaczenie
optymalnej relacji nierozróżnialności dla rozpatrywanych danych. Od takiej relacji oczekuje
się, że powinna maksymalizować jakość wnioskowania przez generowanie aproksymacji po-
jęć o jak najmniejszym brzegu, przy jednoczesnym zachowaniu poprawności wnioskowania
indukcyjnego i jego zdolności do generalizacji.
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