OPERATOR /, =+ {;, NORMS OF RANDOM MATRICES WITH IID ENTRIES

RAFAL LATALA AND MARTA STRZELECKA

ABSTRACT. We prove that for every p, g € [1, co] and every random matrix X = (X; ;)i<m,j<n
with iid centered entries satisfying the regularity assumption ||X; jll2p < af|X; ||, for every
p 2> 1, the expectation of the operator norm of X from £} to £7* is comparable, up to a
constant depending only on «, to
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We give more explicit formulas, expressed as exact functions of p, ¢, m, and n, for the asymp-
totic operator norms in the case when the entries X; ; are: Gaussian, Weibullian, log-concave
tailed, and log-convex tailed. In the range 1 < ¢ < 2 < p we provide two-sided bounds under
a weaker regularity assumption (I[*]Xil’l)l/4 < a(]EX1271)1/2.
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Let X = (X, ;)i<m, j<n be an m x n random matrix with iid entries. Seginer proved in [12]
that if the entries X; ; are symmetric, then the expectation of the spectral norm of X is of the
same order as the expectation of the maximum Euclidean norm of rows and columns of X. In
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2 R. LATALA AND M. STRZELECKA

this article we address a natural question: do there exist similar formulas for operator norms of
X from £ to 43", where p, q € [1,00]? Recall that if A = (4; ;)i<m, j<n is an m x n matrix, then

|Allen —em = sup ||At]l, = sup sTAt = sup Z A; jsit;
D a tEBg teBg,sEBZIZ tEBg,s€B$ i<m,j<n

denotes its operator norm from £ to £;"; by p* we denote the Holder conjugate of p € [1, o0],
i.e., the unique element of [1, oo] satisfying % + p% =1, and by ||z, = (3, |zi|?)'/* we denote
the £,-norm of a vector = (a similar notation, ||Z||, = (E|Z|?)'/? is used for the L,-norm of a
random variable Z). If p = 2 = ¢, then HAHKgae;n is a spectral norm of A, so the case p=2=g¢

corresponds to the aforementioned result by Seginer.

Let us note that bounds for E||X||¢n—¢m yield both tail bounds for || X{|g—¢n and bounds
for (E|| X
assumption; see [1, Proposition 1.16] for more details. Thus, estimating the expectation of the
operator norm automatically gives us more information about the behaviour of the operator
norm.

Not much is known about the nonasymptotic behaviour of the operator norms of iid random
matrices if (p, q) # (2,2); see the introduction to article [10] for an overview of the state of the
art. In the case when X;; = g;; are iid standard A(0,1) random variables one may use the
classical Chevet’s inequality [4] to derive the following two-sided bounds (see [10] for a detailed
calculation):

5;: _)Z;,L)l/ P for every p > 1, provided that the entries of X satisfy a mild regularity

ml/a=1/2p1/p" | nl/p*—l/le/q7 p*,q <2,
N Vp* ALogn nt/P mt/a=1/2 4 mt/a q<2<p",
G a4 gALogmmM /P2 pr <2< g,
Vp* ALognn!/?" + /g ALogmm'/1, 2 < q,p*
(1) N \/mm(l/qfl/@\/onl/f + /g A Logm n(M/P" =1/2V0p1/a

where

Logn = max{1,Ilnn},
and for two nonnegative functions f and g we write f 2 g (or g < f) if there exists an absolute
constant C' such that C'f > g; the notation f ~ ¢ means that f = g and g 2 f. We write
Sa, ~K,y, etc. if the underlying constant depends on the parameters given in the subscripts.
Equation (1) yields that for n = m we have

en—pn

VP AqALognnt/W A pry g > 2.

However, even in the case of exponential entries it was initially not clear for us what the order
of the expected operator norm is. This question led us to deriving in [10] two-sided Chevet type
bounds for iid exponential and, more generally, Weibull random vectors with shape parameter
r € [1,2]. In consequence, we obtained the desired nonasymptotic behaviour of operator norm
in the Weibull case when r € [1,2] (r = 1 is the exponential case). Note that this does not cover
the case of a matrix (¢; ;); ; with iid Rademacher entries, which corresponds to the case r = co.
It is well known (by [2, 3], cf. [1, Remark 4.2]) that in this case

EH (gi,j)?,j:l

mY a2 /0T g1/t 12 g < 9,
(2) E||(gij)i<mi<nllpn_om ~pa m11//q*_l/2nl/f* +m/e, Q2=
IISTIEI G St ) /et /et 2 g pr<2<gq

nl/P" ml/q7 2 < p*,q.
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Moreover, it is not hard to show that constants in lower bounds do not depend on p and gq,
whereas [11, Lemma 172] shows that in the case of square matrices the constants in (2) may be
chosen to be independent of p and ¢, i.e.,

nt/ AP g < 2,
E||(€i5) =1l pn_pn ~ . N
2] n—en 7,Ll/(p /\q)’ p* Vg > 2.

It is natural to ask if the upper bound in (2) does not depend on p and ¢ also in the rectangular
case. Surprisingly, the answer to this question is negative — in Corollary 14 below we provide
an exact two-sided bound (different than the one in (2)) up to a constant non-depending on p
and g.

The two-sided bounds for operator norms in all the aforementioned special cases may be
expressed in the following common form:

Zt Xl,j’

Therefore, it is natural to ask if this formula is valid for other distributions of entries. We are
able to prove it for the class of random variables X; ; satisfying the following mild regularity
condition

(3) 1 Xijll2p < ol Xijll, forall p>1.
This class contains, among others, Gaussian, Rademacher, log-concave, and Weibull random
variables with any parameter r € (0,00). Condition (3) may be rephrased in terms of tails of

random variables X; ; (see Proposition 9).
The main result of this paper is the following two-sided bound.

+ 0P sup
gALogm sEB™.
q

m
E Sz'Xi,l‘

i=1

E||(Xi; 1<mﬂ<n||enaem ~m!/® sup

teBy p*/\Logn.

Theorem 1. Let (X; ;)i j<n be 4d centered random variables satisfying regularity condition (3)
and let p,q € [1,00]. Then

+nt sup
qALogm sEB.

Zt le] ZS’L 11‘

Remark 2. If ¢ < 2 < p, then the assertion of Theorem 1 holds under a weaker condition that
random variables X, ; are independent, centered, have equal variances, and satisfy || X; ;|4 <
a||X; jll2. We prove this in Subsection 6.1.

EH %, 1'<m7j<n||,€ﬂ_>gm ~a ml/q sup

teBn p*ALogn

Remark 3. In the case when random variables X; ; are not necessarily centered, Theorem 1 and
Jensen’s inequality imply that (see Subsection 3.3 for a detailed proof)

E|[(X; ;)i ~oo mM I PTEX /4 ti(X1, —EX

H( ) 3J g;z,*),gm m n I 1 1| + m tbequ"f Z 1,5 1 1) qALogm
4 v H ~EX

( ) 521115’13" Zsz ot ! 1) p*ALogn

provided that iid random variables X; ;, 1 < m,j < n, satisfy

(5) X5 — EXijll2p < allXiy —EXil, forallp>1.

The formula in Theorem 1 looks quite simple but, because of the suprema appearing in it, it
is not always easy to see how the right-hand side depends on p and ¢. In Section 3 we give exact
formulas for quantities comparable to the one from Theorem 1 in the case when the entries are
Weibulls (this includes exponential and Rademacher random variables) or, more generally, when
the entries have log-concave or log-convex tails.
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The next proposition reveals how the two-sided bound from Theorem 1 depends on p and g
in the case when n = m and p* VvV g > 2.

Proposition 4. Let p,q € [1,00) and p* V q > 2. Let X, ; be iid centered random variables
satisfying (3). Then

Zt Xl,] Zsz 11‘

Moreover, if one of the parameters p*, ¢ is not larger than 2, then in the general rectangular
case one of the terms from the formula in Theorem 1 can be simplified in the following way.

1/(p*
p*ALogn ~a [ /\q)HXIJHqALOgn.

+nt sup
gALogn s€B.

nl/a sup
teBn

Proposition 5. For ¢ € [1,2], p € [1,00) and centered iid random variables X; we have

1 - n .
A/P"=1/2)4 | X, || < H t.X,H < n/P =1/2)+ | x
n su g n .
2\/5 || 1||q_t€% pt J<x] i H 1”2

Similarly, for p € [1,2] and q € [1,00),

m(l/q_1/2)+||X1||,~, <

Al < m(l/q_1/2)+||X1||2.
5=

22

In particular, if 1 < p*,q < 2, and X, ;’s are iid random variables satisfying a1 X; ;
||X,LJ||2 = ].7 then

L >

mi/q sup
teBy

Zt X”H +n'/P" sup
q SEBM

Z siXi 1” ~og mM AP =12 1Pt /a2,
~ p*

Theorem 1 and the last part of Proposition 5 imply that under the regularity assumption (3)
the behaviour of E|[(X; ;)7 ;_1[[ez—ey in the range 1 < p*, ¢ < 2 is the same as in the case of iid
Gaussian matrix (see (1)), whose entries have the same variance as X7 ;.

Propositions 4 and 5 yield that in the case of square matrices the bound from Theorem 1 may
be expressed in a more explicit way in the whole range of p and ¢:

Corollary 6. Let (X; ;)i j<n be #d centered random variables satisfying regularity condition (3)
and let 1 < p,q < oco. Then

E||( /TP =12) X o, Phas2,
1)z =1l e ~e nt/ A0 | Xy |

p*AgALogn; p* \ q > 2.

The rest of this article is organized as follows. In Section 2 we review properties of ran-
dom variables satisfying regularity condition (3). In Section 3 we provide explicit functions of
parameters p*, ¢, n, m comparable to the bounds from Theorem 1 for some special classes of
distributions, and prove Remark 3. In Section 4 we establish the lower bound of Theorem 1,
and in Section 5 we give proofs of Propositions 4 and 5. Section 6 contains the proof of the
upper bound of Theorem 1. It is divided into several subsections corresponding to particular
ranges of (p,q), since the arguments we use in the proof vary depending on the range we deal
with. In Subsections 6.3 and 6.4 we reveal the methods and tools, respectively, used in the most
challenging parts of the proof.

2. PROPERTIES OF -REGULAR RANDOM VARIABLES

In this section we discuss crucial properties of random variables satisfying a-regularity condi-
tion (3). We also show how to express this condition in terms of tails.
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One of the important consequences of a-regularity condition (3) is the comparison of weak
and strong moments of linear combinations of independent centered variables X; ;, proven in [9],
stating that for every p > 1 and every nonempty bounded U C R™™,

P 1/p
(6) (E sup’Z X, i ) ~E sup‘z X jui 5] + SUPHZ X, i
0] i,J i,J

uelU uelU uelU P

Another property of independent centered variables satisfying (3) is the following Khintchine—
Kahane-type estimate, derived in [9, Lemma 4.1],

p1\?
7 2w, So () 2%

where 3 := % V logy v and u is an arbitrary m x n deterministic matrix.
For iid random variables X; ; we define their log-tail function N: [0,00) — [0,00] via the
formula

(8) P(|Xi;| >t)=e MO t>0.

‘ for every p1 > po > 1,
P2

Function N is nondecreasing, but not necessary invertible. However, we may consider its gener-
alized inverse N~1: [0,00) — [0, 00) defined by
N7(s) =sup{t > 0: N(t) < s}.
Lemma 7. Suppose that condition (3) holds and N is defined by (8). Then for every p > 1,
1X,ll, ~a N7'(pV (2In(20))).
Proof. To simplify the notation set v := 2In(2«). Note that o > 1 and v > 1.
For t < N~1(pV v) we have by Chebyshev’s inequality
1Xi 50l > P( Xl > 6)/0t > e/ > et
Hence, N1 (pV v) < 4a?|| X ]|,

To derive the opposite bound, observe that the Paley-Zygmund inequality and regularity
assumption (3) yield that for every p > 1,

IP’<|Xi,j| > %HXz’,ij) =P(|Xi;|” 2 277E|Xi;|7) = (1 - 2_p)2w > iaﬂp >e .
Therefore, N~*(yp) > 3||X; |, for every p > 1, so by taking p = 1V (p/) and applying (3)
multiple times we get
N7 pv ) > §||Xi,j\|1v<,,/7> > %of““gz MXisllp > %<2v>*l°g2“||xi,jup. O
Remark 8. The proof above shows that
INHp) < Xl < 2(41n(20)) 2N (o) for p > 2In(20).

The next proposition shows how to rephrase condition (3) in terms of tails of Xj ;.

Proposition 9. Let X be a random variable and P(|X| > t) = e~ N® for N: [0,00) — [0, 00].
Then the following conditions are equivalent

i) there exists aq € [1,00) such that || X||2, < aa||X]||, for every p > 1;

ii) there exist g € [1,00), P € [0,00) such that N~1(2s) < aaN~1(s) for every s > [B2;

iii) there exist g € [1,00), B2 € [0,00) such that N(agt) > 2N(t) for every t > 0 satisfying
N(t) > [s.
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Proof. )= ii) By Lemma 7 we have for s > 21In(2a;),
N7Y(28) ~ay [|Xl2s < @1l X[ls ~ay N7Hs).

Equivalence of ii) and iii) is standard.
iii)= i) Let us fix p > 1. We have || X|[|f > t’P(|X| > t) = tPe=N® . Thus N(t) > Sy for

t > to = e’/?| X||,, and so

X155 < a3? (tzf’ + 2p/ t2f'*1e*N(a2t>dt) <aZ (tﬁ” + 2p/ tPe*N“)tP*le*N“)dt)
to to
< a3’ (tﬁp + 2||XHZ,0/ t”_le_N“)dt) < o3”| X |77 (e*7 + 2)

to

< (az(e™ +v2))* )| X127 O

Remark 10. Remark 8 and the proof above show that i) implies ii) and iii) with constants
az = 2ea;(4In(2aq))°8291 B, = 2In(2ay), and conditions ii), iii) imply i) with constants
ay = az(e® 4+ /2).

3. EXAMPLES

In this section we focus on two particular classes of distributions: with log-concave and log-
convex tails. They include Rademachers, subexponential Weibulls, and heavy-tailed Weibulls.
Our aim is to provide an explicit function of parameters p*, ¢, n, m comparable to the bounds
from Theorem 1; such a function in the case of iid Gaussian matrices is given in (1).

Throughout this section, we assume that X; ; are iid symmetric random variables and their
log-tail function N: [0, 00) — [0, 00] is given by (8).

3.1. Variables with log-concave tails. In this subsection we consider variables with log-
concave tails, i.e., variables with convex log-tail function N. Since N(0) = 0 and N is convex,
for every s >t > 0 we have

9

(9) . 2

In particular, Proposition 9 yields that a random variable with log-concave tails satisfy (3) with
a universal constant «. Hence, in the square case Corollary 6 and Lemma 7 imply that

B[ty er 4N TD) P2,
el ey~ n'/@ A N=(p* Ag ALogn) p*Vq>2
~ N7 (p* A g ALogn)n'/® ") p(1/(P"Va)=1/2)V0,

In the case of log-concave tails it is more convenient to normalize random variables in such
a way that N~!'(1) = 1 rather than ||X;;[lo = 1. Observe that Lemma 7 and (9) yield that
13,5012 ~ N7H(1).

N(s) | N()

Lemma 11. Let X4,..., X, be @id symmetric random variables with log-concave tails such that
N~=Y(1) = 1. Then for every p,q > 1,

ZtX

Proof. The result of Gluskin and Kwapien [6] states that

H {Zw 2 NG y<a}+va(Xur)”

<gAn i>q

~ max kYP'NTq/k)+ (g An)t/@VIRA/PT-1/2VO,

sup
q 1<k<gAn

teBp
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where t7,...,t% is the nonincreasing rearrangement of [t1],. .., |tn].
Let us fix t € B). Then for every ¢ > n,

St va(S2) " = St <t =t g = (g )

i<q k>q i<n

For p > 2 and ¢ < n we have

1/2
th n \/671(2@7;)2) < ql—l/p +q1/2(n _ q)1/2—1/p N q1/2n1/2—1/p — pl/2-1/p AT

i<q k>q

Finally, for p € [1,2], ¢ < n we obtain

1/2 1/2
Do+ VA() S o AR r) S g g
i<q k>q i<q k>q
<2¢' P =2(g An)t /P

Estimates above might be reversed up to universal constants if we take t = Y

p>2,and t =Y "V (qg An)~YPe; for p € [1, 2}. Thus, in any case,

-1
n /Pe; for

P z<q/\n i>q

Moreover, since N=(1) = 1,

va(X )" < 3w va(Se)”

i>q i<gAn i>q
§sup{2t2‘si: ZN <q}+\f(2|t|>
1<gAn 1<gAn i>q

Hence, it remains to prove that

p supf 3t 3 NG <} msw{( T 1) M <a)

n
tEB 1<gAn 1<gAn 1<gAn 1<gAn

~ max kYP N7 (q/k).

1<k<gAn
The lower bound is obvious since N(N ~!(u)) < u for every u > 0. To show the upper estimate
let
a:= max kY?" N"Y(q/k),

1<k<gAn

where the maximum runs through integers k satisfying 1 < k < ¢ An. Then (9) implies that

sup  t'/7 N7 (q/t) < 2a,
1<t<gAn

where the supremum runs through all ¢ € R satisfying 1 < ¢ < ¢ A n. Hence,
p” »
N(s) > q(;) whenever 2a > s > 2a(gq A n)_l/p .
a

Therefore, condition N(s;) < q yields that s; < a and so

i<gAn

S <@ (o N(s) < 20200 < () =

An
i<gAn i<gAn q q

Theorem 1 and Lemma 11 yield the following corollary.
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Corollary 12. Let (X; ;)i<m, j<n be tid symmetric random variables with log-concave tails such
that N=1(1) = 1. Then for every p,q > 1,

EH .7 1<m7J<"||é"—>lm

m/ a1/ 2pt/p" 4 pt/pT =121/ p*,q < 2,

nl/?r" («/p*/\m/\Lognml/q*I/2+ sup ll/qN’l(M#» +mb, g <2<p*,
I<p*ALognAm

W mta(gRn A Togmn!/V T2 4 sup  pUPNL(2keam ) e <o < g,

~o k<gALog mAn
nl/”*((p* /\m/\Logn)l/q—l— sup ll/qN_l(m#))
I<p*ALognAm
+m1/q((q/\n/\Logm)1/”* + sup kl/p*Nfl(qAL#)), 2 < p*,q

k<gALog mAn

3.1.1. Subexponential Weibull matrices. Let X; ; be symmetric Weibull random variables with
parameter 7, i.e., N(t) = t". If X;; are subexpenential, i.e. 7 > 1, then N is convex, and
1Xiill, = (T(1+ p/r)/P) ~ p'/7. Thus, Corollary 6 implies that

E[(X l " pha<2,
? ) 1 n ny ™ .
] J =L (p* AgA Logn)l/rnl/(p /\q)7 p* Vg<2

1/q+1/p*—1/2

~ (p* A g A Logn)Y/ "t/ (" ") (1/(p"Va)=1/2)v0
To obtain a formula in the rectangular case we first observe that N=1(1) = 1 and

sup kPN (g/k) = ¢!/ TI /PTG,
1<k<l

If r € [1,2] then 1/p* —1/r < 0 for p* > 2 and Corollary 12 allows to recover the following bound
from [10, Corollary 6].

E[|(X

i, z<m,]<n E’z’;%[«'zn

ml/qfl/in/p* +n1/p*71/2m1/q’ p
(p* A Logn)l/rnl/p*m(l/q—l/T)VO + /p* /\Lognnl/p*ml/q—l/Q _|_,'nl/q7 q< 2 < p*
n'/?" 4 (g ALogm)Y/ m/an(/p"=1/mV0 LS AN Togm mt/ /P =12 p
(p* ALogn)/™n'/?" + (g ALogm)"/™m'/, 2
~ (p* A Logn)l/rm(l/q—l/T)VOnl/p* + /p* A Log n m(1/a=1/2)V0,1/p"
+ (¢ A Log m)l/T‘n(l/p*—l/T')\/Oml/q ++/q A Logm n(L/P"=1/2)V0, . 1/q
In the case r > 2 Corollary 12 yields the following.

Corollary 13. Let (X; ;)i<m, j<n be td Weibull random variables with parameter r > 2. Then
for every p,qg > 1,

E[|(x

.7 z<m]<n||€n_>ém
mY/ a1 2p1/e" g t/et =121 e

p
m!4=1/2(p* A Logn)'/"(p* ALogn Am)Y/2=1/rpt/P" L mlla ¢ <2< p*,
~ P P12 (g A Logm)Y 7 (g A Logm An)t/2rmila pr <2 < g,
(p* A Logn)Y"(p* A Logn A m)(/a=1/mVop1/p"
+(g ALogm)'/"(q A Logm A n)1/P"=1/mV0m1/a 2<p'q
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~ m(l/q—l/Q)VO(p* /\Logn)l/r(p* /\Logn/\m)(l/(q\/2)—1/r)von1/p*
+n(l/p*—l/Q)VO(q/\Logm)l/r(q/\Logm/\n)(l/(p*VQ)—l/r)\/Oml/q_

In particular, when r = oo we get the following two-sided bound for matrices with iid
Rademacher entries ¢; ;.
Corollary 14. If1 < p,q < oo, then
mi/a=1/2p1/P" 4 g/ =121/ P
P Ammt/a=12p1/rT ot/ q
nl/P" L \/mnl/p*—l/le/g p*<2<q,
(p* Am)M P 4 (g An)P T mMa, 2 *
~ (p* Am)Y @2/ a=1/2VO0 170" o (g A )t (P7V2) (/P =1/2)V0, 1 q

EH(€z‘,j)z'§m,j§n||e;_>egz ~

Remark 15. In [10, Theorem 11] we provide two-sided bounds for E||(a;b; X; j)i<m,j<n e,
where the vectors a € R™ and b € R" are arbitrary, and X; ;’s are Weibull random variables
with parameter r € [1,2]. We do not know similar formulas for r > 2.

3.2. Variables with log-convex tails. In this subsection we assume that X; ; have log-convex
tails, i.e., the function N given by (8) is concave.

Lemma 16. Let (X, ;) be iid symmetric random variables with log-convez tails and assume that

(3) holds. Then for every p,q > 1,

sup
teBy

Zt X”H ~a 1 Xijllq + V@l X jllan /P 7 1/DVO,
Proof. 1f ¢ < 2, then (7) yields

Zt XU” ~q SUp

teBp

sup
teBn

Zt X, S o] Xe o = 7 Ko

~ ||Xz‘,j||q + \/§|\Xi,j||2n(1/p —1/2V0,

Now assume that ¢ > 2. By [7, Theorem 1.1] we have

n n 1/q n ) ) 1/2
Hzthl,j . (thjlquXl,jlq) +\/§(2|ij E[Xq ] )
i=1 i=1 i=1

= 1tllgllXijllq + valltl2l| Xijll2 Z [[Ellooll X llq + Valltll2[| Xi 52

We shall show that the last estimate may be reversed up to a constant depending only on a. To
this aim assume put a = ||t]|oo || Xi [l + /@l|t]|2]|Xi,5]]2- Then

lo < (Itllooll X 10) =2 1 IEll2 11 X5 10)>¢ < allXiglla/ 1 Xis012)7¢ Sa a,

£l 11X,

where the last estimate follows by (7). Thus, for ¢ > 2,

Zt Xl,]

sup
teBy

lq + /@) X, [[2n (/P20

2) ~ [ Xi;

~a Sup ([[tlool| Xijllg + valltll2 X,
teBn
O

Remark 17. Since N is concave, N~! is convex and N='(0) = 0, hence N~!(¢q) > 4N~1(2)
whenever ¢ > 2. So (3) and Lemma 7 imply that || X; ;g ~a N71(q) Za ql|Xi,;|l2. Thus, we get
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by Lemma 16,

sup
teBn

Zt K| o Xl forptia =2

Theorem 1, Lemma 16, and Remark 17 yield the following corollary.

Corollary 18. Let (X; ;)i<m,j<n be iid symmetric random variables with log-convex tails such
that (3) holds. Then

EH i3 l<m7]<n”l”~>ém
(a1 /20l /8" 4 7121/ X, <,
N n'/P" (m1/ =12 /p" NLogn|| Xi jll2 + | Xijlp- ALogn) + MY X jll2, g <2< p¥,
) 0P X2 + mM (P2 g A Togm|| X2 + | X laaregm),  PF <2< g,
nt/v" X, 1/qHXv?JHq/\Logmv 2<p"q

3.2.1. Heavy-tailed Weibull random wvariables. Weibull random variables with parameter r €
(0,1] have log-convex tails. Moreover, in this case || X; |, = (T(1 + p/r)'/?) ~,. p*/", so X; ;s
satisfy (3) with o ~ 21/7 and thus Corollary 6 implies that

. pl/a+1/p"—1/2 P q <2,
EH(Xi,j)i,jﬂHgn_,gm ~r " 1/r. 1/(p"Aq) "
e (p* Ag ALogn)/ ™t/ P A px oy g <2
~ (p* A q A Log n)l/rnl/(p*Aq)n(l/(p*\/q)*l/2)V0
In the rectangular case Corollary 18 yields the following.

Corollary 19. Let (X; ;)i<m,j<n be @d Weibull random wvariables with parameter r € (0,1].
Then for every 1 < p,q < oo we have

~or (g A Logm)/2n (/7" =1/2V01/0 (0 A Log m)/™m!/a

EH 1,7 z<m77<n gn_ypm
P q

+ (" ALog n)l/Zm(l/q—l/Q)VOnl/p* +(p* A Logm)l/rnl/p*-

3.3. Non-centered random variables. In this subsection we prove (4) under centered regu-
larity assumption (5). Let || - || denote the operator norm from ¢} to £;*. Note that

m n
q
Nl = BXual - sup (30|34
teBy Nim1 =1

= ml/qnl/p* |EX1_’1|.

1/q
) = |EX11| -mt/a sup
teBy

(X)) =

Zti

By the triangle inequality we have
El[(Xi )l < E||(Xi; — EXij)|| + IEX: )l = E[|(Xi; — EXij)|| +m"/n! /P |[EXy ],

so Theorem 1 implies the upper bound in (4). Moreover, Jensen’s inequality yields E[|(X; ;)| >
I(EX; )|, so applying triangle inequality we get

)Xl 2 GBIl + 5 (B (X — B )] - NEX)I) 2 5E][(Xs5 — BXe)||

Hence, Theorem 1 and another application of inequality E||(X; ;)| > [(EX; ;)| = m'/n'/?" |EX, 4|
yield the lower bound in (4).
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4. LOWER BOUNDS

In this section we shall prove the lower bound in Theorem 1. The crucial technical result we
use is the following lower bound for ¢,-norms of iid sequences.

Lemma 20. Let r > 1 and Y1,Ys,...,Yy be iid nonnegative random variables satisfying the
condition ||Yi|l2r < ;| for some o € [1,00). Assume that k > 4a®". Then

. k v 1/r 1 k;l/ v
T > — r .
(Z; i ) > Tasaz Ml
Proof. Define
k
1
Z::Zl]_A“ A; = {1/’17"251}3}/[}

The Paley-Zygmund inequality yields

1(EY)? 1,
P(A;) > il > —q72r
(4i) 2 7 Ey? = 1%
Since k > 40", this gives
k
k —2r
EZ = ;]P’(Ai) > Ja r>1
and
k
EZ® =2 Y PA)P(A))+ ) P(4) < (E2)* +EZ < 2(EZ)>.
1<i<j<k i=1
Applying again the Paley-Zygmund inequality we obtain
1 1(EZ)? _ 1
IP’(Z > 71@2) > = > =
=2 ~— 4 EZ2 — 8
Hence,
k 1/r 1 1.1 yr 1,k 1r 1
IE( v >p(z>cE2)(ZEZ:EY7) | > 7(7 “2gyr) T > V7Yl O
Zl) —(-2 )(2 2 ) = 3\16“ ) = Togaz® IVl

Proof of the lower bound in Theorem 1. Let us fix t € B} and put Y; := ‘Z?:l t; X ;|. Then
Yi,...,Y,, are iid random variables. Moreover, by (7), ||Yill2r < &|Yi|» for » > 1, where
a constant & > 1 depends only on «.

If m > 4624, then by Lemma 20 we get

m 1/q 1
q 1/q)|y.
gty = E(; Yi ) = Tasgz™ Willa:

E[|(X;,;)i<m,j<n

If m < 4a*, then by (7) we have
]| (X ismaznlly e = 1¥ilh Za Willogm ~a m 1 ¥illntogm:

If 46* < m < 4627, then m = 4% for some 1 < § < q. Moreover, in this case m/9 ~y 1 ~g
m' 4 and § ~4 q A Logm. Hence, Lemma 20 and (7) yield

nosem 2 E(i Yiq) v ~o B (i Y"q) "
i=1

i=1

E|[(Xi)i<m.j<n

S 1
~ 12842

ml/qHY'L”(I ~a ml/qH}/in/\Logm-
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The argument above shows that

1/
E[[(Xijismi<nllgy g R M e Zt 1 I
The bound by the other term follows by the following duahty
(10) H ij)i<m.j<n fn—pm H I J<m<mHzm —er 0

5. FORMULA IN THE SQUARE CASE

This section contains proofs of Propositions 4 and 5, which immediately yield the equivalence
of formulas from Theorem 1 and Corollary 6 in the square case.

Proof of Proposition 4. By duality it suffices to show that for p* > qV 2,

Ztle ZSle

The lower bound is obvious (with constant 1). To derive the upper bound we observe first
that if we substituted ¢ and p* by ¢ A Logn and p* A Logn, respectively, then the RHS of (11)
would increase, whereas the LHS would increase only by a constant factor. So it is enough to
consider the case Logn > p* > ¢V 2.

Now we shall show that

1
p*ALogn ~all /q||X171||q/\Logn.

+n P sup

(11)  n!7 sup
gALogn s€B.

teBy

(12) HZt]—XLqu Sa | Xiall, for every t € BI.
j=1

To this end fix ¢ € B and assume without loss of generality that ¢; > ¢t > --- > ¢, > 0. If
1 < g < 4, then by (7) we have

H E tj“<1,]H ,Sa
j=1 q
If q >4, then

| 32 x| < 32 lxually < @7 el X0l < 1%l

j<eta j<eta

n
>t X[, = Il Xualle < all Xually < afl Xua .
j=1

Moreover, by Rosenthal’s inequality [5, Theorem 1.5.11],

q
| 32 %], < Ot Ut enllal Xualz + 1) esallll X )
j>eta &4

If j > €19, then ¢; < jYP < e%/P g0 for p* > q > 4 we have

1(t3)ietnlla < 1(E3)jenallz < NI/ mae 6527272 < /2 (e 10/7) 7P/ < 7

<C

and (12) follows.
To conlude the proof it is enough to show that for Logn > p* > q V 2,

n
g 5iXi1 H <a nl/a sup
—1 p* teBy

(13) ntP" sup
SEBT.

Zt X+ n Xl

For k = 0,1, ... define pj, := 32/ Log® (p*), where Log(kH) T = Log(Log(k) x), Log® 2 =z,
and 0 = % V log, . Observe that (pg)x is non-increasing and for large k we have pp = 3232.
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If p*/q < 32832, i.e., p* < 323%¢, then (7) implies that

n p* B n
[ sixial]  se (5) [ s, <
i=1 P q i=1 a

* . .
Moreover, Bg. C pt/a=1/p B}, so in this case

E S; ZlH <a nl/ sup
2 teBn

n
E SiXiJH .
i=1 a

n'/?" sup
SGB"

)

and (13) follows.
Now suppose that pr < p*/q < pr_1 for some k > 1. Define g := 2p*/pr > ¢ V 2. Estimates
(7) and (12), applied with p* := g and ¢q := ¢ > 2, yield

kqr\ P
S Koo SelI¥ulln e (P ) 1X 0l
i1 qk

sup

ZSXZIH apk sup
sEB, T *

SEB X

Since g > ¢ we have By. C nt/a=1/ax By . Therefore,

.
n'/P" sup
seB"

p*\P . p*\b
zsz Xl Sa (B) i bty = (2) 5 0t )

Hence, it is enough to show that
*\NB 2-p
(14) (]i) T <1
q
Observe that p*/q > 3232 > 8, so Logn > p* > 8¢ > 8, Log(p*/q) = In(p*/q), and Logn = Inn.
Thus, (14) is equivalent to

*

Pr — 2 p
15 — > .
(9) 28 Log(%-) — Logn

We have p*/Logn < 1 and

p—2 2457 LogM(pr) | 248° 26 +28Log (") _
28Log(L) ~ 28Logpr-1  28Wn(328%) +28Log® (p*) ~

where in the first inequality we used Log(k) x > 1 and 832 > 2, in the second one Log(ab) <
Ina + Logb for a > 1, and in the last one In(32e3%) < 123 for 8 > 1/2. a

Now we move to the proof of Proposition 5. Observe that m,n are arbitrary (not necessarily
m=mn).

Proof of Proposition 5. It is enough to establish the first part of the assertion. We have

ZtX

and the upper bound immediately follows.
If p <2 then (1/p* —1/2)4 = 0 and the lower bound is obvious (with constant 1 instead of
1/2v/2). Assume that p > 2. Let (X7); be an independent copy of (Xj);, and let &;’s be iid

sup
teB7l

< sup
d teBp

Zt x|, = S e Xall
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Rademachers independent of other variables. Then

1 1 .
a2 2 g0 -, = e ),
i=1 j=1
1 n
> 5 —1/p Zéj(Xj 7IEXJ,) i = Enil/p ZEJ'XJ'HQ.
j=1 J=1

Moreover, Khintchine’s and Holder’s inequalities yield (recall that ¢ € [1,2])

n q - n q/z - - n - - - ~
B[Y e[ 227 PR(3 X)) 2 IR YN = 2 RGO
j=1 j=1 j=1
6. UPPER BOUNDS

To prove the upper bound in Theorem 1 we split the range p*, ¢ > 1 into several parts. In
each of them we use different arguments to derive the asserted estimate.

6.1. Case p*,q < 2. In this subsection we shall show that the two-sided bound from Theorem
1 holds in the range p*, ¢ < 2 under the following mild 4th moment assumption

(16) (EX{ )V < a(EXT )2
Observe that then Holder’s inequality yields
IEX121 (]EXl 1)1/3(E|X |)2/3 < 044/3(EX12,1)2/3(]E|X1,1|)2/3>
SO
(17) E|X11| > o 2(EXT,)Y2

Let us first consider the case p = ¢ = 2. Then we shall see that it may be easily extrapolated
into the whole range of p*, ¢ < 2.

Proposition 21. Let (X, j)i<m,j<n be iid centered random variables satisfying (16). Then
E[|(Xi)icmiznlly op ~o @XF)Y2(V0+ V).

Proof. By [8, Theorem 2] we have

B0 il g S i [SEXE +m?X\/ZEXZj+4ZEX§j
/ J ,J

< (EXl,l)l/z(\/ﬁJr Vm +ay/nm) Sa (EXf,l)l/z(\/ﬁ+ vm).

To get the lower bound we use Jensen’s inequality and (17):
z<mH27EH |X17] J<'I7.|| }
J jgan} > o (EXT )2V vm. O

EH ,j z<m]<n”zn_)€m > maX{EH |X

> max{” (E|X;1])

Corollary 22. Let (X, j)i<m,j<n be #id centered random variables satisfying (16). Then for
p*,q <2 we have

E||(Xij)i<m,j<nl o ~o (BXF )2 (mM/ 171 2pl/07 4 pl/07 =12 1),
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Proof. Let (g;,;),; be iid symmetric +1 random variables independent of (X; ;). Symmetrization
(as in the proof of Proposition 5) and (17) yields

1
]EH %) z<m,]<n||énﬁgm - 2EH 617]|X7]|)z<m,]<nHénﬁgm - 2EH € ]E‘XZ]D1<7”]<”

2o (]EX1,1)1/2EH (gi,j igm,jgnH~

n m
Ln—Ly

‘We have
|l e iemznllyg ey 2 ”“”EH(Z%) [~ *(EH(Z%)

. .
— pl/p 1m1/qHZELjH ~ /1210
- q

j=1

)1/11

i<m i<m

where in the first line we used the Kahane-Khintchine and in the second one the Khintchine
inequalities. By duality (10) we get
El|(eig)ismi<nllom = El|(Eig)icni<m|m 2 ml/ a2t
P q q

W ™

so the lower bound follows.
To get the upper bound we use Proposition 21 together with the following simple bound

|| i,7 7,<m j<TLH£n_>ém < ||Id||l”~>6"|| zg)iﬁm,jﬁn”eaw,_w;n Id||l;"~>€gl

— pl/2 U1 (X O

i,j)i<m,j<n

n m
L3 —03

Corollary 22, Proposition 5 and (17) yield that under condition (16) Theorem 1 holds whenever
p*,q < 2. Moreover, one may prove by repeating the same arguments that the two-sided estimate
]EH 1,7 Z<mxj<nH£”‘>[m a ml/q—l/in/p* + nl/p*_1/2m1/q

holds for every p*,¢ < 2 and independent random variables X; ; satisfying (16) and ]EXiQ, ;=1
(we do not need to assume that X; ;’s are identically distributed).

6.2. Case p* > Logn or ¢ > Logm. In this subsection we shall show that Theorem 1 holds
under the regularity assumption (3) if p* > Logn or ¢ > Logm.

Remark 23. For p* > Logn, ¢ € [1,00) and iid random variables X; we have
1Xuls < sup D% < ellXalls
tEB;‘ j=1 q
Similarly, for ¢ > Logm and p € [1, 00),
1%l < sup [|D 4] < ellXulp.
teprm iz

Proof. The lower bounds are obvious. To see the first upper bound it is enough to use the
triangle inequality in Lz and observe that ||t]; < n'/?"||t||, < e for p* > Logn and t € By. O

By Remark 23, Theorem 1 in the case p* > Logn or ¢ > Logm reduces to the following
statement.
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Proposition 24. Let (X, ;)i<n,j<n be iid centered random variables such that (3) holds. Then
for ¢ = Logm,

E[|(X: j)i<mj<nllnep asupHZt Xl n Xl avgn
P ogm

P]<

Analogously, for p* > Logn,

en—gm o SUD HZ SiX@lHLogn +mM ) X1 1]l gALog m-

EH %7 z<m,j<n
sEB;’;

i<m
Proof. The lower bounds follow by Section 4 and Remark 23. Hence, we should establish only
the upper bounds.

By duality (10) it is enough to consider the case ¢ > Logm. We have ||(2;)i<ml|lcc <
[(zi)i<mllq < ell(zi)i<mlloo, s0

[[(Xi.5)izm ]<”||£"aém I}Eff” e
Note that for arbitrary random variables Y7, ..., Y; we have
1/ Logk
Log k
(18) Emax || < fJmax Vil < (;mw HE) T < ema [Yillogs
2

Hence,

EH ¥ z<m,g<n”in_,gm ~ |||

Inequality (6) (applied with m =1, U = {1} ® B}, and p = Log m) implies

H||(X17-7) i< ~a E||(X1J) i< P + sup H E thlvj‘
Logm teBD i<n Logm
If p* > Logn then
E[|(X1,5)j<nl],. ~Emax|X1 ;| < 1 X11llLogn,
Jj<n

where the last bound follows by (18). In the case p* < Logn we have

»* 1/p*
p) =n

6.3. Outline of proofs of upper bounds in remaining ranges. Let us first note that we
may assume that random variables X; ; are symmetric, due to the following remark.

O

o < (EH(XLJ);

Remark 25. It suffices to prove the upper bound from Theorem 1 under additional assumption
that random variables X;; are symmetric.

Proof. Let (X ;)i<m,j<n be an independent copy of a random matrix (Xi;)i<m,j<n, and let
Yii=Xi; X') Then (3) implies for every p > 1,

1Yijll2p < 1 Xijll2p + 1X7 51125 = 2[1Xi 5112y < 20X,
<2al|Xi; — X, ill, = 22/ Yi -

illp = 2al|Xi 5 —EX 4|,

Therefore, (Y; j)i<m,j<n are iid symmetric random variables satisfying (3) with o := 2a. More-
over,

E sup Z X jsitj =E sup Z (Xij; — EX] ;)sit;

SES’tETsz J<n sES. tETz<m,j§n
! —_— .. . .
<E sup g (Xij— X )sit;j =E sup g Y jsit;,
seSHET, S~ seSteT; A=



OPERATOR /¢, — £, NORMS OF RANDOM MATRICES WITH IID ENTRIES 17

so it suffices to upper bound Esup,cger >

}:thj

i<m,j<n )/i:jsitj by

*
/p SupHE S’L 7,1

gALogm sEBm
Z t;X

We shall also assume without loss of generality that a > /2. Then (7) holds with 3 = log, a.

One of the ideas used in the sequel is to decompose certain subsets S of Bt and T of B)
in the following way. Let T' be a monotone subset of B} (we need the monotonicity only to
guarantee that if ¢ € 7' and I C [n], then (tI;eny) € T). Fix a € (0,1] and write t € T as
t = (tilg,1<ay) + (tid{t,)>a}). Since a? [{i: [t;| > a}| < ||t]|, < 1, we get T' C Ty + T3, where

m* sup
teBn

p*ALogn

< 2m'/? sup O

teBy

+ 2nt/P" sup HZS Xi

gALogm 563777

*/\Logn'

Ty =TnNaBY, To ={te€T:|suppt| <a P}
Choosing a = k=1/P we see that for every 1 < k <n we have T' C T} + T5, where
T, =TNk YPBY,  Ty={tecT: |suppt| <k}.

Similarly, we may also decompose monotone subsets S of By into two parts: one containing
vectors with bounded /,,-norm and the other containing vectors with bounded support.

Once we decompose B and Bg: as above, we need to control the quantities of the form
Esup,cgs e 2 Xi jsitj provided we have additional information about the £.-norm or the size
of the support (or both of them) for vectors from S and T. In the next subsection we present

a couple of lemmas allowing to upper bound this type of quantities in various situations.

6.4. Tools used in proofs of upper bounds in remaining ranges.

Lemma 26. Assume that k,l € Z1, p*,q > 1, a,b > 0 and (X; ;j)i<m,j<n are iid symmetric

random variables satisfying (3) with o > /2, and IEIX2 = 1. Denote = log, a.
Ifg>2,SCBNaBY and T C {t € B} : |supp(t )| < k}, then

(19)

sup Z Xijsit; S ml/qsupHZlet H n/\ kLogn))ﬁk(l/l’**1/2)\/%(2*‘1*)/2,

SES teT i<m,j<n teT

Ifp* >2, S C{se€ BJ:|supp(s)| <1} and T C By NbBL,, then
(20)

E sup Z X jsiti Sa nt/r’ supHZXuSz

+ m A (I Log m))Bl(l/Q*l/2)\/Ob(2,p)/2.
seS;teT . iy .

i<m.j<n

Proof. Tt suffices to prove (19), since (20) follows by duality.
Without loss of generality we may assume that £ < n. Let T be a %—net (with respect to
r-metric) in T of cardinality at most 5" A ((})5%) < 5™ A (5n)% = e, where d = n A (kIn(5n)).

Then by (18) we get

1/d
E sup X j8:t; < 2K sup sup X j8it; <Qesup<Esup X jsitj ‘)

i<m,j<n i<m,j<n i<m,j<n
1/d
(21) < 2esup<Esup Z X jsit; ‘ )
teT seS

i<m,j<n
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Fix t € T. By (6) applied with U = {(s;t;);;: s € S} and p = d we have

d 1/d
(22) (Esup Z Xi jsitj ) <a Esup Z X”sz
ses i<m,j<n SGS

0,J

Since S C B,

(23) E sup Z Xi,jsitj’ < (EH(En:X”tJ)
2J Jj=1

i<m
s€S i<m,j<n -

Q)l/q _ il
q

n

> Xt -
X q
j=1

Since a > /2, § = % V log, @, so by inequality (7)

_g* * /9 _
sup|| D0 Kigsiti|| Sad® sup_slalitlla < d” sup [ &2 2 sup KO/,
seS i<m.g<n d sesteT seS teT

(24) < dB (/P =1/2)v0,(2—a")/2
Inequalities (21)-(24) yield (19). O
In the sequel (g;,j)i<m,j<n are iid standard Gaussian random variables.

Lemma 27. Let (X; ;)i<m,j<n e @d symmetric random variables satisfying (3) and EXZ?J =1.
Let B =logy a. Then for any nonempty bounded sets S C R™ and T C R™ we have
sup Z X ;sitj Logﬁ( sup Z Gi,jSit;.

sEStET i<m.j<n SeSteT i<m,j<n

Proof. Since X; ;’s are independent and symmetric, (X; ;)i<m,j<n has the same distribution as
(€4,1X.5])i<m,j<n, Where (€; )i<m,j<n are iid symmetric +1 random variables independent of
X ;'s. By the contraction principle

E sup E Xijsit; =E sup E €i,5]1Xi j]st;
s€SteT s€SteT

i<m,j<n i<m,j<n

(25) <E max |X;;|-E sup Z €i,jSitj.
i<m,j<n SES’tETiSm,an
Moreover, by (18) and regularity assumption (3) we have
(26) B max Xl < el XpallLogimn) S Log” (mn)|| X112 = Log” (mn).
Jensen’s inequality yields
(27) E sup Z g jsit; ~E sup Z €i,E|gi jlsit; SE sup Z Gi jSit;
SES’tGTiSm,jgn SES’tGTiSm,an SGS teT i<m,j<n

Inequalities (25)-(27) yield the assertion. O

The next result is an immediate consequence of the contraction principle (see also (25) together
with (27)), but turns out to be helpful.

Lemma 28. Let (X; j)i<m,j<n be centered random variables. Then

su X, st <max X su sit;.
5eStI»)eT Z i,581l5 S [[Xi,5]l oo B tpeT Z 9i,j

i<m,j<n i<m,j<n
Let us recall Chevet’s inequality from [4]:
(28) E sup Z Gij8it; S Sup IIs ||2Esungjt + sup |It||2E sup Z JiSi-
SESLET i<m,j<n ]<n s€S i<m

We use it to derive the following two lemmas.
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Lemma 29. Let ¢>2,p>1, 5 C{s€ Bjt: |supp(s)| <1} NaBZ, and T C B}. Then

E s 3 gusity S VAR S0 g /e

SES’tET'L’Sm,an

If we assume additionally that | = m, p* > 2, and T C bB[,, then

(29) sup Z gijsit; < /praPma) 2t L gp2mR)/2pt/a,

SGS teT i<m,j<n

Proof. We have
sup [|t]2 < sup [tz = /27 71/2V0
teT teB

P

o i
sup [|s[l2 < sup [|s[|%-/||s|279/2 < a-a)/2,
seS ses

)1/p = ||lg1[lp-n NV e

Eigjgzggt <E sup Zggt =E|l(9;)f=1llp- < (Ell(g;)7=
j=1 pg 1

and

Esungzslsﬁ sup (Zm) < /B max|gi| S 11/9y/Togm.

ses IC[m],|I|<I

The first assertion follows by Chevet’s inequality (28) and the four bounds above.
In the case when | = m, p* > 2, and T' C bBZ, we use a different bound for sup,c [|t]2,
namely

sup [[¢]2 < sup [[¢]15/2[[H| 772 < )72,
teT teT

and for Esup,cg Y i, ¢;i, namely

Esunglsz <E sup Zgzsl < \fm |

SES B(’I" i1

The next lemma is a slight modification of the previous one.

Lemma 30. Let 2 <p*,q <7, S C{s€ Bj*: [supp(s)| <I}NaB] and T C B}. Then

E s 3 gty S vA(aCT 0 4 og(m/D 1),
sES,tETiémngn

Proof. We proceed as in the previous proof, observing that /p* < /¥ and, by [10, Lemmas 19

and 23],

sup (Z \gl|q> < /v Vv Log(m/l) 1M1, O

IC[m] |11<t

The next proposition is a consequence of the ¢5 — ¢5* bound from [8].

Lemma 31. Let (X, j)i<m,j<n, be be iid symmetric random variables satisfying (3) with o > /2
and IEXEJ» =1. Then for M >0,

In o

]EH(XZJI“X’J‘ZM})lSm7]§nH€g—>€g’ Sa (\/E‘F \/rn) exp( 0

Ml/ log, a)
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Proof. By [8, Theorem 2] we have

1/2 1/2
B (Xis Tgx051203)icm j<nllegsop < maX(Z EXZ;1{1x, 121} +maX(Z]EXHI{\X”\>M})
i<n - i<m
1/4
+( > EXf,jfﬂXi,nzM}) :
i<m,j<n

Regularity condition (3) and the normalization || X; |l = 1 yields || X; |, < «!°82# for all
p > 1. Thus, for all p > 4,

logy p\ p/4
2 1/2 4 1/4 4— 1/4 o
(EX2Tgx,20m) " < BXE T, i2m) ' < A PEXE )V < M (=)

Let us choose p := %Ml/logﬂ‘. If M > o3, then p >4, s0

logy p\ p/4 1 1
M(OéM ) = Ma—P/4 = Mexp( n8aM1/10g2 a) <q exp( I:E(;%]\41/10g2 a)

If M < a3, then

1/2 1/4 Ina a
(EX2iLpx,,200) ' < EXD I, 2an) ' < (BXEY < a Sq exp(—T5 MY/ 5). O

6.5. Case p* 2, Logm or q 2, Logn.
Proposition 32. Theorem 1 holds in the case p* 2, Logm or q 2, Logn.

Proof. Without loss of generality we may assume that || X; ;||» = 1. By Remark 25 it suffices to
assume that X; ;’s are symmetric and o > V2, and by duality (10) it suffices to consider the
case q¢ > Cy(a) Log n, where
Co(a) =86 = 8log, au.

In particular ¢ > 4, so ¢* < 4/3. By Subsection 6.2 it suffices to consider the case p* < Logn.

Define

Sy =BjiNe 1BY, Sy ={s¢€ B, [supp(s)| < et Y.

Then Bj: C S1 + Ss.

If s € S5, then

Isll < [lslg- supp(s)| "4t < e < /2,

s0 Sy C e*3B™.. Thus, Proposition 24 and (7) imply

seszutIéB" Z X; ,jSi t ]EH Xz,] i<m ]<TLHZn*>[m

P i<m,j<n
sup tjX1 H + nt/?P Xi1|lp=
o [, 1,
Logm *
Sa (1\/ ) b Zt XlJH 0t X e

teBp

Since the function 0 < ¢q +— %hlm + Blng attains its minimum at ¢ = Ilnm/8, where the

function’s value is equal to —31n(3/e) + Blnlnm, we have (Logm/q)? <, m'/9. Hence, the
previous upper bound yields

m
t: X1 H + /P sup H s-X-lH
T, S x|

m
Squ* i=1

(30) E sup Z X8t So m'/9 sup

s€S52,teBY teBp

P i<m,j<n
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Moreover, (19) from Lemma 26 applied with S = S;, T = By, a=e"% and k = n, together
with the inequality ¢* < 4/3, implies that

(31) E sup Z Xi jsit; Sa mt/4 sup

St || s,
q

s€Sy,teB] i<m,j<n teBy i<n
Since g > Cp(a) Logn > 3(B+1/2)Inn and || X1 1]/p+ Za [[X1,1]l2 = 1, inequalities (30) and (31)
yield the assertion. a

6.6. Case p*,q > 3. By Subsection 6.2 we may assume that p* < Logn and ¢ < Logm. In this
subsection we restrict ourselves to to the case p*,q > 3. However, similar proofs work also in
the range p*,q > 2 + ¢, where € > 0 is arbitrary — in this case the constants in upper bounds
depend also on € and blow up when ¢ approaches 0. If p* or ¢ lies above and close to 2, then we
need different arguments, which we show in next subsections.

Lemma 33. Assume that 3 < p*,q < Log(mn), (X ;)i<m,j<n are iid symmetric random
variables satisfying (3) with o > /2, EXf)j =1, 5 C B:n Logfgﬁ(mn)Bf)”o, and T C
By n Log %" (mn) B2, where 8 = logy a. Then

E sup Z X jsit; Smt/ 14 pl/r

SESIET i<m j<n

Proof. Lemma 27 and inequality (29) yield
(32)

E sup Z X jsit; < Log"* 2 (mn) (ml/q Log =) (mn) + n'/? Log_45(2_Q*)(mn)).

SESIET i< j<n

Since p* >3, (2—p) > 1/2, s0
Log—4,8(2—p) (mn) < Log—25(mn) < Log_B_l/Q(mn),

and similarly
Log_46(2_Q*)(mn) < Log™#712(mn),
This together with bound (32) implies the assertion. O

Now we are ready to prove the upper bound in Theorem 1 in the case when p*, ¢ are separated
from 2.

Proposition 34. Let (X; j)i<m, j<n e iid symmetric random variables such that (3) holds with
a > /2. Then the upper bound in Theorem 1 holds whenever 3 < g < Logm and 3 < p* < Logn.

Proof. Without loss of generality we assume that EXIZ’ ; =1 and that ¢ > p* (the opposite case
follows by duality (10)).
Recall that 3 = logy o > 1/2 and let us consider the following subsets of balls B}t and B):

Si= BENeIBY, Sy={s€ BI: upp(s) < 17},
S3 = Byt NLog™*(mn)BY, Sy ={s € BJL: |supp(s)| < Log**" (mn)},

Ty =B,N e P B, Ty={te By [supp(t)| < Y,
and
T3 =B, N Log %/ (mn)B%, T,={tc By [supp(t)| < Log®?? (mn)}.
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Note that Bj¥ C Sy + Sz, Bj¥ C S5+ Sa, By CT1 + T3, and B C T3 + Ty In particular

(33)  [[(Xig)icmi<nllpn_yom =  sup > Xigsit;
? ¢ Bm teBg7,<m ,J<n
é sup Z Xl-yjsitj + sup Z Xiyjsitj + sup Z Xi,jsitj~

SESLEET: jh = €S2, tEBY ;1 SEBTL tET

i<m,j<n
If s € S5, then
s|li < ||s]lg+ | supp(s VL < 0" < 3/2 < 5,
q
so So C 5B} = 5B2. and we may proceed as in the proof of (30) to get

)Zt X1

1
(34) sup § X; Sit; Na /a sup
5652 teBn teBy

+n P sup HZS X“H

m
i<m,j<n SEB

and, by duality,

(35) E sup Z X jsit; S m*9 sup

~ O
m
SEBR €T ;A= teBy

S, g[S o],

963"‘

Bounds (33)-(35) imply that it suffices to prove that

Zt XLJH + /P sup HZS X“H )

sGB’"

S m! p

36 sup X8t S
) S0 Xugsity Sa !/t sup

seSi,teTy i<m.j<n
<m,j<

Recall that ¢ > p* > 3. Let us consider three cases.

Case 1, when ¢,p* > 6052 Log Log(mn). Then e~ 9,e 7" < Logfsﬁ(mn), so S1 C S3 and
T; C T5. Thus, (36) follows by Lemma 33.

Case 2, when ¢ > 603? Log Log(mn) > p*. Then S; C S3 and T} C By C T3+ 1Ty, so

E sup Z X@jSﬂfj <E sup Z Xi,jsitj +E sup Z Xi,jsitj.

seSi,teTy sES3,teTs SES| teTyY

i<m,j<n i<m,j<n i<m,j<n

The first term on the right-hand side may be bounded properly by Lemma 33. In order to

estimate the second term we apply (19) from Lemma 26 with a = e~9 and k = |Log'?’ (mn)| >
|Log®?(mn)| (the inequality follows by p < 3* = 3) to get

E sup E Xijsiti Sa m*9 sup
s€S1,teTy i<m.j<n teTy

ZXl it H + (Log**? (mn))Pe=12=47)/2,

Since ¢* < 3* = 3/2, we have
(Log"? (mn))?e=92=4)/2 < Log®” (mm)e=9/* < 1,

0 (36) holds.
Case 3, when 6032 Log Log(mn) > ¢,p*. Since T} C T3 + Ty and S; C Ss + Sy, we have

E sup Xijsit; <E sup Xijsit; +E  sup Xi jsitj

m
i<m,j<n i<m,j<n SEBE T < j<n
+E sup E X jsit;
s€S,,teB?

P i<m,j<n

The first term on the right-hand side may be bounded by Lemma 33. Now we estimate the
second term — the third one may be bounded similarly (by using (20) from Lemma 26 instead
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of (19)). By (19) applied with a = 1 and k = |Log'?’ (mn)| > |Log®?(mn)| we have

E sup Z Xi jsiti Sa m"? sup ZXLJt H +L0gl452(mn).

m
SEBL €Ty A= teT,

For a fixed 8 = log, @ > 1/2 there exists C(f) > 3 such that for every x > C(8) =: Co(a) we
have 2832 Inx < 2/(603% Inx). Hence, if mn > e“°(®) and p* < ¢ < 6042 Log Log(mn), then

1 In(mn)/q < (lnm/q+lnn/p ) < max{lnm/q,lnn/p*},

148% In Log(mn) < 3

so for every m,n € N,
Loglw2 (mn) <o max{m!/? n'/P"},
and (36) follows. O

6.7. Case ¢ > 248 > 3 > p*. In this subsection we assume (without loss of generality — see
Remark 25) that X,j are iid symmetric random variables satisfying (3) with @ > V2. We also use
the notation 8 = logy @ > 1/2. In particular 248 > 3 and ¢* < 3/2 whenever ¢ > 245. Once we
prove the upper bound in the case ¢ > 243 > p*, the upper bound in the case p* > 245 > ¢ follows
by duality (10). By Subsections 6.2 and 6.5 it suffices to consider the case Log mAC(«) Logn > q.
In this case Theorem 1 follows by the following two lemmas.

Lemma 35. IfLogm >q >3 >p*, n'/3 > m'¢%, and | X112 = 1, then
E[|(Xi 5)i<m j<nllensem < n'/P

Proof. By (7) we get

m
su t: X; H < su H t; X H = su t
Sup H; X, q’ Sup Z | =d° Sup lt]l2 =

3/2 3/2 =1 3/2
This together with the assumption n'/3 > ml/qu and the estimate in the case p* = 3 < ¢
(already obtained in Subsection 6.6) gives E||(X; ;)| PRV nl/3. Therefore, for every p* < 3,

n < p2/3-1/p,1/3 _ 1/p*
ep st ST n n . O

E[[(Xij)llen—er < [[1d[len—en EI(Xi,5)

3/2

Lemma 36. Assume that Logm A C(a)Logn > g > 248 > 3 > p* and ¢®mt/1 > nl/3. Then
the upper bound in Theorem 1 holds.

Proof. Without loss of generality we may assume that EX? ;=1and C(a) > 2. Let
Sy = {s e Bj: [supp(s)| < Log4’8q*(mn)}, S1=BjnN Log™* (mn)B™.

Then BJ! C S; + 8.
If Logm < C?(a)Log®n, then inequality (20) from Lemma 26 (applied with b = 1, p A 2
instead of p and | = Log(mn)*??" < Log(mn)%?) yields

E sup Z Xi;siti Sa pt/(P"Vv2) supHZX“sl

SEShtGBpAQ i<m,j<n s€S1 =1

+ (Log n)C1 (@)

<4 n'/®P"V2) sup
seB’Iﬂ

L pl/3

ZXZ 15i o
ZXZ 18§

<o n/PV2) gup
SGB’"L

p*
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In the case Logm > C2(a)Logn we have ml/4 > elogm/(Cl@)Logn) > o(Logm)'/* oo yoy
inequality (20) yields

E  sup Z X jsitj Sa pt/(7v2) sup HZ Xi 18 + (Logm)c"‘(“)
SGSl,tGBpAz i<m,j<n 5€Sl i=1
Sa 0@V sup HZ Xiasil| +m!/a
seBn T p”
Thus, in any case
E sup Z X 8t < n(M/PT=12V0E  gup Z X jsitj
3651,t€Bp i<m,j<n SESLtGBpAg i<m,j<n
(37) <o n/P" sup HZX 156 4+ mt/apd/pT =12V
sGBm p*
Let

Sy ={se Bj: |supp(s)| < mLogfq(ﬁH)(mn)} N Log~**(mn)BT,
S3 =B N m~ Y9 Log PV (mn)B™,

Then S; C Sy + S3.
Lemmas 27 and 29 (applied with I = m Log~?®**V (mn) and a = Log=**(mn)), and inequality
g < § yield

sup Z X jsit;

sesmeBp i<m<n
< Log”(mn) ( Log~2PC=0) (mp)n/P" 4 n (/" =1/2V0p1/a 1 og=F=1/2 (mn))

(38) < npl/P" 4 n(/P"=1/2V01/q

Moreover, if Logm < C?(«) Log®n, then inequalities n'/3 < m'/1¢f < m!/a Log’Bm and
q/(3¢*) > 48 + q/(12¢*) imply

mi/a Log*(ﬁﬂ)q/q* (mn) > nd/(3¢") Logfﬁq/q* mLOg*(ﬂJrl)q/q* (mn) >4 n*?,

and if Logm > C?(a) Log® n > Log? n, then
ml/a" Logf(ﬁﬂ)q/q* (mn) > o m/q" Logfcs(a)q m > exp((Log m)/2 — Ca(a) Logn - In(Log m))
> e(L0g2 n)/4 >a n4ﬁ.

~a
Since ¢* S £, in both cases we have

(ml/q Log—(ﬁ+1)q/q* (mn))(2—q*)/2 >, nB.

~

Therefore, inequality (19) from Lemma 26 (applied with a = m~/4" Log®*Y% % (mn) and
k =mn) yields

(39) E sup Z Xi.58it; Sa m/9 sup
sESs,teBN teBn

lejt H 1 (/" =1/2)V0,

P i<m,j<n

Since

n
1/p*—1/2)v0
n/P"=12V0 = gup lt]|p < SHPHE X5t
teBy teBp i q

estimates (37)-(39) yield the assertion. O
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6.8. Case 245 > ¢ > p*. Once we prove the upper bound in the case 245 > ¢ > p*, the upper
bound in the case 243 > p* > ¢ follows by duality (10). We first deal with the case p* > 2 and
then move to the case 2 > p* at the end of this subsection.

Let us begin with the proof in the case p* = ¢ > 2, when an interpolation argument works.

Lemma 37. If p* = q > 2, then the upper bound in Theorem 1 holds.

Proof. By Subsections 6.1 and 6.6 we know that the assertion holds when p* = ¢ € {2} U [3, o0].
Assume Without loss of generality that EX?; = 1. Fix p* = ¢ € (2,3) and let 6 € (0,1) be

such that +150 e, =1 l = %4+ 122, Then (7) implies that

-
Zt X1 Zt X4,

(40) sup
teBy

~q SUp
gALogm teBy

and similarly

(41) sup HZ $iXi1 ~a 1,
i=1

seB;’L

p*ALogn
By the Riesz-Thorin interpolation theorem, Holder’s inequality, (40) and (41) we get
E||(X

ivj)MHen—Mm = (H J)MH@;—%;’L (X” JHen —wn)

1-6
< (]EH(Xz',j)i,j zgﬁ%n) (E||(Xi7j)i7j|’€g*~>€g”)
<o (VM) (nvm)A=08 = (nvm) ~ /P 4t/ O

Proof of the upper bound in Theorem 1 in the case 245 > q > p* > 2. By Remark 25 it suffices
to assume that X; ;’s are symmetric and o > /2. Then 3 = log, o > 1/2. Inequality (7) implies
that in the case 248 > ¢ > p* > 2 the upper bound in Theorem 1 is equivalent to

(42) E[[(Xi,5)i,
Observe first that we may assume that m > n. Indeed, if m < n then Lemma 37 yields
E(Xi)igllen—sen < 1dllep—en BINXG5)isllen e <0/ TVPEI(XG )i 5llen, —ep S 0P

Thus, in the sequel we assume that 2 < p* < ¢ < 248 and m > n. Define

:inf{ke{o,l dro2k > b 274 }
q*

~Ina

So 0P 4 ml/e,

e Sa

Observe that

10 2 —g*
(43) ko=0 or 2k < —— 0 q

< Logm.
Ina g¢*

By Lemma 31 and the definition of ky we have

]EH (Xivjl{\Xi,j\Za’co})igm,jgnneg%m < EH (XivaﬂX'i,j|Zako})i§m,j§n

<a \Fexp(—ll—OQko)
1 2-¢

S m2  2¢F = ml/q.

n m
Ly — L3

*

By Lemma 28 and two-sided bound (1) we have

E||(Xijlqx.,<1y) <o ntP 4 mt/a,

i<m,j<nllen—em S EH(giJ)iSmJSnHe;}—%Zf
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We have B C S1 + S2, where
Sy ={s€ Bj: |supp(s)| < mt/ B0y g, — By N m 1/ (28407 gm
Inequality (20) from Lemma 26 applied with b= 1, I = m!/(2#9) shows that

(44) E sup Z Xijsitj San'/P +m/1,
s€S,,teB™

P i <m,j<n
Since 28gq* < 1003% we have
Sy C Sy := Bt nm~1/(1008) g,

Thus, to finish the proof it is enough to upper bound the following quantity

ko
E sup . E Xi,jI{1§|X,i,j|<ak0}5itj < E sup } E Xivjf{ak—lg‘xiﬁj|<ak}51'tj.
SE€531EBT i<m,j<n k=1 SESIEBY g i<n
Let wy,...,ur, be positive numbers to be chosen later. We decompose the set S; in the

following way, depending on k:
S3 C Sur + Ss.k,

where
m —1/(1008%) pm m Uk va m
Syk={s€ B |supps| <m/ux}Nm B, Ssk:=Bjin P BZ.
Thus,
E sup Z Xi,jj{ak_lg\Xi,j\<o¢k}sitj
SESs,tEBY ;e
<E sup Z Xi,jI{lXi,jKozk}Sitj +E sup Z Xiyjf{akflg‘xhﬂ}sitj.
SES4 k,tEBY i<m,j<n SES5,k,tEBY i<m.j<n
Observe that B, C By and
/ i 5
q7/2 2—¢*)/2 k) 24*
sup [lslla < sup [Js||2-/%ls) &00/2 < (2£) 7
S€S55,k S€ES5,k m
Hence, Lemma 31 yields
up\ st
E _ sup Z Xijlgar-1<1x; ;ySitj < (*) Ell(Xi jlgar—1<1x, ;1) leg —ep
$€855,k,t€ By i<m,j<n m

*

<a ml/qu:;Ti exp(fhll—gbk*l) .

Thus, if we choose

¢ lna k)
Uk = exp| ——=2" |,
’“ p(20(2 —q)
we get
< 1/ na 1/q
ZE sup Z Xi7j[{ak71§|xi,j|}5itj Sa Zm exp(— 40 2 ) Sa m .
k=1 S€95kAEBD 1 icn k=1

Lemmas 28 and 30 applied with | = %7 a= m_l/(looﬁz), and v = 240 yield

_(2-d%) "
E _ _sw Z Xijl{x, 1<arysiti Sa a” (m 20052 /P74 M(m/uk)l/q),
SE€SLIEBY j<m j<n ’
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Property (43) yields

ko

_(2-¢%) . _(2—g¢%) m 10 2 —g* logy o _ (2-¢%) .
E aFm” 2057 P < oMo T Lgym T 2008 pl /P (17 * Logm) e 2052 M pl/p
k=1 no g

<a nt/r’ sup rlogz @ < nt/P",
~ x>0 ~
Finally, since ¢ < 248 and uy, > 1 we get v/Log ug (m/ug)*? <, ml/qugl/@q), S0

ko

*1
Zak\/Loguk(m/uk)l/q <a mt/4 Zak exp<f%2k) <a m/a. O

k=1 E>1 4Oq(2 - q*

The proof in the case 248 > ¢ > 2 > p* is easy and bases on the already proven case when
q > 2 = p* (see the proof above).

Proof of the upper bound in Theorem 1 in the case 243 > q > 2 > p*. Inequality (7) implies that
in the case 248 > q > 2 > p* the upper bound in Theorem 1 is equivalent to

(45) El[(Xi)i5llep ey Sa n'/P" +m!/apt/p7 =172,

~Q

In particular, an already obtained upper bound in the case 248 > ¢ > 2 = p* yields

El[(Xi5)illeg»em Sa n/? 4 mb/a,
SO
El(X;5)igller e < 1A lepmen BN(Xij)iglleg—ep San/? =12 (02 4 ml/9)
=nt/P" papl/vT=1/2
and thus, (45) holds. 0
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